aboutsummaryrefslogtreecommitdiff
path: root/docs/tutorial/OCamlLangImpl2.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/tutorial/OCamlLangImpl2.html')
-rw-r--r--docs/tutorial/OCamlLangImpl2.html1043
1 files changed, 0 insertions, 1043 deletions
diff --git a/docs/tutorial/OCamlLangImpl2.html b/docs/tutorial/OCamlLangImpl2.html
deleted file mode 100644
index dd7e07b422..0000000000
--- a/docs/tutorial/OCamlLangImpl2.html
+++ /dev/null
@@ -1,1043 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
- "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
- <title>Kaleidoscope: Implementing a Parser and AST</title>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <meta name="author" content="Chris Lattner">
- <meta name="author" content="Erick Tryzelaar">
- <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Implementing a Parser and AST</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 2
- <ol>
- <li><a href="#intro">Chapter 2 Introduction</a></li>
- <li><a href="#ast">The Abstract Syntax Tree (AST)</a></li>
- <li><a href="#parserbasics">Parser Basics</a></li>
- <li><a href="#parserprimexprs">Basic Expression Parsing</a></li>
- <li><a href="#parserbinops">Binary Expression Parsing</a></li>
- <li><a href="#parsertop">Parsing the Rest</a></li>
- <li><a href="#driver">The Driver</a></li>
- <li><a href="#conclusions">Conclusions</a></li>
- <li><a href="#code">Full Code Listing</a></li>
- </ol>
-</li>
-<li><a href="OCamlLangImpl3.html">Chapter 3</a>: Code generation to LLVM IR</li>
-</ul>
-
-<div class="doc_author">
- <p>
- Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
- and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
- </p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="intro">Chapter 2 Introduction</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Welcome to Chapter 2 of the "<a href="index.html">Implementing a language
-with LLVM in Objective Caml</a>" tutorial. This chapter shows you how to use
-the lexer, built in <a href="OCamlLangImpl1.html">Chapter 1</a>, to build a
-full <a href="http://en.wikipedia.org/wiki/Parsing">parser</a> for our
-Kaleidoscope language. Once we have a parser, we'll define and build an <a
-href="http://en.wikipedia.org/wiki/Abstract_syntax_tree">Abstract Syntax
-Tree</a> (AST).</p>
-
-<p>The parser we will build uses a combination of <a
-href="http://en.wikipedia.org/wiki/Recursive_descent_parser">Recursive Descent
-Parsing</a> and <a href=
-"http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence
-Parsing</a> to parse the Kaleidoscope language (the latter for
-binary expressions and the former for everything else). Before we get to
-parsing though, lets talk about the output of the parser: the Abstract Syntax
-Tree.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="ast">The Abstract Syntax Tree (AST)</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>The AST for a program captures its behavior in such a way that it is easy for
-later stages of the compiler (e.g. code generation) to interpret. We basically
-want one object for each construct in the language, and the AST should closely
-model the language. In Kaleidoscope, we have expressions, a prototype, and a
-function object. We'll start with expressions first:</p>
-
-<div class="doc_code">
-<pre>
-(* expr - Base type for all expression nodes. *)
-type expr =
- (* variant for numeric literals like "1.0". *)
- | Number of float
-</pre>
-</div>
-
-<p>The code above shows the definition of the base ExprAST class and one
-subclass which we use for numeric literals. The important thing to note about
-this code is that the Number variant captures the numeric value of the
-literal as an instance variable. This allows later phases of the compiler to
-know what the stored numeric value is.</p>
-
-<p>Right now we only create the AST, so there are no useful functions on
-them. It would be very easy to add a function to pretty print the code,
-for example. Here are the other expression AST node definitions that we'll use
-in the basic form of the Kaleidoscope language:
-</p>
-
-<div class="doc_code">
-<pre>
- (* variant for referencing a variable, like "a". *)
- | Variable of string
-
- (* variant for a binary operator. *)
- | Binary of char * expr * expr
-
- (* variant for function calls. *)
- | Call of string * expr array
-</pre>
-</div>
-
-<p>This is all (intentionally) rather straight-forward: variables capture the
-variable name, binary operators capture their opcode (e.g. '+'), and calls
-capture a function name as well as a list of any argument expressions. One thing
-that is nice about our AST is that it captures the language features without
-talking about the syntax of the language. Note that there is no discussion about
-precedence of binary operators, lexical structure, etc.</p>
-
-<p>For our basic language, these are all of the expression nodes we'll define.
