diff options
author | Eli Bendersky <eliben@chromium.org> | 2013-07-15 16:09:15 -0700 |
---|---|---|
committer | Eli Bendersky <eliben@chromium.org> | 2013-07-15 16:09:15 -0700 |
commit | c6cf05cb5108f356dde97c01ee4188b0671d4542 (patch) | |
tree | 436fdc2a55296d3c202e7ef11f31be3be53efb5f /lib/ExecutionEngine | |
parent | c75199c649c739aade160289d93f257edc798cde (diff) | |
parent | 7dfcb84fc16b3bf6b2379713b53090757f0a45f9 (diff) |
Merge commit '7dfcb84fc16b3bf6b2379713b53090757f0a45f9'
Conflicts:
docs/LangRef.rst
include/llvm/CodeGen/CallingConvLower.h
include/llvm/IRReader/IRReader.h
include/llvm/Target/TargetMachine.h
lib/CodeGen/CallingConvLower.cpp
lib/IRReader/IRReader.cpp
lib/IRReader/LLVMBuild.txt
lib/IRReader/Makefile
lib/LLVMBuild.txt
lib/Makefile
lib/Support/MemoryBuffer.cpp
lib/Support/Unix/PathV2.inc
lib/Target/ARM/ARMBaseInstrInfo.cpp
lib/Target/ARM/ARMISelLowering.cpp
lib/Target/ARM/ARMInstrInfo.td
lib/Target/ARM/ARMSubtarget.cpp
lib/Target/ARM/ARMTargetMachine.cpp
lib/Target/Mips/CMakeLists.txt
lib/Target/Mips/MipsDelaySlotFiller.cpp
lib/Target/Mips/MipsISelLowering.cpp
lib/Target/Mips/MipsInstrInfo.td
lib/Target/Mips/MipsSubtarget.cpp
lib/Target/Mips/MipsSubtarget.h
lib/Target/X86/X86FastISel.cpp
lib/Target/X86/X86ISelDAGToDAG.cpp
lib/Target/X86/X86ISelLowering.cpp
lib/Target/X86/X86InstrControl.td
lib/Target/X86/X86InstrFormats.td
lib/Transforms/IPO/ExtractGV.cpp
lib/Transforms/InstCombine/InstCombineCompares.cpp
lib/Transforms/Utils/SimplifyLibCalls.cpp
test/CodeGen/X86/fast-isel-divrem.ll
test/MC/ARM/data-in-code.ll
tools/Makefile
tools/llvm-extract/llvm-extract.cpp
tools/llvm-link/CMakeLists.txt
tools/opt/CMakeLists.txt
tools/opt/LLVMBuild.txt
tools/opt/Makefile
tools/opt/opt.cpp
Diffstat (limited to 'lib/ExecutionEngine')
-rw-r--r-- | lib/ExecutionEngine/ExecutionEngine.cpp | 157 | ||||
-rw-r--r-- | lib/ExecutionEngine/ExecutionEngineBindings.cpp | 84 | ||||
-rw-r--r-- | lib/ExecutionEngine/Interpreter/Execution.cpp | 357 | ||||
-rw-r--r-- | lib/ExecutionEngine/Interpreter/Interpreter.h | 1 | ||||
-rw-r--r-- | lib/ExecutionEngine/MCJIT/MCJIT.cpp | 91 | ||||
-rw-r--r-- | lib/ExecutionEngine/MCJIT/MCJIT.h | 14 | ||||
-rw-r--r-- | lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp | 37 | ||||
-rw-r--r-- | lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp | 86 | ||||
-rw-r--r-- | lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp | 315 | ||||
-rw-r--r-- | lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h | 48 | ||||
-rw-r--r-- | lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h | 74 | ||||
-rw-r--r-- | lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp | 177 | ||||
-rw-r--r-- | lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h | 30 |
13 files changed, 1206 insertions, 265 deletions
diff --git a/lib/ExecutionEngine/ExecutionEngine.cpp b/lib/ExecutionEngine/ExecutionEngine.cpp index 3d59d251a0..e43ba4f1dd 100644 --- a/lib/ExecutionEngine/ExecutionEngine.cpp +++ b/lib/ExecutionEngine/ExecutionEngine.cpp @@ -535,6 +535,8 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { if (isa<UndefValue>(C)) { GenericValue Result; switch (C->getType()->getTypeID()) { + default: + break; case Type::IntegerTyID: case Type::X86_FP80TyID: case Type::FP128TyID: @@ -543,7 +545,16 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { // with the correct bit width. Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); break; - default: + case Type::VectorTyID: + // if the whole vector is 'undef' just reserve memory for the value. + const VectorType* VTy = dyn_cast<VectorType>(C->getType()); + const Type *ElemTy = VTy->getElementType(); + unsigned int elemNum = VTy->getNumElements(); + Result.AggregateVal.resize(elemNum); + if (ElemTy->isIntegerTy()) + for (unsigned int i = 0; i < elemNum; ++i) + Result.AggregateVal[i].IntVal = + APInt(ElemTy->getPrimitiveSizeInBits(), 0); break; } return Result; @@ -825,6 +836,101 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { