aboutsummaryrefslogtreecommitdiff
path: root/docs/tutorial/LangImpl3.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/tutorial/LangImpl3.html')
-rw-r--r--docs/tutorial/LangImpl3.html1268
1 files changed, 0 insertions, 1268 deletions
diff --git a/docs/tutorial/LangImpl3.html b/docs/tutorial/LangImpl3.html
deleted file mode 100644
index 57ff7373f6..0000000000
--- a/docs/tutorial/LangImpl3.html
+++ /dev/null
@@ -1,1268 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
- "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
- <title>Kaleidoscope: Implementing code generation to LLVM IR</title>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <meta name="author" content="Chris Lattner">
- <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
-</head>
-
-<body>
-
-<h1>Kaleidoscope: Code generation to LLVM IR</h1>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 3
- <ol>
- <li><a href="#intro">Chapter 3 Introduction</a></li>
- <li><a href="#basics">Code Generation Setup</a></li>
- <li><a href="#exprs">Expression Code Generation</a></li>
- <li><a href="#funcs">Function Code Generation</a></li>
- <li><a href="#driver">Driver Changes and Closing Thoughts</a></li>
- <li><a href="#code">Full Code Listing</a></li>
- </ol>
-</li>
-<li><a href="LangImpl4.html">Chapter 4</a>: Adding JIT and Optimizer
-Support</li>
-</ul>
-
-<div class="doc_author">
- <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="intro">Chapter 3 Introduction</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language
-with LLVM</a>" tutorial. This chapter shows you how to transform the <a
-href="LangImpl2.html">Abstract Syntax Tree</a>, built in Chapter 2, into LLVM IR.
-This will teach you a little bit about how LLVM does things, as well as
-demonstrate how easy it is to use. It's much more work to build a lexer and
-parser than it is to generate LLVM IR code. :)
-</p>
-
-<p><b>Please note</b>: the code in this chapter and later require LLVM 2.2 or
-later. LLVM 2.1 and before will not work with it. Also note that you need
-to use a version of this tutorial that matches your LLVM release: If you are
-using an official LLVM release, use the version of the documentation included
-with your release or on the <a href="http://llvm.org/releases/">llvm.org
-releases page</a>.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="basics">Code Generation Setup</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-In order to generate LLVM IR, we want some simple setup to get started. First
-we define virtual code generation (codegen) methods in each AST class:</p>
-
-<div class="doc_code">
-<pre>
-/// ExprAST - Base class for all expression nodes.
-class ExprAST {
-public:
- virtual ~ExprAST() {}
- <b>virtual Value *Codegen() = 0;</b>
-};
-
-/// NumberExprAST - Expression class for numeric literals like "1.0".
-class NumberExprAST : public ExprAST {
- double Val;
-public:
- NumberExprAST(double val) : Val(val) {}
- <b>virtual Value *Codegen();</b>
-};
-...
-</pre>
-</div>
-
-<p>The Codegen() method says to emit IR for that AST node along with all the things it
-depends on, and they all return an LLVM Value object.
