aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/SelectionDAG/TargetLowering.cpp
diff options
context:
space:
mode:
authorBenjamin Kramer <benny.kra@googlemail.com>2013-01-11 20:05:37 +0000
committerBenjamin Kramer <benny.kra@googlemail.com>2013-01-11 20:05:37 +0000
commit69e42dbd006c0afb732067ece7327988b1e24c01 (patch)
tree15eda209bdbedb97aed6f16286c25e7d845f4432 /lib/CodeGen/SelectionDAG/TargetLowering.cpp
parent3e40d927a775994d8f4c2d30695be69c248fa16c (diff)
Split TargetLowering into a CodeGen and a SelectionDAG part.
This fixes some of the cycles between libCodeGen and libSelectionDAG. It's still a complete mess but as long as the edges consist of virtual call it doesn't cause breakage. BasicTTI did static calls and thus broke some build configurations. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172246 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/SelectionDAG/TargetLowering.cpp')
-rw-r--r--lib/CodeGen/SelectionDAG/TargetLowering.cpp976
1 files changed, 5 insertions, 971 deletions
diff --git a/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
index 35a11b40ca..2e248e9451 100644
--- a/lib/CodeGen/SelectionDAG/TargetLowering.cpp
+++ b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
@@ -33,324 +33,6 @@
#include <cctype>
using namespace llvm;
-/// InitLibcallNames - Set default libcall names.
-///
-static void InitLibcallNames(const char **Names) {
- Names[RTLIB::SHL_I16] = "__ashlhi3";
- Names[RTLIB::SHL_I32] = "__ashlsi3";
- Names[RTLIB::SHL_I64] = "__ashldi3";
- Names[RTLIB::SHL_I128] = "__ashlti3";
- Names[RTLIB::SRL_I16] = "__lshrhi3";
- Names[RTLIB::SRL_I32] = "__lshrsi3";
- Names[RTLIB::SRL_I64] = "__lshrdi3";
- Names[RTLIB::SRL_I128] = "__lshrti3";
- Names[RTLIB::SRA_I16] = "__ashrhi3";
- Names[RTLIB::SRA_I32] = "__ashrsi3";
- Names[RTLIB::SRA_I64] = "__ashrdi3";
- Names[RTLIB::SRA_I128] = "__ashrti3";
- Names[RTLIB::MUL_I8] = "__mulqi3";
- Names[RTLIB::MUL_I16] = "__mulhi3";
- Names[RTLIB::MUL_I32] = "__mulsi3";
- Names[RTLIB::MUL_I64] = "__muldi3";
- Names[RTLIB::MUL_I128] = "__multi3";
- Names[RTLIB::MULO_I32] = "__mulosi4";
- Names[RTLIB::MULO_I64] = "__mulodi4";
- Names[RTLIB::MULO_I128] = "__muloti4";
- Names[RTLIB::SDIV_I8] = "__divqi3";
- Names[RTLIB::SDIV_I16] = "__divhi3";
- Names[RTLIB::SDIV_I32] = "__divsi3";
- Names[RTLIB::SDIV_I64] = "__divdi3";
- Names[RTLIB::SDIV_I128] = "__divti3";
- Names[RTLIB::UDIV_I8] = "__udivqi3";
- Names[RTLIB::UDIV_I16] = "__udivhi3";
- Names[RTLIB::UDIV_I32] = "__udivsi3";
- Names[RTLIB::UDIV_I64] = "__udivdi3";
- Names[RTLIB::UDIV_I128] = "__udivti3";
- Names[RTLIB::SREM_I8] = "__modqi3";
- Names[RTLIB::SREM_I16] = "__modhi3";
- Names[RTLIB::SREM_I32] = "__modsi3";
- Names[RTLIB::SREM_I64] = "__moddi3";
- Names[RTLIB::SREM_I128] = "__modti3";
- Names[RTLIB::UREM_I8] = "__umodqi3";
- Names[RTLIB::UREM_I16] = "__umodhi3";
- Names[RTLIB::UREM_I32] = "__umodsi3";
- Names[RTLIB::UREM_I64] = "__umoddi3";
- Names[RTLIB::UREM_I128] = "__umodti3";
-
- // These are generally not available.
