diff options
author | Derek Schuff <dschuff@chromium.org> | 2013-01-30 11:34:40 -0800 |
---|---|---|
committer | Derek Schuff <dschuff@chromium.org> | 2013-01-30 11:34:40 -0800 |
commit | 1843e19bce9b11fc840858e136c6c52cf8b42e0b (patch) | |
tree | e8bfc928152e2d3b3dd120d141d13dc08a9b49e4 /lib/Transforms/Vectorize/LoopVectorize.cpp | |
parent | aa0fa8a8df25807f784ec9ca9deeb40328636595 (diff) | |
parent | a662a9862501fc86904e90054f7c1519101d9126 (diff) |
Merge commit 'a662a9862501fc86904e90054f7c1519101d9126'
Conflicts:
include/llvm/CodeGen/IntrinsicLowering.h
include/llvm/MC/MCAssembler.h
include/llvm/MC/MCObjectStreamer.h
lib/LLVMBuild.txt
lib/Linker/LinkArchives.cpp
lib/MC/MCAssembler.cpp
lib/MC/MCELFStreamer.cpp
lib/MC/MCParser/AsmParser.cpp
lib/MC/MCPureStreamer.cpp
lib/MC/WinCOFFStreamer.cpp
lib/Makefile
lib/Support/Unix/Memory.inc
lib/Support/Unix/Process.inc
lib/Support/Unix/Program.inc
lib/Target/ARM/ARM.h
lib/Target/ARM/ARMFastISel.cpp
lib/Target/ARM/ARMISelLowering.cpp
lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp
lib/Target/Mips/MipsInstrFPU.td
lib/Target/X86/CMakeLists.txt
lib/Target/X86/X86ISelLowering.cpp
lib/Target/X86/X86TargetMachine.cpp
lib/Target/X86/X86TargetObjectFile.cpp
lib/Transforms/InstCombine/InstCombineCalls.cpp
test/CodeGen/X86/fast-isel-x86-64.ll
tools/llc/llc.cpp
tools/lto/LTOModule.cpp
utils/TableGen/EDEmitter.cpp
Diffstat (limited to 'lib/Transforms/Vectorize/LoopVectorize.cpp')
-rw-r--r-- | lib/Transforms/Vectorize/LoopVectorize.cpp | 1788 |
1 files changed, 1404 insertions, 384 deletions
diff --git a/lib/Transforms/Vectorize/LoopVectorize.cpp b/lib/Transforms/Vectorize/LoopVectorize.cpp index feeececedb..464ed97506 100644 --- a/lib/Transforms/Vectorize/LoopVectorize.cpp +++ b/lib/Transforms/Vectorize/LoopVectorize.cpp @@ -6,7 +6,51 @@ // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// -#include "LoopVectorize.h" +// +// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops +// and generates target-independent LLVM-IR. Legalization of the IR is done +// in the codegen. However, the vectorizes uses (will use) the codegen +// interfaces to generate IR that is likely to result in an optimal binary. +// +// The loop vectorizer combines consecutive loop iteration into a single +// 'wide' iteration. After this transformation the index is incremented +// by the SIMD vector width, and not by one. +// +// This pass has three parts: +// 1. The main loop pass that drives the different parts. +// 2. LoopVectorizationLegality - A unit that checks for the legality +// of the vectorization. +// 3. InnerLoopVectorizer - A unit that performs the actual +// widening of instructions. +// 4. LoopVectorizationCostModel - A unit that checks for the profitability +// of vectorization. It decides on the optimal vector width, which +// can be one, if vectorization is not profitable. +// +//===----------------------------------------------------------------------===// +// +// The reduction-variable vectorization is based on the paper: +// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. +// +// Variable uniformity checks are inspired by: +// Karrenberg, R. and Hack, S. Whole Function Vectorization. +// +// Other ideas/concepts are from: +// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. +// +// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of +// Vectorizing Compilers. +// +//===----------------------------------------------------------------------===// + +#define LV_NAME "loop-vectorize" +#define DEBUG_TYPE LV_NAME + +#include "llvm/Transforms/Vectorize.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasSetTracker.h" @@ -14,46 +58,526 @@ #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/LoopPass.h" -#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/Verifier.h" -#include "llvm/Constants.h" -#include "llvm/DataLayout.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Function.h" -#include "llvm/Instructions.h" -#include "llvm/IntrinsicInst.h" -#include "llvm/LLVMContext.h" -#include "llvm/Module.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" -#include "llvm/TargetTransformInfo.