-Because it doesn't have conditional control flow, it isn't Turing-complete;
-we'll fix that in a later installment. The two things we need next are a way
-to talk about the interface to a function, and a way to talk about functions
-themselves:</p>
-
-<div class="doc_code">
-<pre>
-(* proto - This type represents the "prototype" for a function, which captures
- * its name, and its argument names (thus implicitly the number of arguments the
- * function takes). *)
-type proto = Prototype of string * string array
-
-(* func - This type represents a function definition itself. *)
-type func = Function of proto * expr
-</pre>
-</div>
-
-<p>In Kaleidoscope, functions are typed with just a count of their arguments.
-Since all values are double precision floating point, the type of each argument
-doesn't need to be stored anywhere. In a more aggressive and realistic
-language, the "expr" variants would probably have a type field.</p>
-
-<p>With this scaffolding, we can now talk about parsing expressions and function
-bodies in Kaleidoscope.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="parserbasics">Parser Basics</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Now that we have an AST to build, we need to define the parser code to build
-it. The idea here is that we want to parse something like "x+y" (which is
-returned as three tokens by the lexer) into an AST that could be generated with
-calls like this:</p>
-
-<div class="doc_code">
-<pre>
- let x = Variable "x" in
- let y = Variable "y" in
- let result = Binary ('+', x, y) in
- ...
-</pre>
-</div>
-
-<p>
-The error handling routines make use of the builtin <tt>Stream.Failure</tt> and
-<tt>Stream.Error</tt>s. <tt>Stream.Failure</tt> is raised when the parser is
-unable to find any matching token in the first position of a pattern.
-<tt>Stream.Error</tt> is raised when the first token matches, but the rest do
-not. The error recovery in our parser will not be the best and is not
-particular user-friendly, but it will be enough for our tutorial. These
-exceptions make it easier to handle errors in routines that have various return
-types.</p>
-
-<p>With these basic types and exceptions, we can implement the first
-piece of our grammar: numeric literals.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="parserprimexprs">Basic Expression Parsing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>We start with numeric literals, because they are the simplest to process.
-For each production in our grammar, we'll define a function which parses that
-production. We call this class of expressions "primary" expressions, for
-reasons that will become more clear <a href="OCamlLangImpl6.html#unary">
-later in the tutorial</a>. In order to parse an arbitrary primary expression,
-we need to determine what sort of expression it is. For numeric literals, we
-have:</p>
-
-<div class="doc_code">
-<pre>
-(* primary
- * ::= identifier
- * ::= numberexpr
- * ::= parenexpr *)
-parse_primary = parser
- (* numberexpr ::= number *)
- | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
-</pre>
-</div>
-
-<p>This routine is very simple: it expects to be called when the current token
-is a <tt>Token.Number</tt> token. It takes the current number value, creates
-a <tt>Ast.Number</tt> node, advances the lexer to the next token, and finally
-returns.</p>
-
-<p>There are some interesting aspects to this. The most important one is that
-this routine eats all of the tokens that correspond to the production and
-returns the lexer buffer with the next token (which is not part of the grammar
-production) ready to go. This is a fairly standard way to go for recursive
-descent parsers. For a better example, the parenthesis operator is defined like
-this:</p>
-
-<div class="doc_code">
-<pre>
- (* parenexpr ::= '(' expression ')' *)
- | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
-</pre>
-</div>
-
-<p>This function illustrates a number of interesting things about the
-parser:</p>
-
-<p>
-1) It shows how we use the <tt>Stream.Error</tt> exception. When called, this
-function expects that the current token is a '(' token, but after parsing the
-subexpression, it is possible that there is no ')' waiting. For example, if
-the user types in "(4 x" instead of "(4)", the parser should emit an error.