- Names[RTLIB::SDIVREM_I8] = 0;
- Names[RTLIB::SDIVREM_I16] = 0;
- Names[RTLIB::SDIVREM_I32] = 0;
- Names[RTLIB::SDIVREM_I64] = 0;
- Names[RTLIB::SDIVREM_I128] = 0;
- Names[RTLIB::UDIVREM_I8] = 0;
- Names[RTLIB::UDIVREM_I16] = 0;
- Names[RTLIB::UDIVREM_I32] = 0;
- Names[RTLIB::UDIVREM_I64] = 0;
- Names[RTLIB::UDIVREM_I128] = 0;
-
- Names[RTLIB::NEG_I32] = "__negsi2";
- Names[RTLIB::NEG_I64] = "__negdi2";
- Names[RTLIB::ADD_F32] = "__addsf3";
- Names[RTLIB::ADD_F64] = "__adddf3";
- Names[RTLIB::ADD_F80] = "__addxf3";
- Names[RTLIB::ADD_F128] = "__addtf3";
- Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
- Names[RTLIB::SUB_F32] = "__subsf3";
- Names[RTLIB::SUB_F64] = "__subdf3";
- Names[RTLIB::SUB_F80] = "__subxf3";
- Names[RTLIB::SUB_F128] = "__subtf3";
- Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
- Names[RTLIB::MUL_F32] = "__mulsf3";
- Names[RTLIB::MUL_F64] = "__muldf3";
- Names[RTLIB::MUL_F80] = "__mulxf3";
- Names[RTLIB::MUL_F128] = "__multf3";
- Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
- Names[RTLIB::DIV_F32] = "__divsf3";
- Names[RTLIB::DIV_F64] = "__divdf3";
- Names[RTLIB::DIV_F80] = "__divxf3";
- Names[RTLIB::DIV_F128] = "__divtf3";
- Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
- Names[RTLIB::REM_F32] = "fmodf";
- Names[RTLIB::REM_F64] = "fmod";
- Names[RTLIB::REM_F80] = "fmodl";
- Names[RTLIB::REM_F128] = "fmodl";
- Names[RTLIB::REM_PPCF128] = "fmodl";
- Names[RTLIB::FMA_F32] = "fmaf";
- Names[RTLIB::FMA_F64] = "fma";
- Names[RTLIB::FMA_F80] = "fmal";
- Names[RTLIB::FMA_F128] = "fmal";
- Names[RTLIB::FMA_PPCF128] = "fmal";
- Names[RTLIB::POWI_F32] = "__powisf2";
- Names[RTLIB::POWI_F64] = "__powidf2";
- Names[RTLIB::POWI_F80] = "__powixf2";
- Names[RTLIB::POWI_F128] = "__powitf2";
- Names[RTLIB::POWI_PPCF128] = "__powitf2";
- Names[RTLIB::SQRT_F32] = "sqrtf";
- Names[RTLIB::SQRT_F64] = "sqrt";
- Names[RTLIB::SQRT_F80] = "sqrtl";
- Names[RTLIB::SQRT_F128] = "sqrtl";
- Names[RTLIB::SQRT_PPCF128] = "sqrtl";
- Names[RTLIB::LOG_F32] = "logf";
- Names[RTLIB::LOG_F64] = "log";
- Names[RTLIB::LOG_F80] = "logl";
- Names[RTLIB::LOG_F128] = "logl";
- Names[RTLIB::LOG_PPCF128] = "logl";
- Names[RTLIB::LOG2_F32] = "log2f";
- Names[RTLIB::LOG2_F64] = "log2";
- Names[RTLIB::LOG2_F80] = "log2l";
- Names[RTLIB::LOG2_F128] = "log2l";
- Names[RTLIB::LOG2_PPCF128] = "log2l";
- Names[RTLIB::LOG10_F32] = "log10f";
- Names[RTLIB::LOG10_F64] = "log10";
- Names[RTLIB::LOG10_F80] = "log10l";
- Names[RTLIB::LOG10_F128] = "log10l";
- Names[RTLIB::LOG10_PPCF128] = "log10l";
- Names[RTLIB::EXP_F32] = "expf";
- Names[RTLIB::EXP_F64] = "exp";
- Names[RTLIB::EXP_F80] = "expl";
- Names[RTLIB::EXP_F128] = "expl";
- Names[RTLIB::EXP_PPCF128] = "expl";
- Names[RTLIB::EXP2_F32] = "exp2f";
- Names[RTLIB::EXP2_F64] = "exp2";
- Names[RTLIB::EXP2_F80] = "exp2l";
- Names[RTLIB::EXP2_F128] = "exp2l";
- Names[RTLIB::EXP2_PPCF128] = "exp2l";
- Names[RTLIB::SIN_F32] = "sinf";
- Names[RTLIB::SIN_F64] = "sin";
- Names[RTLIB::SIN_F80] = "sinl";
- Names[RTLIB::SIN_F128] = "sinl";
- Names[RTLIB::SIN_PPCF128] = "sinl";
- Names[RTLIB::COS_F32] = "cosf";
- Names[RTLIB::COS_F64] = "cos";
- Names[RTLIB::COS_F80] = "cosl";
- Names[RTLIB::COS_F128] = "cosl";
- Names[RTLIB::COS_PPCF128] = "cosl";
- Names[RTLIB::POW_F32] = "powf";
- Names[RTLIB::POW_F64] = "pow";
- Names[RTLIB::POW_F80] = "powl";
- Names[RTLIB::POW_F128] = "powl";
- Names[RTLIB::POW_PPCF128] = "powl";
- Names[RTLIB::CEIL_F32] = "ceilf";
- Names[RTLIB::CEIL_F64] = "ceil";
- Names[RTLIB::CEIL_F80] = "ceill";
- Names[RTLIB::CEIL_F128] = "ceill";
- Names[RTLIB::CEIL_PPCF128] = "ceill";
- Names[RTLIB::TRUNC_F32] = "truncf";
- Names[RTLIB::TRUNC_F64] = "trunc";
- Names[RTLIB::TRUNC_F80] = "truncl";
- Names[RTLIB::TRUNC_F128] = "truncl";
- Names[RTLIB::TRUNC_PPCF128] = "truncl";
- Names[RTLIB::RINT_F32] = "rintf";
- Names[RTLIB::RINT_F64] = "rint";
- Names[RTLIB::RINT_F80] = "rintl";
- Names[RTLIB::RINT_F128] = "rintl";
- Names[RTLIB::RINT_PPCF128] = "rintl";
- Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
- Names[RTLIB::NEARBYINT_F64] = "nearbyint";
- Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
- Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
- Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
- Names[RTLIB::FLOOR_F32] = "floorf";
- Names[RTLIB::FLOOR_F64] = "floor";
- Names[RTLIB::FLOOR_F80] = "floorl";
- Names[RTLIB::FLOOR_F128] = "floorl";
- Names[RTLIB::FLOOR_PPCF128] = "floorl";
- Names[RTLIB::COPYSIGN_F32] = "copysignf";
- Names[RTLIB::COPYSIGN_F64] = "copysign";
- Names[RTLIB::COPYSIGN_F80] = "copysignl";
- Names[RTLIB::COPYSIGN_F128] = "copysignl";
- Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
- Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
- Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
- Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
- Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
- Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
- Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
- Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
- Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
- Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
- Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
- Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
- Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
- Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
- Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
- Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
- Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
- Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
- Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
- Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
- Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
- Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
- Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
- Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
- Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
- Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
- Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
- Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
- Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
- Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
- Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
- Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
- Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
- Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
- Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
- Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
- Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
- Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
- Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
- Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
- Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
- Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
- Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
- Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
- Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
- Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
- Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
- Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
- Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
- Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
- Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
- Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
- Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
- Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
- Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
- Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
- Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
- Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
- Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
- Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
- Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
- Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
- Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
- Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
- Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
- Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
- Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
- Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
- Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
- Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
- Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
- Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
- Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
- Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
- Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
- Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
- Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
- Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
- Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
- Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
- Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
- Names[RTLIB::OEQ_F32] = "__eqsf2";
- Names[RTLIB::OEQ_F64] = "__eqdf2";
- Names[RTLIB::OEQ_F128] = "__eqtf2";
- Names[RTLIB::UNE_F32] = "__nesf2";
- Names[RTLIB::UNE_F64] = "__nedf2";
- Names[RTLIB::UNE_F128] = "__netf2";
- Names[RTLIB::OGE_F32] = "__gesf2";
- Names[RTLIB::OGE_F64] = "__gedf2";
- Names[RTLIB::OGE_F128] = "__getf2";
- Names[RTLIB::OLT_F32] = "__ltsf2";
- Names[RTLIB::OLT_F64] = "__ltdf2";
- Names[RTLIB::OLT_F128] = "__lttf2";
- Names[RTLIB::OLE_F32] = "__lesf2";
- Names[RTLIB::OLE_F64] = "__ledf2";