else llvm_unreachable("Unknown constant pointer type!"); break; + case Type::VectorTyID: { + unsigned elemNum; + Type* ElemTy; + const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); + const ConstantVector *CV = dyn_cast<ConstantVector>(C); + const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); + + if (CDV) { + elemNum = CDV->getNumElements(); + ElemTy = CDV->getElementType(); + } else if (CV || CAZ) { + VectorType* VTy = dyn_cast<VectorType>(C->getType()); + elemNum = VTy->getNumElements(); + ElemTy = VTy->getElementType(); + } else { + llvm_unreachable("Unknown constant vector type!"); + } + + Result.AggregateVal.resize(elemNum); + // Check if vector holds floats. + if(ElemTy->isFloatTy()) { + if (CAZ) { + GenericValue floatZero; + floatZero.FloatVal = 0.f; + std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), + floatZero); + break; + } + if(CV) { + for (unsigned i = 0; i < elemNum; ++i) + if (!isa<UndefValue>(CV->getOperand(i))) + Result.AggregateVal[i].FloatVal = cast<ConstantFP>( + CV->getOperand(i))->getValueAPF().convertToFloat(); + break; + } + if(CDV) + for (unsigned i = 0; i < elemNum; ++i) + Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); + + break; + } + // Check if vector holds doubles. + if (ElemTy->isDoubleTy()) { + if (CAZ) { + GenericValue doubleZero; + doubleZero.DoubleVal = 0.0; + std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), + doubleZero); + break; + } + if(CV) { + for (unsigned i = 0; i < elemNum; ++i) + if (!isa<UndefValue>(CV->getOperand(i))) + Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( + CV->getOperand(i))->getValueAPF().convertToDouble(); + break; + } + if(CDV) + for (unsigned i = 0; i < elemNum; ++i) + Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); + + break; + } + // Check if vector holds integers. + if (ElemTy->isIntegerTy()) { + if (CAZ) { + GenericValue intZero; + intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); + std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), + intZero); + break; + } + if(CV) { + for (unsigned i = 0; i < elemNum; ++i) + if (!isa<UndefValue>(CV->getOperand(i))) + Result.AggregateVal[i].IntVal = cast<ConstantInt>( + CV->getOperand(i))->getValue(); + else { + Result.AggregateVal[i].IntVal = + APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); + } + break; + } + if(CDV) + for (unsigned i = 0; i < elemNum; ++i) + Result.AggregateVal[i].IntVal = APInt( + CDV->getElementType()->getPrimitiveSizeInBits(), + CDV->getElementAsInteger(i)); + + break; + } + llvm_unreachable("Unknown constant pointer type!"); + } + break; + default: SmallString<256> Msg; raw_svector_ostream OS(Msg); @@ -842,7 +948,7 @@ static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); - if (sys::isLittleEndianHost()) { + if (sys::IsLittleEndianHost) { // Little-endian host - the source is ordered from LSB to MSB. Order the // destination from LSB to MSB: Do a straight copy. memcpy(Dst, Src, StoreBytes); @@ -866,6 +972,9 @@ void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); switch (Ty->getTypeID()) { + default: + dbgs() << "Cannot store value of type " << *Ty << "!\n"; + break; case Type::IntegerTyID: StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); break; @@ -885,11 +994,22 @@ void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, *((PointerTy*)Ptr) = Val.PointerVal; break; - default: - dbgs() << "Cannot store value of type " << *Ty << "!