-Because errors can occur, the parser needs a way to indicate that they
-happened. In our parser, we use the camlp4 shortcut syntax <tt>token ?? "parse
-error"</tt>, where if the token before the <tt>??</tt> does not match, then
-<tt>Stream.Error "parse error"</tt> will be raised.</p>
-
-<p>2) Another interesting aspect of this function is that it uses recursion by
-calling <tt>Parser.parse_primary</tt> (we will soon see that
-<tt>Parser.parse_primary</tt> can call <tt>Parser.parse_primary</tt>). This is
-powerful because it allows us to handle recursive grammars, and keeps each
-production very simple. Note that parentheses do not cause construction of AST
-nodes themselves. While we could do it this way, the most important role of
-parentheses are to guide the parser and provide grouping. Once the parser
-constructs the AST, parentheses are not needed.</p>
-
-<p>The next simple production is for handling variable references and function
-calls:</p>
-
-<div class="doc_code">
-<pre>
- (* identifierexpr
- * ::= identifier
- * ::= identifier '(' argumentexpr ')' *)
- | [&lt; 'Token.Ident id; stream &gt;] -&gt;
- let rec parse_args accumulator = parser
- | [&lt; e=parse_expr; stream &gt;] -&gt;
- begin parser
- | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
- | [&lt; &gt;] -&gt; e :: accumulator
- end stream
- | [&lt; &gt;] -&gt; accumulator
- in
- let rec parse_ident id = parser
- (* Call. *)
- | [&lt; 'Token.Kwd '(';
- args=parse_args [];
- 'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
- Ast.Call (id, Array.of_list (List.rev args))
-
- (* Simple variable ref. *)
- | [&lt; &gt;] -&gt; Ast.Variable id
- in
- parse_ident id stream
-</pre>
-</div>
-
-<p>This routine follows the same style as the other routines. (It expects to be
-called if the current token is a <tt>Token.Ident</tt> token). It also has
-recursion and error handling. One interesting aspect of this is that it uses
-<em>look-ahead</em> to determine if the current identifier is a stand alone
-variable reference or if it is a function call expression. It handles this by
-checking to see if the token after the identifier is a '(' token, constructing
-either a <tt>Ast.Variable</tt> or <tt>Ast.Call</tt> node as appropriate.
-</p>
-
-<p>We finish up by raising an exception if we received a token we didn't
-expect:</p>
-
-<div class="doc_code">
-<pre>
- | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
-</pre>
-</div>
-
-<p>Now that basic expressions are handled, we need to handle binary expressions.
-They are a bit more complex.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="parserbinops">Binary Expression Parsing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Binary expressions are significantly harder to parse because they are often
-ambiguous. For example, when given the string "x+y*z", the parser can choose
-to parse it as either "(x+y)*z" or "x+(y*z)". With common definitions from
-mathematics, we expect the later parse, because "*" (multiplication) has
-higher <em>precedence</em> than "+" (addition).</p>
-
-<p>There are many ways to handle this, but an elegant and efficient way is to
-use <a href=
-"http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence
-Parsing</a>. This parsing technique uses the precedence of binary operators to
-guide recursion. To start with, we need a table of precedences:</p>
-
-<div class="doc_code">
-<pre>
-(* binop_precedence - This holds the precedence for each binary operator that is
- * defined *)
-let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
-
-(* precedence - Get the precedence of the pending binary operator token. *)
-let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
-
-...
-
-let main () =
- (* Install standard binary operators.