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Vectorize.h" -#include "llvm/Type.h" -#include "llvm/Value.h" +#include <algorithm> +#include <map> + +using namespace llvm; static cl::opt<unsigned> VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect.")); +static cl::opt<unsigned> +VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden, + cl::desc("Sets the vectorization unroll count. " + "Zero is autoselect.")); + static cl::opt<bool> EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, cl::desc("Enable if-conversion during vectorization.")); +/// We don't vectorize loops with a known constant trip count below this number. +static const unsigned TinyTripCountVectorThreshold = 16; + +/// We don't unroll loops with a known constant trip count below this number. +static const unsigned TinyTripCountUnrollThreshold = 128; + +/// We don't unroll loops that are larget than this threshold. +static const unsigned MaxLoopSizeThreshold = 32; + +/// When performing a runtime memory check, do not check more than this +/// number of pointers. Notice that the check is quadratic! +static const unsigned RuntimeMemoryCheckThreshold = 4; + namespace { +// Forward declarations. +class LoopVectorizationLegality; +class LoopVectorizationCostModel; + +/// InnerLoopVectorizer vectorizes loops which contain only one basic +/// block to a specified vectorization factor (VF). +/// This class performs the widening of scalars into vectors, or multiple +/// scalars. This class also implements the following features: +/// * It inserts an epilogue loop for handling loops that don't have iteration +/// counts that are known to be a multiple of the vectorization factor. +/// * It handles the code generation for reduction variables. +/// * Scalarization (implementation using scalars) of un-vectorizable +/// instructions. +/// InnerLoopVectorizer does not perform any vectorization-legality +/// checks, and relies on the caller to check for the different legality +/// aspects. The InnerLoopVectorizer relies on the +/// LoopVectorizationLegality class to provide information about the induction +/// and reduction variables that were found to a given vectorization factor. +class InnerLoopVectorizer { +public: + InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, + DominatorTree *DT, DataLayout *DL, unsigned VecWidth, + unsigned UnrollFactor) + : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), VF(VecWidth), + UF(UnrollFactor), Builder(SE->getContext()), Induction(0), + OldInduction(0), WidenMap(UnrollFactor) {} + + // Perform the actual loop widening (vectorization). + void vectorize(LoopVectorizationLegality *Legal) { + // Create a new empty loop. Unlink the old loop and connect the new one. + createEmptyLoop(Legal); + // Widen each instruction in the old loop to a new one in the new loop. + // Use the Legality module to find the induction and reduction variables. + vectorizeLoop(Legal); + // Register the new loop and update the analysis passes. + updateAnalysis(); + } + +private: + /// A small list of PHINodes. + typedef SmallVector<PHINode*, 4> PhiVector; + /// When we unroll loops we have multiple vector values for each scalar. + /// This data structure holds the unrolled and vectorized values that + /// originated from one scalar instruction. + typedef SmallVector<Value*, 2> VectorParts; + + /// Add code that checks at runtime if the accessed arrays overlap. + /// Returns the comparator value or NULL if no check is needed. + Value *addRuntimeCheck(LoopVectorizationLegality *Legal, + Instruction *Loc); + /// Create an empty loop, based on the loop ranges of the old loop. + void createEmptyLoop(LoopVectorizationLegality *Legal); + /// Copy and widen the instructions from the old loop. + void vectorizeLoop(LoopVectorizationLegality *Legal); + + /// A helper function that computes the predicate of the block BB, assuming + /// that the header block of the loop is set to True. It returns the *entry* + /// mask for the block BB. + VectorParts createBlockInMask(BasicBlock *BB); + /// A helper function that computes the predicate of the edge between SRC + /// and DST. + VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); + + /// A helper function to vectorize a single BB within the innermost loop. + void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB, + PhiVector *PV); + + /// Insert the new loop to the loop hierarchy