\n"; + case Type::VectorTyID: + for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { + if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) + *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; + if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) + *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; + if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { + unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; + StoreIntToMemory(Val.AggregateVal[i].IntVal, + (uint8_t*)Ptr + numOfBytes*i, numOfBytes); + } + } + break; } - if (sys::isLittleEndianHost() != getDataLayout()->isLittleEndian()) + if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) // Host and target are different endian - reverse the stored bytes. std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); } @@ -901,7 +1021,7 @@ static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { uint8_t *Dst = reinterpret_cast<uint8_t *>( const_cast<uint64_t *>(IntVal.getRawData())); - if (sys::isLittleEndianHost()) + if (sys::IsLittleEndianHost) // Little-endian host - the destination must be ordered from LSB to MSB. // The source is ordered from LSB to MSB: Do a straight copy. memcpy(Dst, Src, LoadBytes); @@ -951,6 +1071,31 @@ void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, Result.IntVal = APInt(80, y); break; } + case Type::VectorTyID: { + const VectorType *VT = cast<VectorType>(Ty); + const Type *ElemT = VT->getElementType(); + const unsigned numElems = VT->getNumElements(); + if (ElemT->isFloatTy()) { + Result.AggregateVal.resize(numElems); + for (unsigned i = 0; i < numElems; ++i) + Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); + } + if (ElemT->isDoubleTy()) { + Result.AggregateVal.resize(numElems); + for (unsigned i = 0; i < numElems; ++i) + Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); + } + if (ElemT->isIntegerTy()) { + GenericValue intZero; + const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); + intZero.IntVal = APInt(elemBitWidth, 0); + Result.AggregateVal.resize(numElems, intZero); + for (unsigned i = 0; i < numElems; ++i) + LoadIntFromMemory(Result.AggregateVal[i].IntVal, + (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); + } + break; + } default: SmallString<256> Msg; raw_svector_ostream OS(Msg); diff --git a/lib/ExecutionEngine/ExecutionEngineBindings.cpp b/lib/ExecutionEngine/ExecutionEngineBindings.cpp index f4e8246476..f9b08a01ea 100644 --- a/lib/ExecutionEngine/ExecutionEngineBindings.cpp +++ b/lib/ExecutionEngine/ExecutionEngineBindings.cpp @@ -15,11 +15,33 @@ #include "llvm-c/ExecutionEngine.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/GenericValue.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Module.h" #include "llvm/Support/ErrorHandling.h" #include <cstring> using namespace llvm; +// Wrapping the C bindings types. +DEFINE_SIMPLE_CONVERSION_FUNCTIONS(GenericValue, LLVMGenericValueRef) + +inline DataLayout *unwrap(LLVMTargetDataRef P) { + return reinterpret_cast<DataLayout*>(P); +} + +inline LLVMTargetDataRef wrap(const DataLayout *P) { + return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout*>(P)); +} + +inline TargetLibraryInfo *unwrap(LLVMTargetLibraryInfoRef P) { + return reinterpret_cast<TargetLibraryInfo*>(P); +} + +inline LLVMTargetLibraryInfoRef wrap(const TargetLibraryInfo *P) { + TargetLibraryInfo *X = const_cast<TargetLibraryInfo*>(P); + return reinterpret_cast<LLVMTargetLibraryInfoRef>(X); +} + /*===-- Operations on generic values --------------------------------------===*/ LLVMGenericValueRef LLVMCreateGenericValueOfInt(LLVMTypeRef Ty, @@ -132,6 +154,59 @@ LLVMBool LLVMCreateJITCompilerForModule(LLVMExecutionEngineRef *OutJIT, return 1; } +void LLVMInitializeMCJITCompilerOptions(LLVMMCJITCompilerOptions *PassedOptions, + size_t SizeOfPassedOptions) { + LLVMMCJITCompilerOptions options; + options.OptLevel = 0; + options.CodeModel = LLVMCodeModelJITDefault; + options.NoFramePointerElim = false; + options.EnableFastISel = false; + + memcpy(PassedOptions, &options, + std::min(sizeof(options), SizeOfPassedOptions)); +} + +LLVMBool LLVMCreateMCJITCompilerForModule( + LLVMExecutionEngineRef *OutJIT, LLVMModuleRef M, + LLVMMCJITCompilerOptions *PassedOptions, size_t SizeOfPassedOptions, + char **OutError) { + LLVMMCJITCompilerOptions options; + // If the user passed a larger sized options struct, then they were compiled + // against a newer LLVM. Tell them that something is wrong. + if (SizeOfPassedOptions > sizeof(options)) { + *OutError = strdup( + "Refusing