- * 1 is the lowest precedence. *)
- Hashtbl.add Parser.binop_precedence '&lt;' 10;
- Hashtbl.add Parser.binop_precedence '+' 20;
- Hashtbl.add Parser.binop_precedence '-' 20;
- Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
- ...
-</pre>
-</div>
-
-<p>For the basic form of Kaleidoscope, we will only support 4 binary operators
-(this can obviously be extended by you, our brave and intrepid reader). The
-<tt>Parser.precedence</tt> function returns the precedence for the current
-token, or -1 if the token is not a binary operator. Having a <tt>Hashtbl.t</tt>
-makes it easy to add new operators and makes it clear that the algorithm doesn't
-depend on the specific operators involved, but it would be easy enough to
-eliminate the <tt>Hashtbl.t</tt> and do the comparisons in the
-<tt>Parser.precedence</tt> function. (Or just use a fixed-size array).</p>
-
-<p>With the helper above defined, we can now start parsing binary expressions.
-The basic idea of operator precedence parsing is to break down an expression
-with potentially ambiguous binary operators into pieces. Consider ,for example,
-the expression "a+b+(c+d)*e*f+g". Operator precedence parsing considers this
-as a stream of primary expressions separated by binary operators. As such,
-it will first parse the leading primary expression "a", then it will see the
-pairs [+, b] [+, (c+d)] [*, e] [*, f] and [+, g]. Note that because parentheses
-are primary expressions, the binary expression parser doesn't need to worry
-about nested subexpressions like (c+d) at all.
-</p>
-
-<p>
-To start, an expression is a primary expression potentially followed by a
-sequence of [binop,primaryexpr] pairs:</p>
-
-<div class="doc_code">
-<pre>
-(* expression
- * ::= primary binoprhs *)
-and parse_expr = parser
- | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
-</pre>
-</div>
-
-<p><tt>Parser.parse_bin_rhs</tt> is the function that parses the sequence of
-pairs for us. It takes a precedence and a pointer to an expression for the part
-that has been parsed so far. Note that "x" is a perfectly valid expression: As
-such, "binoprhs" is allowed to be empty, in which case it returns the expression
-that is passed into it. In our example above, the code passes the expression for
-"a" into <tt>Parser.parse_bin_rhs</tt> and the current token is "+".</p>
-
-<p>The precedence value passed into <tt>Parser.parse_bin_rhs</tt> indicates the
-<em>minimal operator precedence</em> that the function is allowed to eat. For
-example, if the current pair stream is [+, x] and <tt>Parser.parse_bin_rhs</tt>
-is passed in a precedence of 40, it will not consume any tokens (because the
-precedence of '+' is only 20). With this in mind, <tt>Parser.parse_bin_rhs</tt>
-starts with:</p>
-
-<div class="doc_code">
-<pre>
-(* binoprhs
- * ::= ('+' primary)* *)
-and parse_bin_rhs expr_prec lhs stream =
- match Stream.peek stream with
- (* If this is a binop, find its precedence. *)
- | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
- let token_prec = precedence c in
-
- (* If this is a binop that binds at least as tightly as the current binop,
- * consume it, otherwise we are done. *)
- if token_prec &lt; expr_prec then lhs else begin
-</pre>
-</div>
-
-<p>This code gets the precedence of the current token and checks to see if if is
-too low. Because we defined invalid tokens to have a precedence of -1, this
-check implicitly knows that the pair-stream ends when the token stream runs out
-of binary operators. If this check succeeds, we know that the token is a binary
-operator and that it will be included in this expression:</p>
-
-<div class="doc_code">
-<pre>
- (* Eat the binop. *)
- Stream.junk stream;
-
- (* Okay, we know this is a binop. *)
- let rhs =
- match Stream.peek stream with
- | Some (Token.Kwd c2) -&gt;
-</pre>
-</div>
-
-<p>As such, this code eats (and remembers) the binary operator and then parses
-the primary expression that follows. This builds up the whole pair, the first of
-which is [+, b] for the running example.</p>
-
-<p>Now that we parsed the left-hand side of an expression and one pair of the
-RHS sequence, we have to decide which way the expression associates. In
-particular, we could have "(a+b) binop unparsed" or "a + (b binop unparsed)".