- Names[RTLIB::OLE_F128] = "__letf2";
- Names[RTLIB::OGT_F32] = "__gtsf2";
- Names[RTLIB::OGT_F64] = "__gtdf2";
- Names[RTLIB::OGT_F128] = "__gttf2";
- Names[RTLIB::UO_F32] = "__unordsf2";
- Names[RTLIB::UO_F64] = "__unorddf2";
- Names[RTLIB::UO_F128] = "__unordtf2";
- Names[RTLIB::O_F32] = "__unordsf2";
- Names[RTLIB::O_F64] = "__unorddf2";
- Names[RTLIB::O_F128] = "__unordtf2";
- Names[RTLIB::MEMCPY] = "memcpy";
- Names[RTLIB::MEMMOVE] = "memmove";
- Names[RTLIB::MEMSET] = "memset";
- Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
- Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
- Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
- Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
- Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
- Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
- Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
- Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
- Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
- Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
- Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
- Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
- Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
- Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
- Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
- Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
- Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
- Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
- Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
- Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
- Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
- Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
- Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
- Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
- Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
- Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
- Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
- Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
- Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
- Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
- Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
- Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
- Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
-}
-
-/// InitLibcallCallingConvs - Set default libcall CallingConvs.
-///
-static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
- for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
- CCs[i] = CallingConv::C;
- }
-}
-
/// getFPEXT - Return the FPEXT_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
@@ -571,447 +253,15 @@ RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
return UNKNOWN_LIBCALL;
}
-/// InitCmpLibcallCCs - Set default comparison libcall CC.
-///
-static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
- memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
- CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
- CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
- CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
- CCs[RTLIB::UNE_F32] = ISD::SETNE;
- CCs[RTLIB::UNE_F64] = ISD::SETNE;
- CCs[RTLIB::UNE_F128] = ISD::SETNE;
- CCs[RTLIB::OGE_F32] = ISD::SETGE;
- CCs[RTLIB::OGE_F64] = ISD::SETGE;
- CCs[RTLIB::OGE_F128] = ISD::SETGE;
- CCs[RTLIB::OLT_F32] = ISD::SETLT;
- CCs[RTLIB::OLT_F64] = ISD::SETLT;
- CCs[RTLIB::OLT_F128] = ISD::SETLT;
- CCs[RTLIB::OLE_F32] = ISD::SETLE;
- CCs[RTLIB::OLE_F64] = ISD::SETLE;
- CCs[RTLIB::OLE_F128] = ISD::SETLE;
- CCs[RTLIB::OGT_F32] = ISD::SETGT;
- CCs[RTLIB::OGT_F64] = ISD::SETGT;
- CCs[RTLIB::OGT_F128] = ISD::SETGT;
- CCs[RTLIB::UO_F32] = ISD::SETNE;
- CCs[RTLIB::UO_F64] = ISD::SETNE;
- CCs[RTLIB::UO_F128] = ISD::SETNE;
- CCs[RTLIB::O_F32] = ISD::SETEQ;
- CCs[RTLIB::O_F64] = ISD::SETEQ;
- CCs[RTLIB::O_F128] = ISD::SETEQ;
-}
-
/// NOTE: The constructor takes ownership of TLOF.
TargetLowering::TargetLowering(const TargetMachine &tm,
const TargetLoweringObjectFile *tlof)
- : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) {
- // All operations default to being supported.
- memset(OpActions, 0, sizeof(OpActions));
- memset(LoadExtActions, 0, sizeof(LoadExtActions));
- memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
- memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
- memset(CondCodeActions, 0, sizeof(CondCodeActions));
-
- // Set default actions for various operations.
- for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
- // Default all indexed load / store to expand.
- for (unsigned IM = (unsigned)ISD::PRE_INC;
- IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
- setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
- setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
- }
-
- // These operations default to expand.
- setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
- setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
- }
-
- // Most targets ignore the @llvm.prefetch intrinsic.
- setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
-
- // ConstantFP nodes default to expand. Targets can either change this to
- // Legal, in which case all fp constants are legal, or use isFPImmLegal()
- // to optimize expansions for certain constants.
- setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
- setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
- setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
- setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
- setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
-
- // These library functions default to expand.
- setOperationAction(ISD::FLOG , MVT::f16, Expand);
- setOperationAction(ISD::FLOG2, MVT::f16, Expand);
- setOperationAction(ISD::FLOG10, MVT::f16, Expand);
- setOperationAction(ISD::FEXP , MVT::f16, Expand);
- setOperationAction(ISD::FEXP2, MVT::f16, Expand);
- setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
- setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
- setOperationAction(ISD::FCEIL, MVT::f16, Expand);
- setOperationAction(ISD::FRINT, MVT::f16, Expand);
- setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
- setOperationAction(ISD::FLOG , MVT::f32, Expand);
- setOperationAction(ISD::FLOG2, MVT::f32, Expand);
- setOperationAction(ISD::FLOG10, MVT::f32, Expand);
- setOperationAction(ISD::FEXP , MVT::f32, Expand);
- setOperationAction(ISD::FEXP2, MVT::f32, Expand);
- setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
- setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
- setOperationAction(ISD::FCEIL, MVT::f32, Expand);
- setOperationAction(ISD::FRINT, MVT::f32, Expand);
- setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
- setOperationAction(ISD::FLOG , MVT::f64, Expand);
- setOperationAction(ISD::FLOG2, MVT::f64, Expand);
- setOperationAction(ISD::FLOG10, MVT::f64, Expand);
- setOperationAction(ISD::FEXP , MVT::f64, Expand);
- setOperationAction(ISD::FEXP2, MVT::f64, Expand);
- setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
- setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
- setOperationAction(ISD::FCEIL, MVT::f64, Expand);
- setOperationAction(ISD::FRINT, MVT::f64, Expand);
- setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
- setOperationAction(ISD::FLOG , MVT::f128, Expand);
- setOperationAction(ISD::FLOG2, MVT::f128, Expand);
- setOperationAction(ISD::FLOG10, MVT::f128, Expand);
- setOperationAction(ISD::FEXP , MVT::f128, Expand);
- setOperationAction(ISD::FEXP2, MVT::f128, Expand);
- setOperationAction(ISD::FFLOOR, MVT::f128, Expand);
- setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand);
- setOperationAction(ISD::FCEIL, MVT::f128, Expand);
- setOperationAction(ISD::FRINT, MVT::f128, Expand);
- setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
-
- // Default ISD::TRAP to expand (which turns it into abort).
- setOperationAction(ISD::TRAP, MVT::Other, Expand);
-
- // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
- // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
- //
- setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
-
- IsLittleEndian = TD->isLittleEndian();
- PointerTy = MVT::getIntegerVT(8*TD->getPointerSize(0));
- memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
- memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
- maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
- maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
- = maxStoresPerMemmoveOptSize = 4;
- benefitFromCodePlacementOpt = false;
- UseUnderscoreSetJmp = false;
- UseUnderscoreLongJmp = false;
- SelectIsExpensive = false;
- IntDivIsCheap = false;
- Pow2DivIsCheap = false;
- JumpIsExpensive = false;
- predictableSelectIsExpensive = false;
- StackPointerRegisterToSaveRestore = 0;
- ExceptionPointerRegister = 0;
- ExceptionSelectorRegister = 0;
- BooleanContents = UndefinedBooleanContent;
- BooleanVectorContents = UndefinedBooleanContent;
- SchedPreferenceInfo = Sched::ILP;
- JumpBufSize = 0;
- JumpBufAlignment = 0;
- MinFunctionAlignment = 0;
- PrefFunctionAlignment = 0;
- PrefLoopAlignment = 0;
- MinStackArgumentAlignment = 1;
- ShouldFoldAtomicFences = false;
- InsertFencesForAtomic = false;
- SupportJumpTables = true;
- MinimumJumpTableEntries = 4;
-
- InitLibcallNames(LibcallRoutineNames);
- InitCmpLibcallCCs(CmpLibcallCCs);
- InitLibcallCallingConvs(LibcallCallingConvs);
-}
-
-TargetLowering::~TargetLowering() {
- delete &TLOF;
-}
-
-MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
- return MVT::getIntegerVT(8*TD->getPointerSize(0));
-}
-
-/// canOpTrap - Returns true if the operation can trap for the value type.