-"Value" is the class used to represent a "<a
-href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
-Assignment (SSA)</a> register" or "SSA value" in LLVM. The most distinct aspect
-of SSA values is that their value is computed as the related instruction
-executes, and it does not get a new value until (and if) the instruction
-re-executes. In other words, there is no way to "change" an SSA value. For
-more information, please read up on <a
-href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
-Assignment</a> - the concepts are really quite natural once you grok them.</p>
-
-<p>Note that instead of adding virtual methods to the ExprAST class hierarchy,
-it could also make sense to use a <a
-href="http://en.wikipedia.org/wiki/Visitor_pattern">visitor pattern</a> or some
-other way to model this. Again, this tutorial won't dwell on good software
-engineering practices: for our purposes, adding a virtual method is
-simplest.</p>
-
-<p>The
-second thing we want is an "Error" method like we used for the parser, which will
-be used to report errors found during code generation (for example, use of an
-undeclared parameter):</p>
-
-<div class="doc_code">
-<pre>
-Value *ErrorV(const char *Str) { Error(Str); return 0; }
-
-static Module *TheModule;
-static IRBuilder&lt;&gt; Builder(getGlobalContext());
-static std::map&lt;std::string, Value*&gt; NamedValues;
-</pre>
-</div>
-
-<p>The static variables will be used during code generation. <tt>TheModule</tt>
-is the LLVM construct that contains all of the functions and global variables in
-a chunk of code. In many ways, it is the top-level structure that the LLVM IR
-uses to contain code.</p>
-
-<p>The <tt>Builder</tt> object is a helper object that makes it easy to generate
-LLVM instructions. Instances of the <a
-href="http://llvm.org/doxygen/IRBuilder_8h-source.html"><tt>IRBuilder</tt></a>
-class template keep track of the current place to insert instructions and has
-methods to create new instructions.</p>
-
-<p>The <tt>NamedValues</tt> map keeps track of which values are defined in the
-current scope and what their LLVM representation is. (In other words, it is a
-symbol table for the code). In this form of Kaleidoscope, the only things that
-can be referenced are function parameters. As such, function parameters will
-be in this map when generating code for their function body.</p>
-
-<p>
-With these basics in place, we can start talking about how to generate code for
-each expression. Note that this assumes that the <tt>Builder</tt> has been set
-up to generate code <em>into</em> something. For now, we'll assume that this
-has already been done, and we'll just use it to emit code.
-</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="exprs">Expression Code Generation</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Generating LLVM code for expression nodes is very straightforward: less
-than 45 lines of commented code for all four of our expression nodes. First
-we'll do numeric literals:</p>
-
-<div class="doc_code">
-<pre>
-Value *NumberExprAST::Codegen() {
- return ConstantFP::get(getGlobalContext(), APFloat(Val));
-}
-</pre>
-</div>
-
-<p>In the LLVM IR, numeric constants are represented with the
-<tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt>
-internally (<tt>APFloat</tt> has the capability of holding floating point
-constants of <em>A</em>rbitrary <em>P</em>recision). This code basically just
-creates and returns a <tt>ConstantFP</tt>. Note that in the LLVM IR
-that constants are all uniqued together and shared. For this reason, the API
-uses the "foo::get(...)" idiom instead of "new foo(..)" or "foo::Create(..)".</p>
-
-<div class="doc_code">
-<pre>
-Value *VariableExprAST::Codegen() {
- // Look this variable up in the function.
- Value *V = NamedValues[Name];
- return V ? V : ErrorV("Unknown variable name");
-}
-</pre>
-</div>
-
-<p>References to variables are also quite simple using LLVM. In the simple version
-of Kaleidoscope, we assume that the variable has already been emitted somewhere
-and its value is available. In practice, the only values that can be in the
-<tt>NamedValues</tt> map are function arguments. This
-code simply checks to see that the specified name is in the map (if not, an
-unknown variable is being referenced) and returns the value for it. In future
-chapters, we'll add support for <a href="LangImpl5.html#for">loop induction
-variables</a> in the symbol table, and for <a
-href="LangImpl7.html#localvars">local variables</a>.</p>
-
-<div class="doc_code">
-<pre>
-Value *BinaryExprAST::Codegen() {
- Value *L = LHS-&gt;Codegen();
- Value *R = RHS-&gt;Codegen();
- if (L == 0 || R == 0) return 0;
-
- switch (Op) {
- case '+': return Builder.CreateFAdd(L, R, "addtmp");
- case '-': return Builder.CreateFSub(L, R, "subtmp");
- case '*': return Builder.CreateFMul(L, R, "multmp");
- case '&lt;':
- L = Builder.CreateFCmpULT(L, R, "cmptmp");
- // Convert bool 0/1 to double 0.0 or 1.0
- return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
- "booltmp");
- default: return ErrorV("invalid binary operator");
- }
-}
-</pre>
-</div>
-
-<p>Binary operators start to get more interesting. The basic idea here is that
-we recursively emit code for the left-hand side of the expression, then the
-right-hand side, then we compute the result of the binary expression. In this
-code, we do a simple switch on the opcode to create the right LLVM instruction.