-To determine this, we look ahead at "binop" to determine its precedence and
-compare it to BinOp's precedence (which is '+' in this case):</p>
-
-<div class="doc_code">
-<pre>
- (* If BinOp binds less tightly with rhs than the operator after
- * rhs, let the pending operator take rhs as its lhs. *)
- let next_prec = precedence c2 in
- if token_prec &lt; next_prec
-</pre>
-</div>
-
-<p>If the precedence of the binop to the right of "RHS" is lower or equal to the
-precedence of our current operator, then we know that the parentheses associate
-as "(a+b) binop ...". In our example, the current operator is "+" and the next
-operator is "+", we know that they have the same precedence. In this case we'll
-create the AST node for "a+b", and then continue parsing:</p>
-
-<div class="doc_code">
-<pre>
- ... if body omitted ...
- in
-
- (* Merge lhs/rhs. *)
- let lhs = Ast.Binary (c, lhs, rhs) in
- parse_bin_rhs expr_prec lhs stream
- end
-</pre>
-</div>
-
-<p>In our example above, this will turn "a+b+" into "(a+b)" and execute the next
-iteration of the loop, with "+" as the current token. The code above will eat,
-remember, and parse "(c+d)" as the primary expression, which makes the
-current pair equal to [+, (c+d)]. It will then evaluate the 'if' conditional above with
-"*" as the binop to the right of the primary. In this case, the precedence of "*" is
-higher than the precedence of "+" so the if condition will be entered.</p>
-
-<p>The critical question left here is "how can the if condition parse the right
-hand side in full"? In particular, to build the AST correctly for our example,
-it needs to get all of "(c+d)*e*f" as the RHS expression variable. The code to
-do this is surprisingly simple (code from the above two blocks duplicated for
-context):</p>
-
-<div class="doc_code">
-<pre>
- match Stream.peek stream with
- | Some (Token.Kwd c2) -&gt;
- (* If BinOp binds less tightly with rhs than the operator after
- * rhs, let the pending operator take rhs as its lhs. *)
- if token_prec &lt; precedence c2
- then <b>parse_bin_rhs (token_prec + 1) rhs stream</b>
- else rhs
- | _ -&gt; rhs
- in
-
- (* Merge lhs/rhs. *)
- let lhs = Ast.Binary (c, lhs, rhs) in
- parse_bin_rhs expr_prec lhs stream
- end
-</pre>
-</div>
-
-<p>At this point, we know that the binary operator to the RHS of our primary
-has higher precedence than the binop we are currently parsing. As such, we know
-that any sequence of pairs whose operators are all higher precedence than "+"
-should be parsed together and returned as "RHS". To do this, we recursively
-invoke the <tt>Parser.parse_bin_rhs</tt> function specifying "token_prec+1" as
-the minimum precedence required for it to continue. In our example above, this
-will cause it to return the AST node for "(c+d)*e*f" as RHS, which is then set
-as the RHS of the '+' expression.</p>
-
-<p>Finally, on the next iteration of the while loop, the "+g" piece is parsed
-and added to the AST. With this little bit of code (14 non-trivial lines), we
-correctly handle fully general binary expression parsing in a very elegant way.
-This was a whirlwind tour of this code, and it is somewhat subtle. I recommend
-running through it with a few tough examples to see how it works.
