aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/InlineCost.cpp
diff options
context:
space:
mode:
authorDevang Patel <dpatel@apple.com>2007-07-25 18:00:25 +0000
committerDevang Patel <dpatel@apple.com>2007-07-25 18:00:25 +0000
commit6899b314225dd5fa5ccc2a5692daaa89c1d623d8 (patch)
tree15cabe7a2eb96e54266eec3cf068869cb523dc9e /lib/Transforms/Utils/InlineCost.cpp
parentb4d2cac15b19ff1ec0d233ae742884d1632769c6 (diff)
Add BasicInliner interface.
This interface allows clients to inline bunch of functions with module level call graph information.:wq git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40486 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms/Utils/InlineCost.cpp')
-rw-r--r--lib/Transforms/Utils/InlineCost.cpp241
1 files changed, 241 insertions, 0 deletions
diff --git a/lib/Transforms/Utils/InlineCost.cpp b/lib/Transforms/Utils/InlineCost.cpp
new file mode 100644
index 0000000000..8b34427ac6
--- /dev/null
+++ b/lib/Transforms/Utils/InlineCost.cpp
@@ -0,0 +1,241 @@
+//===- InlineCoast.cpp - Cost analysis for inliner ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements inline cost analysis.
+//
+//===----------------------------------------------------------------------===//
+
+
+#include "llvm/Transforms/Utils/InlineCost.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/CallingConv.h"
+#include "llvm/IntrinsicInst.h"
+
+using namespace llvm;
+
+// CountCodeReductionForConstant - Figure out an approximation for how many
+// instructions will be constant folded if the specified value is constant.
+//
+unsigned InlineCostAnalyzer::FunctionInfo::
+ CountCodeReductionForConstant(Value *V) {
+ unsigned Reduction = 0;
+ for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
+ if (isa<BranchInst>(*UI))
+ Reduction += 40; // Eliminating a conditional branch is a big win
+ else if (SwitchInst *SI = dyn_cast<SwitchInst>(*UI))
+ // Eliminating a switch is a big win, proportional to the number of edges
+ // deleted.
+ Reduction += (SI->getNumSuccessors()-1) * 40;
+ else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
+ // Turning an indirect call into a direct call is a BIG win
+ Reduction += CI->getCalledValue() == V ? 500 : 0;
+ } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
+ // Turning an indirect call into a direct call is a BIG win
+ Reduction += II->getCalledValue() == V ? 500 : 0;
+ } else {
+ // Figure out if this instruction will be removed due to simple constant
+ // propagation.
+ Instruction &Inst = cast<Instruction>(**UI);
+ bool AllOperandsConstant = true;
+ for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
+ if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
+ AllOperandsConstant = false;
+ break;
+ }
+
+ if (AllOperandsConstant) {
+ // We will get to remove this instruction...
+ Reduction += 7;
+
+ // And any other instructions that use it which become constants
+ // themselves.
+ Reduction += CountCodeReductionForConstant(&Inst);
+ }
+ }
+
+ return Reduction;
+}
+
+// CountCodeReductionForAlloca - Figure out an approximation of how much smaller
+// the function will be if it is inlined into a context where an argument
+// becomes an alloca.
+//
+unsigned InlineCostAnalyzer::FunctionInfo::
+ CountCodeReductionForAlloca(Value *V) {
+ if (!isa<PointerType>(V->getType())) return 0; // Not a pointer
+ unsigned Reduction = 0;
+ for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
+ Instruction *I = cast<Instruction>(*UI);
+ if (isa<LoadInst>(I) || isa<StoreInst>(I))
+ Reduction += 10;
+ else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
+ // If the GEP has variable indices, we won't be able to do much with it.
+ for (Instruction::op_iterator I = GEP->op_begin()+1, E = GEP->op_end();
+ I != E; ++I)
+ if (!isa<Constant>(*I)) return 0;
+ Reduction += CountCodeReductionForAlloca(GEP)+15;
+ } else {
+ // If there is some other strange instruction, we're not going to be able
+ // to do much if we inline this.
+ return 0;
+ }
+ }
+
+ return Reduction;
+}
+
+/// analyzeFunction - Fill in the current structure with information gleaned
+/// from the specified function.
+void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
+ unsigned NumInsts = 0, NumBlocks = 0;
+
+ // Look at the size of the callee. Each basic block counts as 20 units, and
+ // each instruction counts as 10.
+ for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
+ for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
+ II != E; ++II) {
+ if (isa<DbgInfoIntrinsic>(II)) continue; // Debug intrinsics don't count.
+
+ // Noop casts, including ptr <-> int, don't count.
