diff options
author | Benjamin Kramer <benny.kra@googlemail.com> | 2013-01-11 20:05:37 +0000 |
---|---|---|
committer | Benjamin Kramer <benny.kra@googlemail.com> | 2013-01-11 20:05:37 +0000 |
commit | 69e42dbd006c0afb732067ece7327988b1e24c01 (patch) | |
tree | 15eda209bdbedb97aed6f16286c25e7d845f4432 /lib/CodeGen/SelectionDAG/TargetLowering.cpp | |
parent | 3e40d927a775994d8f4c2d30695be69c248fa16c (diff) |
Split TargetLowering into a CodeGen and a SelectionDAG part.
This fixes some of the cycles between libCodeGen and libSelectionDAG. It's still
a complete mess but as long as the edges consist of virtual call it doesn't
cause breakage. BasicTTI did static calls and thus broke some build
configurations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172246 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/SelectionDAG/TargetLowering.cpp')
-rw-r--r-- | lib/CodeGen/SelectionDAG/TargetLowering.cpp | 976 |
1 files changed, 5 insertions, 971 deletions
diff --git a/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/lib/CodeGen/SelectionDAG/TargetLowering.cpp index 35a11b40ca..2e248e9451 100644 --- a/lib/CodeGen/SelectionDAG/TargetLowering.cpp +++ b/lib/CodeGen/SelectionDAG/TargetLowering.cpp @@ -33,324 +33,6 @@ #include <cctype> using namespace llvm; -/// InitLibcallNames - Set default libcall names. -/// -static void InitLibcallNames(const char **Names) { - Names[RTLIB::SHL_I16] = "__ashlhi3"; - Names[RTLIB::SHL_I32] = "__ashlsi3"; - Names[RTLIB::SHL_I64] = "__ashldi3"; - Names[RTLIB::SHL_I128] = "__ashlti3"; - Names[RTLIB::SRL_I16] = "__lshrhi3"; - Names[RTLIB::SRL_I32] = "__lshrsi3"; - Names[RTLIB::SRL_I64] = "__lshrdi3"; - Names[RTLIB::SRL_I128] = "__lshrti3"; - Names[RTLIB::SRA_I16] = "__ashrhi3"; - Names[RTLIB::SRA_I32] = "__ashrsi3"; - Names[RTLIB::SRA_I64] = "__ashrdi3"; - Names[RTLIB::SRA_I128] = "__ashrti3"; - Names[RTLIB::MUL_I8] = "__mulqi3"; - Names[RTLIB::MUL_I16] = "__mulhi3"; - Names[RTLIB::MUL_I32] = "__mulsi3"; - Names[RTLIB::MUL_I64] = "__muldi3"; - Names[RTLIB::MUL_I128] = "__multi3"; - Names[RTLIB::MULO_I32] = "__mulosi4"; - Names[RTLIB::MULO_I64] = "__mulodi4"; - Names[RTLIB::MULO_I128] = "__muloti4"; - Names[RTLIB::SDIV_I8] = "__divqi3"; - Names[RTLIB::SDIV_I16] = "__divhi3"; - Names[RTLIB::SDIV_I32] = "__divsi3"; - Names[RTLIB::SDIV_I64] = "__divdi3"; - Names[RTLIB::SDIV_I128] = "__divti3"; - Names[RTLIB::UDIV_I8] = "__udivqi3"; - Names[RTLIB::UDIV_I16] = "__udivhi3"; - Names[RTLIB::UDIV_I32] = "__udivsi3"; - Names[RTLIB::UDIV_I64] = "__udivdi3"; - Names[RTLIB::UDIV_I128] = "__udivti3"; - Names[RTLIB::SREM_I8] = "__modqi3"; - Names[RTLIB::SREM_I16] = "__modhi3"; - Names[RTLIB::SREM_I32] = "__modsi3"; - Names[RTLIB::SREM_I64] = "__moddi3"; - Names[RTLIB::SREM_I128] = "__modti3"; - Names[RTLIB::UREM_I8] = "__umodqi3"; - Names[RTLIB::UREM_I16] = "__umodhi3"; - Names[RTLIB::UREM_I32] = "__umodsi3"; - Names[RTLIB::UREM_I64] = "__umoddi3"; - Names[RTLIB::UREM_I128] = "__umodti3"; - - // These are generally not available. - Names[RTLIB::SDIVREM_I8] = 0; - Names[RTLIB::SDIVREM_I16] = 0; - Names[RTLIB::SDIVREM_I32] = 0; - Names[RTLIB::SDIVREM_I64] = 0; - Names[RTLIB::SDIVREM_I128] = 0; - Names[RTLIB::UDIVREM_I8] = 0; - Names[RTLIB::UDIVREM_I16] = 0; - Names[RTLIB::UDIVREM_I32] = 0; - Names[RTLIB::UDIVREM_I64] = 0; - Names[RTLIB::UDIVREM_I128] = 0; - - Names[RTLIB::NEG_I32] = "__negsi2"; - Names[RTLIB::NEG_I64] = "__negdi2"; - Names[RTLIB::ADD_F32] = "__addsf3"; - Names[RTLIB::ADD_F64] = "__adddf3"; - Names[RTLIB::ADD_F80] = "__addxf3"; - Names[RTLIB::ADD_F128] = "__addtf3"; - Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; - Names[RTLIB::SUB_F32] = "__subsf3"; - Names[RTLIB::SUB_F64] = "__subdf3"; - Names[RTLIB::SUB_F80] = "__subxf3"; - Names[RTLIB::SUB_F128] = "__subtf3"; - Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; - Names[RTLIB::MUL_F32] = "__mulsf3"; - Names[RTLIB::MUL_F64] = "__muldf3"; - Names[RTLIB::MUL_F80] = "__mulxf3"; - Names