-</p>
-
-<p>This wraps up handling of expressions. At this point, we can point the
-parser at an arbitrary token stream and build an expression from it, stopping
-at the first token that is not part of the expression. Next up we need to
-handle function definitions, etc.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="parsertop">Parsing the Rest</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-The next thing missing is handling of function prototypes. In Kaleidoscope,
-these are used both for 'extern' function declarations as well as function body
-definitions. The code to do this is straight-forward and not very interesting
-(once you've survived expressions):
-</p>
-
-<div class="doc_code">
-<pre>
-(* prototype
- * ::= id '(' id* ')' *)
-let parse_prototype =
- let rec parse_args accumulator = parser
- | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
- | [&lt; &gt;] -&gt; accumulator
- in
-
- parser
- | [&lt; 'Token.Ident id;
- 'Token.Kwd '(' ?? "expected '(' in prototype";
- args=parse_args [];
- 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
- (* success. *)
- Ast.Prototype (id, Array.of_list (List.rev args))
-
- | [&lt; &gt;] -&gt;
- raise (Stream.Error "expected function name in prototype")
-</pre>
-</div>
-
-<p>Given this, a function definition is very simple, just a prototype plus
-an expression to implement the body:</p>
-
-<div class="doc_code">
-<pre>
-(* definition ::= 'def' prototype expression *)
-let parse_definition = parser
- | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
- Ast.Function (p, e)
-</pre>
-</div>
-
-<p>In addition, we support 'extern' to declare functions like 'sin' and 'cos' as
-well as to support forward declaration of user functions. These 'extern's are just
-prototypes with no body:</p>
-
-<div class="doc_code">
-<pre>
-(* external ::= 'extern' prototype *)
-let parse_extern = parser
- | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
-</pre>
-</div>
-
-<p>Finally, we'll also let the user type in arbitrary top-level expressions and
-evaluate them on the fly. We will handle this by defining anonymous nullary
-(zero argument) functions for them:</p>
-
-<div class="doc_code">
-<pre>
-(* toplevelexpr ::= expression *)
-let parse_toplevel = parser
- | [&lt; e=parse_expr &gt;] -&gt;
- (* Make an anonymous proto. *)
- Ast.Function (Ast.Prototype ("", [||]), e)
-</pre>
-</div>
-
-<p>Now that we have all the pieces, let's build a little driver that will let us
-actually <em>execute</em> this code we've built!</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="driver">The Driver</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>The driver for this simply invokes all of the parsing pieces with a top-level
-dispatch loop. There isn't much interesting here, so I'll just include the
-top-level loop. See <a href="#code">below</a> for full code in the "Top-Level
-Parsing" section.</p>
-
-<div class="doc_code">
-<pre>
-(* top ::= definition | external | expression | ';' *)
-let rec main_loop stream =
- match Stream.peek stream with
- | None -&gt; ()
-
- (* ignore top-level semicolons. *)
- | Some (Token.Kwd ';') -&gt;
- Stream.junk stream;
- main_loop stream
-
- | Some token -&gt;
- begin
- try match token with
- | Token.Def -&gt;
- ignore(Parser.parse_definition stream);
- print_endline "parsed a function definition.";
- | Token.Extern -&gt;
- ignore(Parser.parse_extern stream);
- print_endline "parsed an extern.";
- | _ -&gt;
- (* Evaluate a top-level expression into an anonymous function. *)
- ignore(Parser.parse_toplevel stream);
- print_endline "parsed a top-level expr";
- with Stream.Error s -&gt;
- (* Skip token for error recovery. *)
- Stream.junk stream;
- print_endline s;
- end;
- print_string "ready&gt; "; flush stdout;
- main_loop stream
-</pre>
-</div>
-
-<p>The most interesting part of this is that we ignore top-level semicolons.
-Why is this, you ask? The basic reason is that if you type "4 + 5" at the
-command line, the parser doesn't know whether that is the end of what you will type
-or not. For example, on the next line you could type "def foo..." in which case
-4+5 is the end of a top-level expression. Alternatively you could type "* 6",
-which would continue the expression. Having top-level semicolons allows you to
-type "4+5;", and the parser will know you are done.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="conclusions">Conclusions</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>With just under 300 lines of commented code (240 lines of non-comment,
-non-blank code), we fully defined our minimal language, including a lexer,
-parser, and AST builder. With this done, the executable will validate
-Kaleidoscope code and tell us if it is grammatically invalid. For
-example, here is a sample interaction:</p>
-
-<div class="doc_code">
-<pre>
-$ <b>./toy.byte</b>
-ready&gt; <b>def foo(x y) x+foo(y, 4.0);</b>
-Parsed a function definition.