-</p>
-
-<p>In the example above, the LLVM builder class is starting to show its value.
-IRBuilder knows where to insert the newly created instruction, all you have to
-do is specify what instruction to create (e.g. with <tt>CreateFAdd</tt>), which
-operands to use (<tt>L</tt> and <tt>R</tt> here) and optionally provide a name
-for the generated instruction.</p>
-
-<p>One nice thing about LLVM is that the name is just a hint. For instance, if
-the code above emits multiple "addtmp" variables, LLVM will automatically
-provide each one with an increasing, unique numeric suffix. Local value names
-for instructions are purely optional, but it makes it much easier to read the
-IR dumps.</p>
-
-<p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained by
-strict rules: for example, the Left and Right operators of
-an <a href="../LangRef.html#i_add">add instruction</a> must have the same
-type, and the result type of the add must match the operand types. Because
-all values in Kaleidoscope are doubles, this makes for very simple code for add,
-sub and mul.</p>
-
-<p>On the other hand, LLVM specifies that the <a
-href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value
-(a one bit integer). The problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value. In order to get these semantics, we combine the fcmp instruction with
-a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>. This instruction
-converts its input integer into a floating point value by treating the input
-as an unsigned value. In contrast, if we used the <a
-href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '&lt;'
-operator would return 0.0 and -1.0, depending on the input value.</p>
-
-<div class="doc_code">
-<pre>
-Value *CallExprAST::Codegen() {
- // Look up the name in the global module table.
- Function *CalleeF = TheModule-&gt;getFunction(Callee);
- if (CalleeF == 0)
- return ErrorV("Unknown function referenced");
-
- // If argument mismatch error.
- if (CalleeF-&gt;arg_size() != Args.size())
- return ErrorV("Incorrect # arguments passed");
-
- std::vector&lt;Value*&gt; ArgsV;
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- ArgsV.push_back(Args[i]-&gt;Codegen());
- if (ArgsV.back() == 0) return 0;
- }
-
- return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
-}
-</pre>
-</div>
-
-<p>Code generation for function calls is quite straightforward with LLVM. The
-code above initially does a function name lookup in the LLVM Module's symbol
-table. Recall that the LLVM Module is the container that holds all of the
-functions we are JIT'ing. By giving each function the same name as what the
-user specifies, we can use the LLVM symbol table to resolve function names for
-us.</p>
-
-<p>Once we have the function to call, we recursively codegen each argument that
-is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call
-instruction</a>. Note that LLVM uses the native C calling conventions by
-default, allowing these calls to also call into standard library functions like
-"sin" and "cos", with no additional effort.</p>
-
-<p>This wraps up our handling of the four basic expressions that we have so far
-in Kaleidoscope. Feel free to go in and add some more. For example, by
-browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find
-several other interesting instructions that are really easy to plug into our
-basic framework.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="funcs">Function Code Generation</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Code generation for prototypes and functions must handle a number of
-details, which make their code less beautiful than expression code
-generation, but allows us to illustrate some important points. First, lets
-talk about code generation for prototypes: they are used both for function
-bodies and external function declarations. The code starts with:</p>
-
-<div class="doc_code">
-<pre>
-Function *PrototypeAST::Codegen() {
- // Make the function type: double(double,double) etc.
- std::vector&lt;Type*&gt; Doubles(Args.size(),
- Type::getDoubleTy(getGlobalContext()));
- FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
- Doubles, false);
-
- Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
-</pre>
-</div>
-
-<p>This code packs a lot of power into a few lines. Note first that this
-function returns a "Function*" instead of a "Value*". Because a "prototype"
-really talks about the external interface for a function (not the value computed
-by an expression), it makes sense for it to return the LLVM Function it
-corresponds to when codegen'd.</p>
-
-<p>The call to <tt>FunctionType::get</tt> creates
-the <tt>FunctionType</tt> that should be used for a given Prototype. Since all
-function arguments in Kaleidoscope are of type double, the first line creates
-a vector of "N" LLVM double types. It then uses the <tt>Functiontype::get</tt>
-method to create a function type that takes "N" doubles as arguments, returns
-one double as a result, and that is not vararg (the false parameter indicates
-this). Note that Types in LLVM are uniqued just like Constants are, so you
-don't "new" a type, you "get" it.</p>
-
-<p>The final line above actually creates the function that the prototype will
-correspond to. This indicates the type, linkage and name to use, as well as which
-module to insert into. "<a href="../LangRef.html#linkage">external linkage</a>"
-means that the function may be defined outside the current module and/or that it
-is callable by functions outside the module. The Name passed in is the name the
-user specified: since "<tt>TheModule</tt>" is specified, this name is registered
-in "<tt>TheModule</tt>"s symbol table, which is used by the function call code
-above.</p>
-
-<div class="doc_code">
-<pre>
- // If F conflicted, there was already something named 'Name'. If it has a
- // body, don't allow redefinition or reextern.