and pass manager + /// and update the analysis passes. + void updateAnalysis(); + + /// This instruction is un-vectorizable. Implement it as a sequence + /// of scalars. + void scalarizeInstruction(Instruction *Instr); + + /// Create a broadcast instruction. This method generates a broadcast + /// instruction (shuffle) for loop invariant values and for the induction + /// value. If this is the induction variable then we extend it to N, N+1, ... + /// this is needed because each iteration in the loop corresponds to a SIMD + /// element. + Value *getBroadcastInstrs(Value *V); + + /// This function adds 0, 1, 2 ... to each vector element, starting at zero. + /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). + /// The sequence starts at StartIndex. + Value *getConsecutiveVector(Value* Val, unsigned StartIdx, bool Negate); + + /// When we go over instructions in the basic block we rely on previous + /// values within the current basic block or on loop invariant values. + /// When we widen (vectorize) values we place them in the map. If the values + /// are not within the map, they have to be loop invariant, so we simply + /// broadcast them into a vector. + VectorParts &getVectorValue(Value *V); + + /// Generate a shuffle sequence that will reverse the vector Vec. + Value *reverseVector(Value *Vec); + + /// This is a helper class that holds the vectorizer state. It maps scalar + /// instructions to vector instructions. When the code is 'unrolled' then + /// then a single scalar value is mapped to multiple vector parts. The parts + /// are stored in the VectorPart type. + struct ValueMap { + /// C'tor. UnrollFactor controls the number of vectors ('parts') that + /// are mapped. + ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} + + /// \return True if 'Key' is saved in the Value Map. + bool has(Value *Key) { return MapStoreage.count(Key); } + + /// Initializes a new entry in the map. Sets all of the vector parts to the + /// save value in 'Val'. + /// \return A reference to a vector with splat values. + VectorParts &splat(Value *Key, Value *Val) { + MapStoreage[Key].clear(); + MapStoreage[Key].append(UF, Val); + return MapStoreage[Key]; + } + + ///\return A reference to the value that is stored at 'Key'. + VectorParts &get(Value *Key) { + if (!has(Key)) + MapStoreage[Key].resize(UF); + return MapStoreage[Key]; + } + + /// The unroll factor. Each entry in the map stores this number of vector + /// elements. + unsigned UF; + + /// Map storage. We use std::map and not DenseMap because insertions to a + /// dense map invalidates its iterators. + std::map<Value*, VectorParts> MapStoreage; + }; + + /// The original loop. + Loop *OrigLoop; + /// Scev analysis to use. + ScalarEvolution *SE; + /// Loop Info. + LoopInfo *LI; + /// Dominator Tree. + DominatorTree *DT; + /// Data Layout. + DataLayout *DL; + /// The vectorization SIMD factor to use. Each vector will have this many + /// vector elements. + unsigned VF; + /// The vectorization unroll factor to use. Each scalar is vectorized to this + /// many different vector instructions. + unsigned UF; + + /// The builder that we use + IRBuilder<> Builder; + + // --- Vectorization state --- + + /// The vector-loop preheader. + BasicBlock *LoopVectorPreHeader; + /// The scalar-loop preheader. + BasicBlock *LoopScalarPreHeader; + /// Middle Block between the vector and the scalar. + BasicBlock *LoopMiddleBlock; + ///The ExitBlock of the scalar loop. + BasicBlock *LoopExitBlock; + ///The vector loop body. + BasicBlock *LoopVectorBody; + ///The scalar loop body. + BasicBlock *LoopScalarBody; + ///The first bypass block. + BasicBlock *LoopBypassBlock; + + /// The new Induction variable which was added to the new block. + PHINode *Induction; + /// The induction variable of the old basic block. + PHINode *OldInduction; + /// Maps scalars to widened vectors. + ValueMap WidenMap; +}; + +/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and +/// to what vectorization factor. +/// This class does not look at the profitability of vectorization, only the +/// legality. This class has two main kinds of checks: +/// * Memory checks - The code in canVectorizeMemory checks if vectorization +/// will change the order of memory accesses in a way