+ if (const CastInst *CI = dyn_cast<CastInst>(II)) {
+ if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) ||
+ isa<PtrToIntInst>(CI))
+ continue;
+ } else if (const GetElementPtrInst *GEPI =
+ dyn_cast<GetElementPtrInst>(II)) {
+ // If a GEP has all constant indices, it will probably be folded with
+ // a load/store.
+ bool AllConstant = true;
+ for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
+ if (!isa<ConstantInt>(GEPI->getOperand(i))) {
+ AllConstant = false;
+ break;
+ }
+ if (AllConstant) continue;
+ }
+
+ ++NumInsts;
+ }
+
+ ++NumBlocks;
+ }
+
+ this->NumBlocks = NumBlocks;
+ this->NumInsts = NumInsts;
+
+ // Check out all of the arguments to the function, figuring out how much
+ // code can be eliminated if one of the arguments is a constant.
+ for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
+ ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I),
+ CountCodeReductionForAlloca(I)));
+}
+
+
+
+// getInlineCost - The heuristic used to determine if we should inline the
+// function call or not.
+//
+int InlineCostAnalyzer::getInlineCost(CallSite CS, std::set<const Function *> &NeverInline) {
+ Instruction *TheCall = CS.getInstruction();
+ Function *Callee = CS.getCalledFunction();
+ const Function *Caller = TheCall->getParent()->getParent();
+
+ // Don't inline a directly recursive call.
+ if (Caller == Callee ||
+ // Don't inline functions which can be redefined at link-time to mean
+ // something else. link-once linkage is ok though.
+ Callee->hasWeakLinkage() ||
+
+ // Don't inline functions marked noinline.
+ NeverInline.count(Callee))
+ return 2000000000;
+
+ // InlineCost - This value measures how good of an inline candidate this call
+ // site is to inline. A lower inline cost make is more likely for the call to
+ // be inlined. This value may go negative.
+ //
+ int InlineCost = 0;
+
+ // If there is only one call of the function, and it has internal linkage,
+ // make it almost guaranteed to be inlined.
+ //
+ if (Callee->hasInternalLinkage() && Callee->hasOneUse())
+ InlineCost -= 30000;
+
+ // If this function uses the coldcc calling convention, prefer not to inline
+ // it.
+ if (Callee->getCallingConv() == CallingConv::Cold)
+ InlineCost += 2000;
+
+ // If the instruction after the call, or if the normal destination of the
+ // invoke is an unreachable instruction, the function is noreturn. As such,
+ // there is little point in inlining this.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
+ if (isa<UnreachableInst>(II->getNormalDest()->begin()))
+ InlineCost += 10000;
+ } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
+ InlineCost += 10000;
+
+ // Get information about the callee...
+ FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
+
+ // If we haven't calculated this information yet, do so now.
+ if (CalleeFI.NumBlocks == 0)
+ CalleeFI.analyzeFunction(Callee);
+
+ // Add to the inline quality for properties that make the call valuable to
+ // inline. This includes factors that indicate that the result of inlining
+ // the function will be optimizable. Currently this just looks at arguments
+ // passed into the function.
+ //
+ unsigned ArgNo = 0;
+ for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
+ I != E; ++I, ++ArgNo) {
+ // Each argument passed in has a cost at both the caller and the callee
+ // sides. This favors functions that take many arguments over functions
+ // that take few arguments.
+ InlineCost -= 20;
+
+ // If this is a function being passed in, it is very likely that we will be
+ // able to turn an indirect function call into a direct function call.
+ if (isa<Function>(I))
+ InlineCost -= 100;
+
+ // If an alloca is passed in, inlining this function is likely to allow
+ // significant future optimization possibilities (like scalar promotion, and
+ // scalarization), so encourage the inlining of the function.
+ //
+ else if (isa<AllocaInst>(I)) {
+ if (ArgNo < CalleeFI.ArgumentWeights.size())
+ InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight;
+
+ // If this is a constant being passed into the function, use the argument
+ // weights calculated for the callee to determine how much will be folded
+ // away with this information.
+ } else if (isa<Constant>(I)) {
+ if (ArgNo < CalleeFI.ArgumentWeights.size())
+ InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight;
+ }
+ }
+
+ // Now that we have considered all of the factors that make the call site more
+ // likely to be inlined, look at factors that make us not want to inline it.
+
+ // Don't inline into something too big, which would make it bigger. Here, we
+ // count each basic block as a single unit.
+ //
+ InlineCost += Caller->size()/20;
+
+
+ // Look at the size of the callee. Each basic block counts as 20 units, and
+ // each instruction counts as 5.
+ InlineCost += CalleeFI.NumInsts*5 + CalleeFI.NumBlocks*20;
+ return InlineCost;
+}
+