- if (F-&gt;getName() != Name) {
- // Delete the one we just made and get the existing one.
- F-&gt;eraseFromParent();
- F = TheModule-&gt;getFunction(Name);
-</pre>
-</div>
-
-<p>The Module symbol table works just like the Function symbol table when it
-comes to name conflicts: if a new function is created with a name that was previously
-added to the symbol table, the new function will get implicitly renamed when added to the
-Module. The code above exploits this fact to determine if there was a previous
-definition of this function.</p>
-
-<p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases:
-first, we want to allow 'extern'ing a function more than once, as long as the
-prototypes for the externs match (since all arguments have the same type, we
-just have to check that the number of arguments match). Second, we want to
-allow 'extern'ing a function and then defining a body for it. This is useful
-when defining mutually recursive functions.</p>
-
-<p>In order to implement this, the code above first checks to see if there is
-a collision on the name of the function. If so, it deletes the function we just
-created (by calling <tt>eraseFromParent</tt>) and then calling
-<tt>getFunction</tt> to get the existing function with the specified name. Note
-that many APIs in LLVM have "erase" forms and "remove" forms. The "remove" form
-unlinks the object from its parent (e.g. a Function from a Module) and returns
-it. The "erase" form unlinks the object and then deletes it.</p>
-
-<div class="doc_code">
-<pre>
- // If F already has a body, reject this.
- if (!F-&gt;empty()) {
- ErrorF("redefinition of function");
- return 0;
- }
-
- // If F took a different number of args, reject.
- if (F-&gt;arg_size() != Args.size()) {
- ErrorF("redefinition of function with different # args");
- return 0;
- }
- }
-</pre>
-</div>
-
-<p>In order to verify the logic above, we first check to see if the pre-existing
-function is "empty". In this case, empty means that it has no basic blocks in
-it, which means it has no body. If it has no body, it is a forward
-declaration. Since we don't allow anything after a full definition of the
-function, the code rejects this case. If the previous reference to a function
-was an 'extern', we simply verify that the number of arguments for that
-definition and this one match up. If not, we emit an error.</p>
-
-<div class="doc_code">
-<pre>
- // Set names for all arguments.
- unsigned Idx = 0;
- for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
- ++AI, ++Idx) {
- AI-&gt;setName(Args[Idx]);
-
- // Add arguments to variable symbol table.
- NamedValues[Args[Idx]] = AI;
- }
- return F;
-}
-</pre>
-</div>
-
-<p>The last bit of code for prototypes loops over all of the arguments in the
-function, setting the name of the LLVM Argument objects to match, and registering
-the arguments in the <tt>NamedValues</tt> map for future use by the
-<tt>VariableExprAST</tt> AST node. Once this is set up, it returns the Function
-object to the caller. Note that we don't check for conflicting
-argument names here (e.g. "extern foo(a b a)"). Doing so would be very
-straight-forward with the mechanics we have already used above.</p>
-
-<div class="doc_code">
-<pre>
-Function *FunctionAST::Codegen() {
- NamedValues.clear();
-
- Function *TheFunction = Proto-&gt;Codegen();
- if (TheFunction == 0)
- return 0;
-</pre>
-</div>
-
-<p>Code generation for function definitions starts out simply enough: we just
-codegen the prototype (Proto) and verify that it is ok. We then clear out the
-<tt>NamedValues</tt> map to make sure that there isn't anything in it from the
-last function we compiled. Code generation of the prototype ensures that there
-is an LLVM Function object that is ready to go for us.</p>
-
-<div class="doc_code">
-<pre>
- // Create a new basic block to start insertion into.
- BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
- Builder.SetInsertPoint(BB);
-
- if (Value *RetVal = Body-&gt;Codegen()) {
-</pre>
-</div>
-
-<p>Now we get to the point where the <tt>Builder</tt> is set up. The first
-line creates a new <a href="http://en.wikipedia.org/wiki/Basic_block">basic
-block</a> (named "entry"), which is inserted into <tt>TheFunction</tt>. The
-second line then tells the builder that new instructions should be inserted into
-the end of the new basic block. Basic blocks in LLVM are an important part
-of functions that define the <a
-href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>.
-Since we don't have any control flow, our functions will only contain one
-block at this point. We'll fix this in <a href="LangImpl5.html">Chapter 5</a> :).</p>
-
-<div class="doc_code">
-<pre>
- if (Value *RetVal = Body-&gt;Codegen()) {
- // Finish off the function.
- Builder.CreateRet(RetVal);
-
- // Validate the generated code, checking for consistency.
- verifyFunction(*TheFunction);
-
- return TheFunction;
- }
-</pre>
-</div>
-
-<p>Once the insertion point is set up, we call the <tt>CodeGen()</tt> method for
-the root expression of the function. If no error happens, this emits code to
-compute the expression into the entry block and returns the value that was
-computed. Assuming no error, we then create an LLVM <a
-href="../LangRef.html#i_ret">ret instruction</a>, which completes the function.
-Once the function is built, we call <tt>verifyFunction</tt>, which
-is provided by LLVM. This function does a variety of consistency checks on the
-generated code, to determine if our compiler is doing everything right. Using
-this is important: it can catch a lot of bugs. Once the function is finished
-and validated, we return it.</p>
-
-<div class="doc_code">
-<pre>
- // Error reading body, remove function.
- TheFunction-&gt;eraseFromParent();
- return 0;
-}
-</pre>
-</div>
-
-<p>The only piece left here is handling of the error case. For simplicity, we
-handle this by merely deleting the function we produced with the
-<tt>eraseFromParent</tt> method. This allows the user to redefine a function
-that they incorrectly typed in before: if we didn't delete it, it would live in
-the symbol table, with a body, preventing future redefinition.</p>
-
-<p>This code does have a bug, though. Since the <tt>PrototypeAST::Codegen</tt>
-can return a previously defined forward declaration, our code can actually delete
-a forward declaration. There are a number of ways to fix this bug, see what you
-can come up with! Here is a testcase:</p>
-
-<div class="doc_code">
-<pre>
-extern foo(a b); # ok, defines foo.
-def foo(a b) c; # error, 'c' is invalid.