that will change the +/// correctness of the program. +/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory +/// checks for a number of different conditions, such as the availability of a +/// single induction variable, that all types are supported and vectorize-able, +/// etc. This code reflects the capabilities of InnerLoopVectorizer. +/// This class is also used by InnerLoopVectorizer for identifying +/// induction variable and the different reduction variables. +class LoopVectorizationLegality { +public: + LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL, + DominatorTree *DT) + : TheLoop(L), SE(SE), DL(DL), DT(DT), Induction(0) {} + + /// This enum represents the kinds of reductions that we support. + enum ReductionKind { + RK_NoReduction, ///< Not a reduction. + RK_IntegerAdd, ///< Sum of integers. + RK_IntegerMult, ///< Product of integers. + RK_IntegerOr, ///< Bitwise or logical OR of numbers. + RK_IntegerAnd, ///< Bitwise or logical AND of numbers. + RK_IntegerXor, ///< Bitwise or logical XOR of numbers. + RK_FloatAdd, ///< Sum of floats. + RK_FloatMult ///< Product of floats. + }; + + /// This enum represents the kinds of inductions that we support. + enum InductionKind { + IK_NoInduction, ///< Not an induction variable. + IK_IntInduction, ///< Integer induction variable. Step = 1. + IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. + IK_PtrInduction ///< Pointer induction variable. Step = sizeof(elem). + }; + + /// This POD struct holds information about reduction variables. + struct ReductionDescriptor { + ReductionDescriptor() : StartValue(0), LoopExitInstr(0), + Kind(RK_NoReduction) {} + + ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K) + : StartValue(Start), LoopExitInstr(Exit), Kind(K) {} + + // The starting value of the reduction. + // It does not have to be zero! + Value *StartValue; + // The instruction who's value is used outside the loop. + Instruction *LoopExitInstr; + // The kind of the reduction. + ReductionKind Kind; + }; + + // This POD struct holds information about the memory runtime legality + // check that a group of pointers do not overlap. + struct RuntimePointerCheck { + RuntimePointerCheck() : Need(false) {} + + /// Reset the state of the pointer runtime information. + void reset() { + Need = false; + Pointers.clear(); + Starts.clear(); + Ends.clear(); + } + + /// Insert a pointer and calculate the start and end SCEVs. + void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr); + + /// This flag indicates if we need to add the runtime check. + bool Need; + /// Holds the pointers that we need to check. + SmallVector<Value*, 2> Pointers; + /// Holds the pointer value at the beginning of the loop. + SmallVector<const SCEV*, 2> Starts; + /// Holds the pointer value at the end of the loop. + SmallVector<const SCEV*, 2> Ends; + }; + + /// A POD for saving information about induction variables. + struct InductionInfo { + InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} + InductionInfo() : StartValue(0), IK(IK_NoInduction) {} + /// Start value. + Value *StartValue; + /// Induction kind. + InductionKind IK; + }; + + /// ReductionList contains the reduction descriptors for all + /// of the reductions that were found in the loop. + typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; + + /// InductionList saves induction variables and maps them to the + /// induction descriptor. + typedef MapVector<PHINode*, InductionInfo> InductionList; + + /// Returns true if it is legal to vectorize this loop. + /// This does not mean that it is profitable to vectorize this + /// loop, only that it is legal to do so. + bool canVectorize(); + + /// Returns the Induction variable. + PHINode *getInduction() { return Induction; } + + /// Returns the reduction variables found in the loop. + ReductionList *getReductionVars() { return &Reductions; } + + /// Returns the induction variables found in the loop. + InductionList *getInductionVars() { return &Inductions; } + + /// Returns True if V is an induction variable in this loop. + bool isInductionVariable(const Value *V); + + /// Return true if the block BB needs to be predicated in order for the loop + /// to be vectorized. + bool blockNeedsPredication(BasicBlock *BB); + + /// Check if