to use options struct that is larger than my own; assuming " + "LLVM library mismatch."); + return 1; + } + + // Defend against the user having an old version of the API by ensuring that + // any fields they didn't see are cleared. We must defend against fields being + // set to the bitwise equivalent of zero, and assume that this means "do the + // default" as if that option hadn't been available. + LLVMInitializeMCJITCompilerOptions(&options, sizeof(options)); + memcpy(&options, PassedOptions, SizeOfPassedOptions); + + TargetOptions targetOptions; + targetOptions.NoFramePointerElim = options.NoFramePointerElim; + targetOptions.EnableFastISel = options.EnableFastISel; + + std::string Error; + EngineBuilder builder(unwrap(M)); + builder.setEngineKind(EngineKind::JIT) + .setErrorStr(&Error) + .setUseMCJIT(true) + .setOptLevel((CodeGenOpt::Level)options.OptLevel) + .setCodeModel(unwrap(options.CodeModel)) + .setTargetOptions(targetOptions); + if (ExecutionEngine *JIT = builder.create()) { + *OutJIT = wrap(JIT); + return 0; + } + *OutError = strdup(Error.c_str()); + return 1; +} + LLVMBool LLVMCreateExecutionEngine(LLVMExecutionEngineRef *OutEE, LLVMModuleProviderRef MP, char **OutError) { @@ -176,6 +251,8 @@ void LLVMRunStaticDestructors(LLVMExecutionEngineRef EE) { int LLVMRunFunctionAsMain(LLVMExecutionEngineRef EE, LLVMValueRef F, unsigned ArgC, const char * const *ArgV, const char * const *EnvP) { + unwrap(EE)->finalizeObject(); + std::vector<std::string> ArgVec; for (unsigned I = 0; I != ArgC; ++I) ArgVec.push_back(ArgV[I]); @@ -186,6 +263,8 @@ int LLVMRunFunctionAsMain(LLVMExecutionEngineRef EE, LLVMValueRef F, LLVMGenericValueRef LLVMRunFunction(LLVMExecutionEngineRef EE, LLVMValueRef F, unsigned NumArgs, LLVMGenericValueRef *Args) { + unwrap(EE)->finalizeObject(); + std::vector<GenericValue> ArgVec; ArgVec.reserve(NumArgs); for (unsigned I = 0; I != NumArgs; ++I) @@ -234,7 +313,8 @@ LLVMBool LLVMFindFunction(LLVMExecutionEngineRef EE, const char *Name, return 1; } -void *LLVMRecompileAndRelinkFunction(LLVMExecutionEngineRef EE, LLVMValueRef Fn) { +void *LLVMRecompileAndRelinkFunction(LLVMExecutionEngineRef EE, + LLVMValueRef Fn) { return unwrap(EE)->recompileAndRelinkFunction(unwrap<Function>(Fn)); } @@ -248,5 +328,7 @@ void LLVMAddGlobalMapping(LLVMExecutionEngineRef EE, LLVMValueRef Global, } void *LLVMGetPointerToGlobal(LLVMExecutionEngineRef EE, LLVMValueRef Global) { + unwrap(EE)->finalizeObject(); + return unwrap(EE)->getPointerToGlobal(unwrap<GlobalValue>(Global)); } diff --git a/lib/ExecutionEngine/Interpreter/Execution.cpp b/lib/ExecutionEngine/Interpreter/Execution.cpp index ec4f7f6813..b95a9e867c 100644 --- a/lib/ExecutionEngine/Interpreter/Execution.cpp +++ b/lib/ExecutionEngine/Interpreter/Execution.cpp @@ -114,6 +114,15 @@ static void executeFRemInst(GenericValue &Dest, GenericValue Src1, Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \ break; +#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \ + case Type::VectorTyID: { \ + assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \ + Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \ + for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \ + Dest.AggregateVal[_i].IntVal = APInt(1, \ + Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\ + } break; + // Handle pointers specially because they must be compared with only as much // width as the host has. We _do not_ want to be comparing 64 bit values when // running on a 32-bit target, otherwise the upper 32 bits might mess up @@ -129,6 +138,7 @@ static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(eq,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty); IMPLEMENT_POINTER_ICMP(==); default: dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; @@ -142,6 +152,7 @@ static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(ne,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty); IMPLEMENT_POINTER_ICMP(!