-/// VT must be a legal type.
-bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
- assert(isTypeLegal(VT));
- switch (Op) {
- default:
- return false;
- case ISD::FDIV:
- case ISD::FREM:
- case ISD::SDIV:
- case ISD::UDIV:
- case ISD::SREM:
- case ISD::UREM:
- return true;
- }
-}
-
-
-static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
- unsigned &NumIntermediates,
- MVT &RegisterVT,
- TargetLowering *TLI) {
- // Figure out the right, legal destination reg to copy into.
- unsigned NumElts = VT.getVectorNumElements();
- MVT EltTy = VT.getVectorElementType();
-
- unsigned NumVectorRegs = 1;
-
- // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
- // could break down into LHS/RHS like LegalizeDAG does.
- if (!isPowerOf2_32(NumElts)) {
- NumVectorRegs = NumElts;
- NumElts = 1;
- }
-
- // Divide the input until we get to a supported size. This will always
- // end with a scalar if the target doesn't support vectors.
- while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
- NumElts >>= 1;
- NumVectorRegs <<= 1;
- }
-
- NumIntermediates = NumVectorRegs;
-
- MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
- if (!TLI->isTypeLegal(NewVT))
- NewVT = EltTy;
- IntermediateVT = NewVT;
-
- unsigned NewVTSize = NewVT.getSizeInBits();
-
- // Convert sizes such as i33 to i64.
- if (!isPowerOf2_32(NewVTSize))
- NewVTSize = NextPowerOf2(NewVTSize);
-
- MVT DestVT = TLI->getRegisterType(NewVT);
- RegisterVT = DestVT;
- if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
- return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
-
- // Otherwise, promotion or legal types use the same number of registers as
- // the vector decimated to the appropriate level.
- return NumVectorRegs;
-}
-
-/// isLegalRC - Return true if the value types that can be represented by the
-/// specified register class are all legal.
-bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
- for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
- I != E; ++I) {
- if (isTypeLegal(*I))
- return true;
- }
- return false;
-}
-
-/// findRepresentativeClass - Return the largest legal super-reg register class
-/// of the register class for the specified type and its associated "cost".
-std::pair<const TargetRegisterClass*, uint8_t>
-TargetLowering::findRepresentativeClass(MVT VT) const {
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
- const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
- if (!RC)
- return std::make_pair(RC, 0);
-
- // Compute the set of all super-register classes.
- BitVector SuperRegRC(TRI->getNumRegClasses());
- for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
- SuperRegRC.setBitsInMask(RCI.getMask());
-
- // Find the first legal register class with the largest spill size.
- const TargetRegisterClass *BestRC = RC;
- for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
- const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
- // We want the largest possible spill size.
- if (SuperRC->getSize() <= BestRC->getSize())
- continue;
- if (!isLegalRC(SuperRC))
- continue;
- BestRC = SuperRC;
- }
- return std::make_pair(BestRC, 1);
-}
-
-/// computeRegisterProperties - Once all of the register classes are added,
-/// this allows us to compute derived properties we expose.
-void TargetLowering::computeRegisterProperties() {
- assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
- "Too many value types for ValueTypeActions to hold!");
-
- // Everything defaults to needing one register.
- for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
- NumRegistersForVT[i] = 1;
- RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
- }
- // ...except isVoid, which doesn't need any registers.
- NumRegistersForVT[MVT::isVoid] = 0;
-
- // Find the largest integer register class.
- unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
- for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
- assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
-
- // Every integer value type larger than this largest register takes twice as
- // many registers to represent as the previous ValueType.
- for (unsigned ExpandedReg = LargestIntReg + 1;
- ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
- NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
- RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
- TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
- ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
- TypeExpandInteger);
- }
-
- // Inspect all of the ValueType's smaller than the largest integer
- // register to see which ones need promotion.