this pointer is consecutive when vectorizing. This happens + /// when the last index of the GEP is the induction variable, or that the + /// pointer itself is an induction variable. + /// This check allows us to vectorize A[idx] into a wide load/store. + /// Returns: + /// 0 - Stride is unknown or non consecutive. + /// 1 - Address is consecutive. + /// -1 - Address is consecutive, and decreasing. + int isConsecutivePtr(Value *Ptr); + + /// Returns true if the value V is uniform within the loop. + bool isUniform(Value *V); + + /// Returns true if this instruction will remain scalar after vectorization. + bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } + + /// Returns the information that we collected about runtime memory check. + RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } +private: + /// Check if a single basic block loop is vectorizable. + /// At this point we know that this is a loop with a constant trip count + /// and we only need to check individual instructions. + bool canVectorizeInstrs(); + + /// When we vectorize loops we may change the order in which + /// we read and write from memory. This method checks if it is + /// legal to vectorize the code, considering only memory constrains. + /// Returns true if the loop is vectorizable + bool canVectorizeMemory(); + + /// Return true if we can vectorize this loop using the IF-conversion + /// transformation. + bool canVectorizeWithIfConvert(); + + /// Collect the variables that need to stay uniform after vectorization. + void collectLoopUniforms(); + + /// Return true if all of the instructions in the block can be speculatively + /// executed. + bool blockCanBePredicated(BasicBlock *BB); + + /// Returns True, if 'Phi' is the kind of reduction variable for type + /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. + bool AddReductionVar(PHINode *Phi, ReductionKind Kind); + /// Returns true if the instruction I can be a reduction variable of type + /// 'Kind'. + bool isReductionInstr(Instruction *I, ReductionKind Kind); + /// Returns the induction kind of Phi. This function may return NoInduction + /// if the PHI is not an induction variable. + InductionKind isInductionVariable(PHINode *Phi); + /// Return true if can compute the address bounds of Ptr within the loop. + bool hasComputableBounds(Value *Ptr); + + /// The loop that we evaluate. + Loop *TheLoop; + /// Scev analysis. + ScalarEvolution *SE; + /// DataLayout analysis. + DataLayout *DL; + // Dominators. + DominatorTree *DT; + + // --- vectorization state --- // + + /// Holds the integer induction variable. This is the counter of the + /// loop. + PHINode *Induction; + /// Holds the reduction variables. + ReductionList Reductions; + /// Holds all of the induction variables that we found in the loop. + /// Notice that inductions don't need to start at zero and that induction + /// variables can be pointers. + InductionList Inductions; + + /// Allowed outside users. This holds the reduction + /// vars which can be accessed from outside the loop. + SmallPtrSet<Value*, 4> AllowedExit; + /// This set holds the variables which are known to be uniform after + /// vectorization. + SmallPtrSet<Instruction*, 4> Uniforms; + /// We need to check that all of the pointers in this list are disjoint + /// at runtime. + RuntimePointerCheck PtrRtCheck; +}; + +/// LoopVectorizationCostModel - estimates the expected speedups due to +/// vectorization. +/// In many cases vectorization is not profitable. This can happen because of +/// a number of reasons. In this class we mainly attempt to predict the +/// expected speedup/slowdowns due to the supported instruction set. We use the +/// TargetTransformInfo to query the different backends for the cost of +/// different operations. +class LoopVectorizationCostModel { +public: + LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, + LoopVectorizationLegality *Legal, + const TargetTransformInfo &TTI) + : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI) {} + + /// \return The most profitable vectorization factor. + /// This method checks every power of two up to VF. If UserVF is not ZERO + /// then this vectorization factor will be selected if vectorization is + /// possible. + unsigned selectVectorizationFactor(bool