=); default: dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; @@ -155,6 +166,7 @@ static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(ult,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty); IMPLEMENT_POINTER_ICMP(<); default: dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; @@ -168,6 +180,7 @@ static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(slt,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty); IMPLEMENT_POINTER_ICMP(<); default: dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; @@ -181,6 +194,7 @@ static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(ugt,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty); IMPLEMENT_POINTER_ICMP(>); default: dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; @@ -194,6 +208,7 @@ static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(sgt,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty); IMPLEMENT_POINTER_ICMP(>); default: dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; @@ -207,6 +222,7 @@ static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(ule,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty); IMPLEMENT_POINTER_ICMP(<=); default: dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; @@ -220,6 +236,7 @@ static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(sle,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty); IMPLEMENT_POINTER_ICMP(<=); default: dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; @@ -233,6 +250,7 @@ static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(uge,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty); IMPLEMENT_POINTER_ICMP(>=); default: dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; @@ -246,6 +264,7 @@ static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(sge,Ty); + IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty); IMPLEMENT_POINTER_ICMP(>=); default: dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; @@ -285,12 +304,29 @@ void Interpreter::visitICmpInst(ICmpInst &I) { Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \ break +#define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \ + assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \ + Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \ + for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \ + Dest.AggregateVal[_i].IntVal = APInt(1, \ + Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\ + break; + +#define IMPLEMENT_VECTOR_FCMP(OP) \ + case Type::VectorTyID: \ + if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \ + IMPLEMENT_VECTOR_FCMP_T(OP, Float); \ + } else { \ + IMPLEMENT_VECTOR_FCMP_T(OP, Double); \ + } + static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(==, Float); IMPLEMENT_FCMP(==, Double); + IMPLEMENT_VECTOR_FCMP(==); default: dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; llvm_unreachable(0); @@ -298,17 +334,65 @@ static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, return Dest; } +#define IMPLEMENT_SCALAR_NANS(TY, X,Y) \ + if (TY->isFloatTy()) { \ + if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ + Dest.IntVal = APInt(1,false); \ + return Dest; \ + } \ + } else { \ + if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ + Dest.IntVal = APInt(1,false); \ + return Dest; \ + } \ + } + +#define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \ + assert(X.AggregateVal.size() == Y.AggregateVal.size()); \ + Dest.AggregateVal.resize( X.AggregateVal.size() ); \ + for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \ + if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \ + Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \ + Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \ + else { \ + Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \ + } \ + } + +#define MASK_VECTOR_NANS(TY, X,Y, FLAG) \ + if (TY->isVectorTy()) { \ + if (dyn_cast<VectorType>(TY)->getElementType()->isFloatTy()) { \ + MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \ + } else { \ + MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \ + } \ + } \ + + + static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, - Type *Ty) { + Type *Ty) +{ GenericValue Dest; + // if input is scalar value and Src1 or Src2 is NaN return false + IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2) + // if vector input detect NaNs and fill mask + MASK_VECTOR_NANS(Ty, Src1, Src2, false) + GenericValue DestMask = Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(!