- unsigned LegalIntReg = LargestIntReg;
- for (unsigned IntReg = LargestIntReg - 1;
- IntReg >= (unsigned)MVT::i1; --IntReg) {
- MVT IVT = (MVT::SimpleValueType)IntReg;
- if (isTypeLegal(IVT)) {
- LegalIntReg = IntReg;
- } else {
- RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
- (const MVT::SimpleValueType)LegalIntReg;
- ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
- }
- }
-
- // ppcf128 type is really two f64's.
- if (!isTypeLegal(MVT::ppcf128)) {
- NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
- RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
- TransformToType[MVT::ppcf128] = MVT::f64;
- ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
- }
-
- // Decide how to handle f64. If the target does not have native f64 support,
- // expand it to i64 and we will be generating soft float library calls.
- if (!isTypeLegal(MVT::f64)) {
- NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
- RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
- TransformToType[MVT::f64] = MVT::i64;
- ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
- }
-
- // Decide how to handle f32. If the target does not have native support for
- // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
- if (!isTypeLegal(MVT::f32)) {
- if (isTypeLegal(MVT::f64)) {
- NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
- RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
- TransformToType[MVT::f32] = MVT::f64;
- ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
- } else {
- NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
- RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
- TransformToType[MVT::f32] = MVT::i32;
- ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
- }
- }
-
- // Loop over all of the vector value types to see which need transformations.
- for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
- i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
- MVT VT = (MVT::SimpleValueType)i;
- if (isTypeLegal(VT)) continue;
-
- // Determine if there is a legal wider type. If so, we should promote to
- // that wider vector type.
- MVT EltVT = VT.getVectorElementType();
- unsigned NElts = VT.getVectorNumElements();
- if (NElts != 1 && !shouldSplitVectorElementType(EltVT)) {
- bool IsLegalWiderType = false;
- // First try to promote the elements of integer vectors. If no legal
- // promotion was found, fallback to the widen-vector method.
- for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
- MVT SVT = (MVT::SimpleValueType)nVT;
- // Promote vectors of integers to vectors with the same number
- // of elements, with a wider element type.
- if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
- && SVT.getVectorNumElements() == NElts &&
- isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
- TransformToType[i] = SVT;
- RegisterTypeForVT[i] = SVT;
- NumRegistersForVT[i] = 1;
- ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
- IsLegalWiderType = true;
- break;
- }
- }
-
- if (IsLegalWiderType) continue;
-
- // Try to widen the vector.
- for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
- MVT SVT = (MVT::SimpleValueType)nVT;
- if (SVT.getVectorElementType() == EltVT &&
- SVT.getVectorNumElements() > NElts &&
- isTypeLegal(SVT)) {
- TransformToType[i] = SVT;
- RegisterTypeForVT[i] = SVT;
- NumRegistersForVT[i] = 1;
- ValueTypeActions.setTypeAction(VT, TypeWidenVector);
- IsLegalWiderType = true;
- break;
- }
- }
- if (IsLegalWiderType) continue;
- }
-
- MVT IntermediateVT;
- MVT RegisterVT;
- unsigned NumIntermediates;
- NumRegistersForVT[i] =
- getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
- RegisterVT, this);
- RegisterTypeForVT[i] = RegisterVT;
-
- MVT NVT = VT.getPow2VectorType();
- if (NVT == VT) {
- // Type is already a power of 2. The default action is to split.
- TransformToType[i] = MVT::Other;
- unsigned NumElts = VT.getVectorNumElements();
- ValueTypeActions.setTypeAction(VT,
- NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
- } else {
- TransformToType[i] = NVT;
- ValueTypeActions.setTypeAction(VT, TypeWidenVector);
- }
- }
-
- // Determine the 'representative' register class for each value type.
- // An representative register class is the largest (meaning one which is
- // not a sub-register class / subreg register class) legal register class for
- // a group of value types. For example, on i386, i8, i16, and i32
- // representative would be GR32; while on x86_64 it's GR64.