-ready&gt; <b>def foo(x y) x+y y;</b>
-Parsed a function definition.
-Parsed a top-level expr
-ready&gt; <b>def foo(x y) x+y );</b>
-Parsed a function definition.
-Error: unknown token when expecting an expression
-ready&gt; <b>extern sin(a);</b>
-ready&gt; Parsed an extern
-ready&gt; <b>^D</b>
-$
-</pre>
-</div>
-
-<p>There is a lot of room for extension here. You can define new AST nodes,
-extend the language in many ways, etc. In the <a href="OCamlLangImpl3.html">
-next installment</a>, we will describe how to generate LLVM Intermediate
-Representation (IR) from the AST.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="code">Full Code Listing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-Here is the complete code listing for this and the previous chapter.
-Note that it is fully self-contained: you don't need LLVM or any external
-libraries at all for this. (Besides the ocaml standard libraries, of
-course.) To build this, just compile with:</p>
-
-<div class="doc_code">
-<pre>
-# Compile
-ocamlbuild toy.byte
-# Run
-./toy.byte
-</pre>
-</div>
-
-<p>Here is the code:</p>
-
-<dl>
-<dt>_tags:</dt>
-<dd class="doc_code">
-<pre>
-&lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
-</pre>
-</dd>
-
-<dt>token.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Lexer Tokens
- *===----------------------------------------------------------------------===*)
-
-(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
- * these others for known things. *)
-type token =
- (* commands *)
- | Def | Extern
-
- (* primary *)
- | Ident of string | Number of float
-
- (* unknown *)
- | Kwd of char
-</pre>
-</dd>
-
-<dt>lexer.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Lexer
- *===----------------------------------------------------------------------===*)
-
-let rec lex = parser
- (* Skip any whitespace. *)
- | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
-
- (* identifier: [a-zA-Z][a-zA-Z0-9] *)
- | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
- let buffer = Buffer.create 1 in
- Buffer.add_char buffer c;
- lex_ident buffer stream
-
- (* number: [0-9.]+ *)
- | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
- let buffer = Buffer.create 1 in
- Buffer.add_char buffer c;
- lex_number buffer stream
-
- (* Comment until end of line. *)
- | [&lt; ' ('#'); stream &gt;] -&gt;
- lex_comment stream
-
- (* Otherwise, just return the character as its ascii value. *)
- | [&lt; 'c; stream &gt;] -&gt;
- [&lt; 'Token.Kwd c; lex stream &gt;]
-
- (* end of stream. *)
- | [&lt; &gt;] -&gt; [&lt; &gt;]
-
-and lex_number buffer = parser
- | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
- Buffer.add_char buffer c;
- lex_number buffer stream
- | [&lt; stream=lex &gt;] -&gt;
- [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
-
-and lex_ident buffer = parser
- | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
- Buffer.add_char buffer c;
- lex_ident buffer stream
- | [&lt; stream=lex &gt;] -&gt;
- match Buffer.contents buffer with
- | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
- | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
- | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
-
-and lex_comment = parser
- | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
- | [&lt; 'c; e=lex_comment &gt;] -&gt; e
- | [&lt; &gt;] -&gt; [&lt; &gt;]
-</pre>
-</dd>
-
-<dt>ast.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===----------------------------------------------------------------------===
- * Abstract Syntax Tree (aka Parse Tree)
- *===----------------------------------------------------------------------===*)
-
-(* expr - Base type for all expression nodes. *)
-type expr =
- (* variant for numeric literals like "1.0". *)
- | Number of float
-
- (* variant for referencing a variable, like "a". *)