OptForSize, unsigned UserVF); + + /// \returns The size (in bits) of the widest type in the code that + /// needs to be vectorized. We ignore values that remain scalar such as + /// 64 bit loop indices. + unsigned getWidestType(); + + /// \return The most profitable unroll factor. + /// If UserUF is non-zero then this method finds the best unroll-factor + /// based on register pressure and other parameters. + unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF); + + /// \brief A struct that represents some properties of the register usage + /// of a loop. + struct RegisterUsage { + /// Holds the number of loop invariant values that are used in the loop. + unsigned LoopInvariantRegs; + /// Holds the maximum number of concurrent live intervals in the loop. + unsigned MaxLocalUsers; + /// Holds the number of instructions in the loop. + unsigned NumInstructions; + }; + + /// \return information about the register usage of the loop. + RegisterUsage calculateRegisterUsage(); + +private: + /// Returns the expected execution cost. The unit of the cost does + /// not matter because we use the 'cost' units to compare different + /// vector widths. The cost that is returned is *not* normalized by + /// the factor width. + unsigned expectedCost(unsigned VF); + + /// Returns the execution time cost of an instruction for a given vector + /// width. Vector width of one means scalar. + unsigned getInstructionCost(Instruction *I, unsigned VF); + + /// A helper function for converting Scalar types to vector types. + /// If the incoming type is void, we return void. If the VF is 1, we return + /// the scalar type. + static Type* ToVectorTy(Type *Scalar, unsigned VF); + + /// The loop that we evaluate. + Loop *TheLoop; + /// Scev analysis. + ScalarEvolution *SE; + /// Loop Info analysis. + LoopInfo *LI; + /// Vectorization legality. + LoopVectorizationLegality *Legal; + /// Vector target information. + const TargetTransformInfo &TTI; +}; + /// The LoopVectorize Pass. struct LoopVectorize : public LoopPass { - static char ID; // Pass identification, replacement for typeid + /// Pass identification, replacement for typeid + static char ID; - LoopVectorize() : LoopPass(ID) { + explicit LoopVectorize() : LoopPass(ID) { initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); } @@ -71,7 +595,7 @@ struct LoopVectorize : public LoopPass { SE = &getAnalysis<ScalarEvolution>(); DL = getAnalysisIfAvailable<DataLayout>(); LI = &getAnalysis<LoopInfo>(); - TTI = getAnalysisIfAvailable<TargetTransformInfo>(); + TTI = &getAnalysis<TargetTransformInfo>(); DT = &getAnalysis<DominatorTree>(); DEBUG(dbgs() << "LV: Checking a loop in \"" << @@ -84,32 +608,38 @@ struct LoopVectorize : public LoopPass { return false; } - // Select the preffered vectorization factor. - unsigned VF = 1; - if (VectorizationFactor == 0) { - const VectorTargetTransformInfo *VTTI = 0; - if (TTI) - VTTI = TTI->getVectorTargetTransformInfo(); - // Use the cost model. - LoopVectorizationCostModel CM(L, SE, &LVL, VTTI); - VF = CM.findBestVectorizationFactor(); - - if (VF == 1) { - DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); - return false; - } + // Use the cost model. + LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI); + + // Check the function attribues to find out if this function should be + // optimized for size. + Function *F = L->getHeader()->getParent(); + Attribute::AttrKind SzAttr = Attribute::OptimizeForSize; + Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat; + unsigned FnIndex = AttributeSet::FunctionIndex; + bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr); + bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr); + + if (NoFloat) { + DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" + "attribute is used.