-def bar() foo(1, 2); # error, unknown function "foo"
-</pre>
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2><a name="driver">Driver Changes and Closing Thoughts</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-For now, code generation to LLVM doesn't really get us much, except that we can
-look at the pretty IR calls. The sample code inserts calls to Codegen into the
-"<tt>HandleDefinition</tt>", "<tt>HandleExtern</tt>" etc functions, and then
-dumps out the LLVM IR. This gives a nice way to look at the LLVM IR for simple
-functions. For example:
-</p>
-
-<div class="doc_code">
-<pre>
-ready> <b>4+5</b>;
-Read top-level expression:
-define double @0() {
-entry:
- ret double 9.000000e+00
-}
-</pre>
-</div>
-
-<p>Note how the parser turns the top-level expression into anonymous functions
-for us. This will be handy when we add <a href="LangImpl4.html#jit">JIT
-support</a> in the next chapter. Also note that the code is very literally
-transcribed, no optimizations are being performed except simple constant
-folding done by IRBuilder. We will
-<a href="LangImpl4.html#trivialconstfold">add optimizations</a> explicitly in
-the next chapter.</p>
-
-<div class="doc_code">
-<pre>
-ready&gt; <b>def foo(a b) a*a + 2*a*b + b*b;</b>
-Read function definition:
-define double @foo(double %a, double %b) {
-entry:
- %multmp = fmul double %a, %a
- %multmp1 = fmul double 2.000000e+00, %a
- %multmp2 = fmul double %multmp1, %b
- %addtmp = fadd double %multmp, %multmp2
- %multmp3 = fmul double %b, %b
- %addtmp4 = fadd double %addtmp, %multmp3
- ret double %addtmp4
-}
-</pre>
-</div>
-
-<p>This shows some simple arithmetic. Notice the striking similarity to the
-LLVM builder calls that we use to create the instructions.</p>
-
-<div class="doc_code">
-<pre>
-ready&gt; <b>def bar(a) foo(a, 4.0) + bar(31337);</b>
-Read function definition:
-define double @bar(double %a) {
-entry:
- %calltmp = call double @foo(double %a, double 4.000000e+00)
- %calltmp1 = call double @bar(double 3.133700e+04)
- %addtmp = fadd double %calltmp, %calltmp1
- ret double %addtmp
-}
-</pre>
-</div>
-
-<p>This shows some function calls. Note that this function will take a long
-time to execute if you call it. In the future we'll add conditional control
-flow to actually make recursion useful :).</p>
-
-<div class="doc_code">
-<pre>
-ready&gt; <b>extern cos(x);</b>
-Read extern:
-declare double @cos(double)
-
-ready&gt; <b>cos(1.234);</b>
-Read top-level expression:
-define double @1() {
-entry:
- %calltmp = call double @cos(double 1.234000e+00)
- ret double %calltmp
-}
-</pre>
-</div>
-
-<p>This shows an extern for the libm "cos" function, and a call to it.</p>
-
-
-<div class="doc_code">
-<pre>
-ready&gt; <b>^D</b>
-; ModuleID = 'my cool jit'
-
-define double @0() {
-entry:
- %addtmp = fadd double 4.000000e+00, 5.000000e+00
- ret double %addtmp
-}
-
-define double @foo(double %a, double %b) {
-entry:
- %multmp = fmul double %a, %a
- %multmp1 = fmul double 2.000000e+00, %a
- %multmp2 = fmul double %multmp1, %b
- %addtmp = fadd double %multmp, %multmp2
- %multmp3 = fmul double %b, %b
- %addtmp4 = fadd double %addtmp, %multmp3
- ret double %addtmp4
-}
-
-define double @bar(double %a) {
-entry:
- %calltmp = call double @foo(double %a, double 4.000000e+00)
- %calltmp1 = call double @bar(double 3.133700e+04)
- %addtmp = fadd double %calltmp, %calltmp1
- ret double %addtmp
-}
-
-declare double @cos(double)
-
-define double @1() {
-entry:
- %calltmp = call double @cos(double 1.234000e+00)
- ret double %calltmp
-}
-</pre>
-</div>
-
-<p>When you quit the current demo, it dumps out the IR for the entire module
-generated. Here you can see the big picture with all the functions referencing
-each other.</p>
-
-<p>This wraps up the third chapter of the Kaleidoscope tutorial. Up next, we'll
-describe how to <a href="LangImpl4.html">add JIT codegen and optimizer
-support</a> to this so we can actually start running code!</p>
-
-</div>
-
-
-<!-- *********************************************************************** -->
-<h2><a name="code">Full Code Listing</a></h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>
-Here is the complete code listing for our running example, enhanced with the
-LLVM code generator. Because this uses the LLVM libraries, we need to link
-them in. To do this, we use the <a
-href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform
-our makefile/command line about which options to use:</p>
-
-<div class="doc_code">
-<pre>
-# Compile
-clang++ -g -O3 toy.cpp `llvm-config --cppflags --ldflags --libs core` -o toy
-# Run
-./toy
-</pre>
-</div>
-
-<p>Here is the code:</p>
-
-<div class="doc_code">
-<pre>
-// To build this:
-// See example below.