- for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
- const TargetRegisterClass* RRC;
- uint8_t Cost;
- tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i);
- RepRegClassForVT[i] = RRC;
- RepRegClassCostForVT[i] = Cost;
- }
-}
+ : TargetLoweringBase(tm, tlof) {}
const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
return NULL;
}
-EVT TargetLowering::getSetCCResultType(EVT VT) const {
- assert(!VT.isVector() && "No default SetCC type for vectors!");
- return getPointerTy(0).SimpleTy;
-}
-
-MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
- return MVT::i32; // return the default value
-}
-
/// Check whether a given call node is in tail position within its function. If
/// so, it sets Chain to the input chain of the tail call.
bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
@@ -1167,80 +417,6 @@ void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
}
}
-/// getVectorTypeBreakdown - Vector types are broken down into some number of
-/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
-/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
-/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
-///
-/// This method returns the number of registers needed, and the VT for each
-/// register. It also returns the VT and quantity of the intermediate values
-/// before they are promoted/expanded.
-///
-unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
- EVT &IntermediateVT,
- unsigned &NumIntermediates,
- MVT &RegisterVT) const {
- unsigned NumElts = VT.getVectorNumElements();
-
- // If there is a wider vector type with the same element type as this one,
- // or a promoted vector type that has the same number of elements which
- // are wider, then we should convert to that legal vector type.
- // This handles things like <2 x float> -> <4 x float> and
- // <4 x i1> -> <4 x i32>.
- LegalizeTypeAction TA = getTypeAction(Context, VT);
- if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
- EVT RegisterEVT = getTypeToTransformTo(Context, VT);
- if (isTypeLegal(RegisterEVT)) {
- IntermediateVT = RegisterEVT;
- RegisterVT = RegisterEVT.getSimpleVT();
- NumIntermediates = 1;
- return 1;
- }
- }
-
- // Figure out the right, legal destination reg to copy into.
- EVT EltTy = VT.getVectorElementType();
-
- unsigned NumVectorRegs = 1;
-
- // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
- // could break down into LHS/RHS like LegalizeDAG does.
- if (!isPowerOf2_32(NumElts)) {
- NumVectorRegs = NumElts;
- NumElts = 1;
- }
-
- // Divide the input until we get to a supported size. This will always
- // end with a scalar if the target doesn't support vectors.
- while (NumElts > 1 && !isTypeLegal(
- EVT::getVectorVT(Context, EltTy, NumElts))) {
- NumElts >>= 1;
- NumVectorRegs <<= 1;
- }
-
- NumIntermediates = NumVectorRegs;
-
- EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
- if (!isTypeLegal(NewVT))
- NewVT = EltTy;
- IntermediateVT = NewVT;
-
- MVT DestVT = getRegisterType(Context, NewVT);
- RegisterVT = DestVT;
- unsigned NewVTSize = NewVT.getSizeInBits();
-
- // Convert sizes such as i33 to i64.
- if (!isPowerOf2_32(NewVTSize))
- NewVTSize = NextPowerOf2(NewVTSize);
-
- if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
- return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
-
- // Otherwise, promotion or legal types use the same number of registers as
- // the vector decimated to the appropriate level.
- return NumVectorRegs;
-}
-
/// Get the EVTs and ArgFlags collections that represent the legalized return
/// type of the given function. This does not require a DAG or a return value,
/// and is suitable for use before any DAGs for the function are constructed.
@@ -1291,13 +467,6 @@ void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
}
}
-/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
-/// function arguments in the caller parameter area. This is the actual
-/// alignment, not its logarithm.
-unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const {
- return TD->getCallFrameTypeAlignment(Ty);
-}
-
/// getJumpTableEncoding - Return the entry encoding for a jump table in the
/// current function. The returned value is a member of the
/// MachineJumpTableInfo::JTEntryKind enum.
@@ -1354,103 +523,6 @@ TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
}
//===----------------------------------------------------------------------===//
-// TargetTransformInfo Helpers
-//===----------------------------------------------------------------------===//
-
-int TargetLowering::InstructionOpcodeToISD(unsigned Opcode) const {
- enum InstructionOpcodes {
-#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
-#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
-#include "llvm/IR/Instruction.def"
- };
- switch (static_cast<InstructionOpcodes>(Opcode)) {
- case Ret: return 0;
- case Br: return 0;
- case Switch: return 0;
- case IndirectBr: return 0;
- case Invoke: return 0;
- case Resume: return 0;
- case Unreachable: return 0;