\n"); + return false; + } - } else { - // Use the user command flag. - VF = VectorizationFactor; + unsigned VF = CM.selectVectorizationFactor(OptForSize, VectorizationFactor); + unsigned UF = CM.selectUnrollFactor(OptForSize, VectorizationUnroll); + + if (VF == 1) { + DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); + return false; } DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF << ") in "<< - L->getHeader()->getParent()->getParent()->getModuleIdentifier()<< - "\n"); + F->getParent()->getModuleIdentifier()<<"\n"); + DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n"); // If we decided that it is *legal* to vectorizer the loop then do it. - InnerLoopVectorizer LB(L, SE, LI, DT, DL, VF); + InnerLoopVectorizer LB(L, SE, LI, DT, DL, VF, UF); LB.vectorize(&LVL); DEBUG(verifyFunction(*L->getHeader()->getParent())); @@ -120,16 +650,17 @@ struct LoopVectorize : public LoopPass { LoopPass::getAnalysisUsage(AU); AU.addRequiredID(LoopSimplifyID); AU.addRequiredID(LCSSAID); + AU.addRequired<DominatorTree>(); AU.addRequired<LoopInfo>(); AU.addRequired<ScalarEvolution>(); - AU.addRequired<DominatorTree>(); + AU.addRequired<TargetTransformInfo>(); AU.addPreserved<LoopInfo>(); AU.addPreserved<DominatorTree>(); } }; -}// namespace +} // end anonymous namespace //===----------------------------------------------------------------------===// // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and @@ -150,11 +681,6 @@ LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE, } Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { - // Create the types. - LLVMContext &C = V->getContext(); - Type *VTy = VectorType::get(V->getType(), VF); - Type *I32 = IntegerType::getInt32Ty(C); - // Save the current insertion location. Instruction *Loc = Builder.GetInsertPoint(); @@ -167,14 +693,8 @@ Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { if (Invariant) Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); - Constant *Zero = ConstantInt::get(I32, 0); - Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF)); - Value *UndefVal = UndefValue::get(VTy); - // Insert the value into a new vector. - Value *SingleElem = Builder.CreateInsertElement(UndefVal, V, Zero); // Broadcast the scalar into all locations in the vector. - Value *Shuf = Builder.CreateShuffleVector(SingleElem, UndefVal, Zeros, - "broadcast"); + Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); // Restore the builder insertion point. if (Invariant) @@ -183,7 +703,8 @@ Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { return Shuf; } -Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, bool Negate) { +Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, unsigned StartIdx, + bool Negate) { assert(Val->getType()->isVectorTy() && "Must be a vector"); assert(Val->getType()->getScalarType()->isIntegerTy() && "Elem must be an integer"); @@ -194,8 +715,10 @@ Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, bool Negate) { SmallVector<Constant*, 8> Indices; // Create a vector of consecutive numbers from zero to VF. - for (int i = 0; i < VLen; ++i) - Indices.push_back(ConstantInt::get(ITy, Negate ? (-i): i )); + for (int i = 0; i < VLen; ++i) { + int Idx = Negate ? (-i): i; + Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx)); + } // Add the consecutive indices to the vector value. Constant *Cv = ConstantVector::get(Indices); @@ -203,20 +726,20 @@ Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, bool Negate) { return Builder.CreateAdd(Val, Cv, "induction"); } -bool LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { +int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr"); // If this value is a pointer induction variable we know it is consecutive. PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); if (Phi && Inductions.count(Phi)) { InductionInfo II = Inductions[Phi]; - if (PtrInduction == II.IK) - return true; + if (IK_PtrInduction == II.IK) + return 1; } GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); if (!Gep) - return false; + return 0; unsigned NumOperands = Gep->getNumOperands(); Value *LastIndex = Gep->getOperand(NumOperands - 1); @@ -224,7 +747,7 @@ bool LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { // Check that all of the gep indices are uniform except for the last. for (unsigned i = 0; i < NumOperands - 1; ++i) if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) - return false; + return 0; // We can emit wide load/stores only if the last index is the induction // variable. @@ -235,39 +758,49 @@ bool LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { // The memory is consecutive because the last index is consecutive // and all other indices are loop invariant. if (Step->isOne()) - return true; + return 1; + if (Step->isAllOnesValue()) + return -1; } - return false; + return 0; } bool LoopVectorizationLegality::isUniform(Value *V) { return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); } -Value *InnerLoopVectorizer::getVectorValue(Value *V) { +InnerLoopVectorizer::VectorParts& +InnerLoopVectorizer::getVectorValue(Value *V) { assert(V != Induction && "The new induction variable should not be used."); assert(!V->getType()->isVectorTy() && "Can't widen a vector"); - // If we saved a vectorized copy of V, use it. - Value *&MapEntry = WidenMap[V]; - if (MapEntry) - return MapEntry; - // Broadcast V and save the value for future uses. + // If we have this scalar in the map, return it. + if (WidenMap.has(V)) + return WidenMap.get(V); + + // If this scalar is unknown, assume that it is a constant or that it is + // loop invariant. Broadcast V and save the value for future uses. Value *B = getBroadcastInstrs(V); - MapEntry = B; - return B; + WidenMap.splat(V, B); + return WidenMap.get(V); } -Constant* -InnerLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) { - return ConstantVector::getSplat(VF, ConstantInt::get(ScalarTy, Val, true)); +Value *InnerLoopVectorizer::reverseVector(Value *Vec) { + assert(Vec->getType()->isVectorTy() && "Invalid type"); + SmallVector<Constant*, 8> ShuffleMask; + for (unsigned i = 0; i < VF; ++i) + ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); + + return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), + ConstantVector::get(ShuffleMask), + "reverse"); } void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) { assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); // Holds vector parameters or scalars, in case of uniform vals. - SmallVector<Value*, 8> Params; + SmallVector<VectorParts, 4> Params; // Find all of the vectorized parameters. for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { @@ -284,13 +817,15 @@ void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) { // If the src is an instruction that appeared earlier in the basic block // then it should already be vectorized. - if (SrcInst && SrcInst->getParent() == Instr->getParent()) { - assert(WidenMap.count(SrcInst) && "Source operand is unavailable"); + if (SrcInst && OrigLoop->contains(SrcInst)) { + assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); // The parameter is a vector value from earlier. - Params.push_back(WidenMap[SrcInst]); + Params.push_back(WidenMap.get(SrcInst)); } else { // The parameter is a scalar from outside the loop. Maybe even a constant. - Params.push_back(SrcOp); + VectorParts Scalars; + Scalars.append(UF, SrcOp); + Params.push_back(Scalars); } } @@ -299,39 +834,38 @@ void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) { // Does this instruction return a value ? bool IsVoidRetTy = Instr->getType()->isVoidTy(); - Value *VecResults = 0; - // If we have a return value, create an empty vector. We place the scalarized - // instructions in this vector. - if (!IsVoidRetTy) - VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF)); + Value *UndefVec = IsVoidRetTy ? 0 : + UndefValue::get(VectorType::get(Instr->getType(), VF)); + // Create a new entry in the WidenMap and initialize it to Undef or Null. + VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); // For each scalar that we create: - for (unsigned i = 0; i < VF; ++i) { - Instruction *Cloned = Instr->clone(); - if (!IsVoidRetTy) - Cloned->setName(Instr->getName() + ".cloned"); - // Replace the operands of the cloned instrucions with extracted scalars. - for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { - Value *Op = Params[op]; - // Param is a vector. Need to extract the right lane. - if (Op->getType()->isVectorTy()) - Op = Builder.CreateExtractElement(Op, Builder.getInt32(i)); - Cloned->setOperand(op, Op); - } + for (unsigned Width = 0; Width < VF; ++Width) { + // For each vector unroll 'part': + for (unsigned Part = 0; Part < UF; ++Part) { + Instruction *Cloned = Instr->clone(); + if (!IsVoidRetTy) + Cloned->setName(Instr->getName() + ".cloned"); + // Replace the operands of the cloned instrucions with extracted scalars. + for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { + Value *Op = Params[op][Part]; + // Param is a vector. Need to extract the right lane. + |