-
-#include "llvm/DerivedTypes.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Analysis/Verifier.h"
-#include &lt;cstdio&gt;
-#include &lt;string&gt;
-#include &lt;map&gt;
-#include &lt;vector&gt;
-using namespace llvm;
-
-//===----------------------------------------------------------------------===//
-// Lexer
-//===----------------------------------------------------------------------===//
-
-// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
-// of these for known things.
-enum Token {
- tok_eof = -1,
-
- // commands
- tok_def = -2, tok_extern = -3,
-
- // primary
- tok_identifier = -4, tok_number = -5
-};
-
-static std::string IdentifierStr; // Filled in if tok_identifier
-static double NumVal; // Filled in if tok_number
-
-/// gettok - Return the next token from standard input.
-static int gettok() {
- static int LastChar = ' ';
-
- // Skip any whitespace.
- while (isspace(LastChar))
- LastChar = getchar();
-
- if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
- IdentifierStr = LastChar;
- while (isalnum((LastChar = getchar())))
- IdentifierStr += LastChar;
-
- if (IdentifierStr == "def") return tok_def;
- if (IdentifierStr == "extern") return tok_extern;
- return tok_identifier;
- }
-
- if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
- std::string NumStr;
- do {
- NumStr += LastChar;
- LastChar = getchar();
- } while (isdigit(LastChar) || LastChar == '.');
-
- NumVal = strtod(NumStr.c_str(), 0);
- return tok_number;
- }
-
- if (LastChar == '#') {
- // Comment until end of line.
- do LastChar = getchar();
- while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
-
- if (LastChar != EOF)
- return gettok();
- }
-
- // Check for end of file. Don't eat the EOF.
- if (LastChar == EOF)
- return tok_eof;
-
- // Otherwise, just return the character as its ascii value.
- int ThisChar = LastChar;
- LastChar = getchar();
- return ThisChar;
-}
-
-//===----------------------------------------------------------------------===//
-// Abstract Syntax Tree (aka Parse Tree)
-//===----------------------------------------------------------------------===//
-
-/// ExprAST - Base class for all expression nodes.
-class ExprAST {
-public:
- virtual ~ExprAST() {}
- virtual Value *Codegen() = 0;
-};
-
-/// NumberExprAST - Expression class for numeric literals like "1.0".
-class NumberExprAST : public ExprAST {
- double Val;
-public:
- NumberExprAST(double val) : Val(val) {}
- virtual Value *Codegen();
-};
-
-/// VariableExprAST - Expression class for referencing a variable, like "a".
-class VariableExprAST : public ExprAST {
- std::string Name;
-public:
- VariableExprAST(const std::string &amp;name) : Name(name) {}
- virtual Value *Codegen();
-};
-
-/// BinaryExprAST - Expression class for a binary operator.
-class BinaryExprAST : public ExprAST {
- char Op;
- ExprAST *LHS, *RHS;
-public:
- BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
- : Op(op), LHS(lhs), RHS(rhs) {}
- virtual Value *Codegen();
-};
-
-/// CallExprAST - Expression class for function calls.
-class CallExprAST : public ExprAST {
- std::string Callee;
- std::vector&lt;ExprAST*&gt; Args;
-public:
- CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
- : Callee(callee), Args(args) {}
- virtual Value *Codegen();
-};
-
-/// PrototypeAST - This class represents the "prototype" for a function,
-/// which captures its name, and its argument names (thus implicitly the number
-/// of arguments the function takes).
-class PrototypeAST {
- std::string Name;
- std::vector&lt;std::string&gt; Args;
-public:
- PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args)
- : Name(name), Args(args) {}
-
- Function *Codegen();
-};
-
-/// FunctionAST - This class represents a function definition itself.
-class FunctionAST {
- PrototypeAST *Proto;
- ExprAST *Body;
-public:
- FunctionAST(PrototypeAST *proto, ExprAST *body)
- : Proto(proto), Body(body) {}
-
- Function *Codegen();
-};
-
-//===----------------------------------------------------------------------===//
-// Parser
-//===----------------------------------------------------------------------===//
-
-/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
-/// token the parser is looking at. getNextToken reads another token from the
-/// lexer and updates CurTok with its results.