- | Variable of string
-
- (* variant for a binary operator. *)
- | Binary of char * expr * expr
-
- (* variant for function calls. *)
- | Call of string * expr array
-
-(* proto - This type represents the "prototype" for a function, which captures
- * its name, and its argument names (thus implicitly the number of arguments the
- * function takes). *)
-type proto = Prototype of string * string array
-
-(* func - This type represents a function definition itself. *)
-type func = Function of proto * expr
-</pre>
-</dd>
-
-<dt>parser.ml:</dt>
-<dd class="doc_code">
-<pre>
-(*===---------------------------------------------------------------------===
- * Parser
- *===---------------------------------------------------------------------===*)
-
-(* binop_precedence - This holds the precedence for each binary operator that is
- * defined *)
-let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
-
-(* precedence - Get the precedence of the pending binary operator token. *)
-let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
-
-(* primary
- * ::= identifier
- * ::= numberexpr
- * ::= parenexpr *)
-let rec parse_primary = parser
- (* numberexpr ::= number *)
- | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
-
- (* parenexpr ::= '(' expression ')' *)
- | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
-
- (* identifierexpr
- * ::= identifier
- * ::= identifier '(' argumentexpr ')' *)
- | [&lt; 'Token.Ident id; stream &gt;] -&gt;
- let rec parse_args accumulator = parser
- | [&lt; e=parse_expr; stream &gt;] -&gt;
- begin parser
- | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
- | [&lt; &gt;] -&gt; e :: accumulator
- end stream
- | [&lt; &gt;] -&gt; accumulator
- in
- let rec parse_ident id = parser
- (* Call. *)
- | [&lt; 'Token.Kwd '(';
- args=parse_args [];
- 'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
- Ast.Call (id, Array.of_list (List.rev args))
-
- (* Simple variable ref. *)
- | [&lt; &gt;] -&gt; Ast.Variable id
- in
- parse_ident id stream
-
- | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
-
-(* binoprhs
- * ::= ('+' primary)* *)
-and parse_bin_rhs expr_prec lhs stream =
- match Stream.peek stream with
- (* If this is a binop, find its precedence. *)
- | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
- let token_prec = precedence c in
-
- (* If this is a binop that binds at least as tightly as the current binop,
- * consume it, otherwise we are done. *)
- if token_prec &lt; expr_prec then lhs else begin
- (* Eat the binop. *)
- Stream.junk stream;
-
- (* Parse the primary expression after the binary operator. *)
- let rhs = parse_primary stream in
-
- (* Okay, we know this is a binop. *)
- let rhs =
- match Stream.peek stream with
- | Some (Token.Kwd c2) -&gt;
- (* If BinOp binds less tightly with rhs than the operator after
- * rhs, let the pending operator take rhs as its lhs. *)
- let next_prec = precedence c2 in
- if token_prec &lt; next_prec
- then parse_bin_rhs (token_prec + 1) rhs stream
- else rhs
- | _ -&gt; rhs
- in
-
- (* Merge lhs/rhs. *)
- let lhs = Ast.Binary (c, lhs, rhs) in
- parse_bin_rhs expr_prec lhs stream
- end
- | _ -&gt; lhs
-
-(* expression
- * ::= primary binoprhs *)
-and parse_expr = parser
- | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
-
-(* prototype
- * ::= id '(' id* ')' *)
-let parse_prototype =
- let rec parse_args accumulator = parser
- | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
- | [&lt; &gt;] -&gt; accumulator
- in
-
- parser
- | [&lt; 'Token.Ident id;
- 'Token.Kwd '(' ?? "expected '(' in prototype";
- args=parse_args [];
- 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
- (* success. *)
- Ast.Prototype (id, Array.of_list (List.rev args))
-
- | [&lt; &gt;] -&gt;
- raise (Stream.Error "expected function name in prototype")<