=, Float); IMPLEMENT_FCMP(!=, Double); - - default: - dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; - llvm_unreachable(0); + IMPLEMENT_VECTOR_FCMP(!=); + default: + dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; + llvm_unreachable(0); } + // in vector case mask out NaN elements + if (Ty->isVectorTy()) + for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) + if (DestMask.AggregateVal[_i].IntVal == false) + Dest.AggregateVal[_i].IntVal = APInt(1,false); + return Dest; } @@ -318,6 +402,7 @@ static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, switch (Ty->getTypeID()) { IMPLEMENT_FCMP(<=, Float); IMPLEMENT_FCMP(<=, Double); + IMPLEMENT_VECTOR_FCMP(<=); default: dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; llvm_unreachable(0); @@ -331,6 +416,7 @@ static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, switch (Ty->getTypeID()) { IMPLEMENT_FCMP(>=, Float); IMPLEMENT_FCMP(>=, Double); + IMPLEMENT_VECTOR_FCMP(>=); default: dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; llvm_unreachable(0); @@ -344,6 +430,7 @@ static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, switch (Ty->getTypeID()) { IMPLEMENT_FCMP(<, Float); IMPLEMENT_FCMP(<, Double); + IMPLEMENT_VECTOR_FCMP(<); default: dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; llvm_unreachable(0); @@ -357,6 +444,7 @@ static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, switch (Ty->getTypeID()) { IMPLEMENT_FCMP(>, Float); IMPLEMENT_FCMP(>, Double); + IMPLEMENT_VECTOR_FCMP(>); default: dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; llvm_unreachable(0); @@ -375,18 +463,32 @@ static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, return Dest; \ } +#define IMPLEMENT_VECTOR_UNORDERED(TY, X,Y, _FUNC) \ + if (TY->isVectorTy()) { \ + GenericValue DestMask = Dest; \ + Dest = _FUNC(Src1, Src2, Ty); \ + for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) \ + if (DestMask.AggregateVal[_i].IntVal == true) \ + Dest.AggregateVal[_i].IntVal = APInt(1,true); \ + return Dest; \ + } static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) + MASK_VECTOR_NANS(Ty, Src1, Src2, true) + IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ) return executeFCMP_OEQ(Src1, Src2, Ty); + } static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) + MASK_VECTOR_NANS(Ty, Src1, Src2, true) + IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE) return executeFCMP_ONE(Src1, Src2, Ty); } @@ -394,6 +496,8 @@ static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) + MASK_VECTOR_NANS(Ty, Src1, Src2, true) + IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE) return executeFCMP_OLE(Src1, Src2, Ty); } @@ -401,6 +505,8 @@ static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) + MASK_VECTOR_NANS(Ty, Src1, Src2, true) + IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE) return executeFCMP_OGE(Src1, Src2, Ty); } @@ -408,6 +514,8 @@ static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) + MASK_VECTOR_NANS(Ty, Src1, Src2, true) + IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT) return executeFCMP_OLT(Src1, Src2, Ty); } @@ -415,33 +523,88 @@ static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) + MASK_VECTOR_NANS(Ty, Src1, Src2, true) + IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT) return executeFCMP_OGT(Src1, Src2, Ty); } static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; - if (Ty->isFloatTy()) + if(Ty->isVectorTy()) { + assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); + Dest.AggregateVal.resize( Src1.AggregateVal.size() ); + if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) { + for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) + Dest.AggregateVal[_i].IntVal = APInt(1, + ( (Src1.AggregateVal[_i].FloatVal == + Src1.AggregateVal[_i].FloatVal) && + (Src2.AggregateVal[_i].FloatVal == + Src2.AggregateVal[_i].FloatVal))); + } else { + for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) + Dest.AggregateVal[_i].IntVal = APInt(1, + ( (Src1.AggregateVal[_i].DoubleVal == + Src1.AggregateVal[_i].DoubleVal) && + (Src2.AggregateVal[_i].DoubleVal == + Src2.AggregateVal[_i].DoubleVal))); + } + } else if (Ty->isFloatTy()) Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && Src2.FloatVal == Src2.FloatVal)); - else + else { Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && Src2.DoubleVal == Src2.DoubleVal)); + } return Dest; } static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; - if (Ty->isFloatTy()) + if(Ty->isVectorTy()) { + assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); + Dest.AggregateVal.resize( Src1.AggregateVal.size() ); + if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) { + for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) + Dest.AggregateVal[_i].IntVal = APInt(1, + ( (Src1.AggregateVal[_i].FloatVal != + Src1.AggregateVal[_i].FloatVal) || + (Src2.AggregateVal[_i].FloatVal != + Src2.AggregateVal[_i].FloatVal))); + } else { + for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) + Dest.AggregateVal[_i].IntVal = APInt(1, + ( (Src1.AggregateVal[_i].DoubleVal != + Src1.AggregateVal[_i].DoubleVal) || + (Src2.AggregateVal[_i].DoubleVal != + Src2.AggregateVal[_i].DoubleVal))); + } + } else if (Ty->isFloatTy()) Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || Src2.FloatVal != Src2.FloatVal)); - else + else { Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || Src2.DoubleVal != Src2.DoubleVal)); + } return Dest; } +static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2, + const Type *Ty, const bool val) { + GenericValue Dest; + if(Ty->isVectorTy()) { + assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); + Dest.AggregateVal.resize( Src1.AggregateVal.size() ); + for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) + Dest.AggregateVal[_i].IntVal = APInt(1,val); + } else { + Dest.IntVal = APInt(1, val); + } + + return Dest; +} + void Interpreter::visitFCmpInst(FCmpInst &I) { ExecutionContext &SF = ECStack.back(); Type *Ty = I.getOperand(0)->getType(); @@ -450,8 +613,14 @@ void Interpreter::visitFCmpInst(FCmpInst &I) { GenericValue R; // Result switch (I.getPredicate()) { - case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break; - case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break; + default: + dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I; + llvm_unreachable(0); + break; + case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false); + break; + case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true); + break; case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break; case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break; case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break; @@ -466,9 +635,6 @@ void Interpreter::visitFCmpInst(FCmpInst &I) { case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break; case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break; case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break; - default: - dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I; - llvm_unreachable(0); } SetValue(&I, R, SF); @@ -502,16 +668,8 @@ static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty); case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty); case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty); - case FCmpInst::FCMP_FALSE: { - GenericValue Result; - Result.IntVal = APInt(1, false); - return Result; - } - case FCmpInst::FCMP_TRUE: { - GenericValue Result; - Result.IntVal = APInt(1, true); - return Res |