-static int CurTok;
-static int getNextToken() {
- return CurTok = gettok();
-}
-
-/// BinopPrecedence - This holds the precedence for each binary operator that is
-/// defined.
-static std::map&lt;char, int&gt; BinopPrecedence;
-
-/// GetTokPrecedence - Get the precedence of the pending binary operator token.
-static int GetTokPrecedence() {
- if (!isascii(CurTok))
- return -1;
-
- // Make sure it's a declared binop.
- int TokPrec = BinopPrecedence[CurTok];
- if (TokPrec &lt;= 0) return -1;
- return TokPrec;
-}
-
-/// Error* - These are little helper functions for error handling.
-ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
-PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
-FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
-
-static ExprAST *ParseExpression();
-
-/// identifierexpr
-/// ::= identifier
-/// ::= identifier '(' expression* ')'
-static ExprAST *ParseIdentifierExpr() {
- std::string IdName = IdentifierStr;
-
- getNextToken(); // eat identifier.
-
- if (CurTok != '(') // Simple variable ref.
- return new VariableExprAST(IdName);
-
- // Call.
- getNextToken(); // eat (
- std::vector&lt;ExprAST*&gt; Args;
- if (CurTok != ')') {
- while (1) {
- ExprAST *Arg = ParseExpression();
- if (!Arg) return 0;
- Args.push_back(Arg);
-
- if (CurTok == ')') break;
-
- if (CurTok != ',')
- return Error("Expected ')' or ',' in argument list");
- getNextToken();
- }
- }
-
- // Eat the ')'.
- getNextToken();
-
- return new CallExprAST(IdName, Args);
-}
-
-/// numberexpr ::= number
-static ExprAST *ParseNumberExpr() {
- ExprAST *Result = new NumberExprAST(NumVal);
- getNextToken(); // consume the number
- return Result;
-}
-
-/// parenexpr ::= '(' expression ')'
-static ExprAST *ParseParenExpr() {
- getNextToken(); // eat (.
- ExprAST *V = ParseExpression();
- if (!V) return 0;
-
- if (CurTok != ')')
- return Error("expected ')'");
- getNextToken(); // eat ).
- return V;
-}
-
-/// primary
-/// ::= identifierexpr
-/// ::= numberexpr
-/// ::= parenexpr
-static ExprAST *ParsePrimary() {
- switch (CurTok) {
- default: return Error("unknown token when expecting an expression");
- case tok_identifier: return ParseIdentifierExpr();
- case tok_number: return ParseNumberExpr();
- case '(': return ParseParenExpr();
- }
-}
-
-/// binoprhs
-/// ::= ('+' primary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
- // If this is a binop, find its precedence.
- while (1) {
- int TokPrec = GetTokPrecedence();
-
- // If this is a binop that binds at least as tightly as the current binop,
- // consume it, otherwise we are done.
- if (TokPrec &lt; ExprPrec)
- return LHS;
-
- // Okay, we know this is a binop.
- int BinOp = CurTok;
- getNextToken(); // eat binop
-
- // Parse the primary expression after the binary operator.
- ExprAST *RHS = ParsePrimary();
- if (!RHS) return 0;
-
- // If BinOp binds less tightly with RHS than the operator after RHS, let
- // the pending operator take RHS as its LHS.
- int NextPrec = GetTokPrecedence();
- if (TokPrec &lt; NextPrec) {
- RHS = ParseBinOpRHS(TokPrec+1, RHS);
- if (RHS == 0) return 0;
- }
-
- // Merge LHS/RHS.
- LHS = new BinaryExprAST(BinOp, LHS, RHS);
- }
-}
-
-/// expression
-/// ::= primary binoprhs
-///
-static ExprAST *ParseExpression() {
- ExprAST *LHS = ParsePrimary();
- if (!LHS) return 0;
-
- return ParseBinOpRHS(0, LHS);
-}
-
-/// prototype
-/// ::= id '(' id* ')'
-static PrototypeAST *ParsePrototype() {
- if (CurTok != tok_identifier)
- return ErrorP("Expected function name in prototype");
-
- std::string FnName =