[RTLIB::MUL_F128] = "__multf3"; - Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; - Names[RTLIB::DIV_F32] = "__divsf3"; - Names[RTLIB::DIV_F64] = "__divdf3"; - Names[RTLIB::DIV_F80] = "__divxf3"; - Names[RTLIB::DIV_F128] = "__divtf3"; - Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; - Names[RTLIB::REM_F32] = "fmodf"; - Names[RTLIB::REM_F64] = "fmod"; - Names[RTLIB::REM_F80] = "fmodl"; - Names[RTLIB::REM_F128] = "fmodl"; - Names[RTLIB::REM_PPCF128] = "fmodl"; - Names[RTLIB::FMA_F32] = "fmaf"; - Names[RTLIB::FMA_F64] = "fma"; - Names[RTLIB::FMA_F80] = "fmal"; - Names[RTLIB::FMA_F128] = "fmal"; - Names[RTLIB::FMA_PPCF128] = "fmal"; - Names[RTLIB::POWI_F32] = "__powisf2"; - Names[RTLIB::POWI_F64] = "__powidf2"; - Names[RTLIB::POWI_F80] = "__powixf2"; - Names[RTLIB::POWI_F128] = "__powitf2"; - Names[RTLIB::POWI_PPCF128] = "__powitf2"; - Names[RTLIB::SQRT_F32] = "sqrtf"; - Names[RTLIB::SQRT_F64] = "sqrt"; - Names[RTLIB::SQRT_F80] = "sqrtl"; - Names[RTLIB::SQRT_F128] = "sqrtl"; - Names[RTLIB::SQRT_PPCF128] = "sqrtl"; - Names[RTLIB::LOG_F32] = "logf"; - Names[RTLIB::LOG_F64] = "log"; - Names[RTLIB::LOG_F80] = "logl"; - Names[RTLIB::LOG_F128] = "logl"; - Names[RTLIB::LOG_PPCF128] = "logl"; - Names[RTLIB::LOG2_F32] = "log2f"; - Names[RTLIB::LOG2_F64] = "log2"; - Names[RTLIB::LOG2_F80] = "log2l"; - Names[RTLIB::LOG2_F128] = "log2l"; - Names[RTLIB::LOG2_PPCF128] = "log2l"; - Names[RTLIB::LOG10_F32] = "log10f"; - Names[RTLIB::LOG10_F64] = "log10"; - Names[RTLIB::LOG10_F80] = "log10l"; - Names[RTLIB::LOG10_F128] = "log10l"; - Names[RTLIB::LOG10_PPCF128] = "log10l"; - Names[RTLIB::EXP_F32] = "expf"; - Names[RTLIB::EXP_F64] = "exp"; - Names[RTLIB::EXP_F80] = "expl"; - Names[RTLIB::EXP_F128] = "expl"; - Names[RTLIB::EXP_PPCF128] = "expl"; - Names[RTLIB::EXP2_F32] = "exp2f"; - Names[RTLIB::EXP2_F64] = "exp2"; - Names[RTLIB::EXP2_F80] = "exp2l"; - Names[RTLIB::EXP2_F128] = "exp2l"; - Names[RTLIB::EXP2_PPCF128] = "exp2l"; - Names[RTLIB::SIN_F32] = "sinf"; - Names[RTLIB::SIN_F64] = "sin"; - Names[RTLIB::SIN_F80] = "sinl"; - Names[RTLIB::SIN_F128] = "sinl"; - Names[RTLIB::SIN_PPCF128] = "sinl"; - Names[RTLIB::COS_F32] = "cosf"; - Names[RTLIB::COS_F64] = "cos"; - Names[RTLIB::COS_F80] = "cosl"; - Names[RTLIB::COS_F128] = "cosl"; - Names[RTLIB::COS_PPCF128] = "cosl"; - Names[RTLIB::POW_F32] = "powf"; - Names[RTLIB::POW_F64] = "pow"; - Names[RTLIB::POW_F80] = "powl"; - Names[RTLIB::POW_F128] = "powl"; - Names[RTLIB::POW_PPCF128] = "powl"; - Names[RTLIB::CEIL_F32] = "ceilf"; - Names[RTLIB::CEIL_F64] = "ceil"; - Names[RTLIB::CEIL_F80] = "ceill"; - Names[RTLIB::CEIL_F128] = "ceill"; - Names[RTLIB::CEIL_PPCF128] = "ceill"; - Names[RTLIB::TRUNC_F32] = "truncf"; - Names[RTLIB::TRUNC_F64] = "trunc"; - Names[RTLIB::TRUNC_F80] = "truncl"; - Names[RTLIB::TRUNC_F128] = "truncl"; - Names[RTLIB::TRUNC_PPCF128] = "truncl"; - Names[RTLIB::RINT_F32] = "rintf"; - Names[RTLIB::RINT_F64] = "rint"; - Names[RTLIB::RINT_F80] = "rintl"; - Names[RTLIB::RINT_F128] = "rintl"; - Names[RTLIB::RINT_PPCF128] = "rintl"; - Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; - Names[RTLIB::NEARBYINT_F64] = "nearbyint"; - Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; - Names[RTLIB::NEARBYINT_F128] = "nearbyintl"; - Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; - Names[RTLIB::FLOOR_F32] = "floorf"; - Names[RTLIB::FLOOR_F64] = "floor"; - Names[RTLIB::FLOOR_F80] = "floorl"; - Names[RTLIB::FLOOR_F128] = "floorl"; - Names[RTLIB::FLOOR_PPCF128] = "floorl"; - Names[RTLIB::COPYSIGN_F32] = "copysignf"; - Names[RTLIB::COPYSIGN_F64] = "copysign"; - Names[RTLIB::COPYSIGN_F80] = "copysignl"; - Names[RTLIB::COPYSIGN_F128] = "copysignl"; - Names[RTLIB::COPYSIGN_PPCF128] = "copysignl"; - Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2"; - Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2"; - Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; - Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; - Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; - Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; - Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; - Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2"; - Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2"; - Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; - Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2"; - Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2"; - Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi"; - Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi"; - Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; - Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; - Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; - Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi"; - Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi"; - Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; - Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; - Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; - Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; - Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; - Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; - Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi"; - Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi"; - Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti"; - Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi"; - Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; - Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; - Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi"; - Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi"; - Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; - Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; - Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti"; - Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi"; - Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi"; - Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; - Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; - Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti"; - Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; - Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; - Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; - Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi"; - Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi"; - Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti"; - Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; - Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; - Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; - Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; - Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; - Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; - Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf"; - Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf"; - Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; - Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; - Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; - Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf"; - Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; - Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf"; - Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf"; - Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf"; - Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf"; - Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; - Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; - Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; - Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; - Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf"; - Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf"; - Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; - Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; - Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; - Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf"; - Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; - Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; - Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; - Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; - Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf"; - Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; - Names[RTLIB::OEQ_F32] = "__eqsf2"; - Names[RTLIB::OEQ_F64] = "__eqdf2"; - Names[RTLIB::OEQ_F128] = "__eqtf2"; - Names[RTLIB::UNE_F32] = "__nesf2"; - Names[RTLIB::UNE_F64] = "__nedf2"; - Names[RTLIB::UNE_F128] = "__netf2"; - Names[RTLIB::OGE_F32] = "__gesf2"; - Names[RTLIB::OGE_F64] = "__gedf2"; - Names[RTLIB::OGE_F128] = "__getf2"; - Names[RTLIB::OLT_F32] = "__ltsf2"; - Names[RTLIB::OLT_F64] = "__ltdf2"; - Names[RTLIB::OLT_F128] = "__lttf2"; - Names[RTLIB::OLE_F32] = "__lesf2"; - Names[RTLIB::OLE_F64] = "__ledf2"; - Names[RTLIB::OLE_F128] = "__letf2"; - Names[RTLIB::OGT_F32] = "__gtsf2"; - Names[RTLIB::OGT_F64] = "__gtdf2"; - Names[RTLIB::OGT_F128] = "__gttf2"; - Names[RTLIB::UO_F32] = "__unordsf2"; - Names[RTLIB::UO_F64] = "__unorddf2"; - Names[RTLIB::UO_F128] = "__unordtf2"; - Names[RTLIB::O_F32] = "__unordsf2"; - Names[RTLIB::O_F64] = "__unorddf2"; - Names[RTLIB::O_F128] = "__unordtf2"; - Names[RTLIB::MEMCPY] = "memcpy"; - Names[RTLIB::MEMMOVE] = "memmove"; - Names[RTLIB::MEMSET] = "memset"; - Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume"; - Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1"; - Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2"; - Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4"; - Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8"; - Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1"; - Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2"; - Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4"; - Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8"; - Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1"; - Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2"; - Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4"; - Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8"; - Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1"; - Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2"; - Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4"; - Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8"; - Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1"; - Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2"; - Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4"; - Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8"; - Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1"; - Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2"; - Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4"; - Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8"; - Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1"; - Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2"; - Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4"; - Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8"; - Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1"; - Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2"; - Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4"; - Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8"; -} - -/// InitLibcallCallingConvs - Set default libcall CallingConvs. -/// -static void InitLibcallCallingConvs(CallingConv::ID *CCs) { - for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) { - CCs[i] = CallingConv::C; - } -} - /// getFPEXT - Return the FPEXT_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { @@ -571,447 +253,15 @@ RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { return UNKNOWN_LIBCALL; } -/// InitCmpLibcallCCs - Set default comparison libcall CC. -/// -static void InitCmpLibcallCCs(ISD::CondCode *CCs) { - memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); - CCs[RTLIB::OEQ_F32] = ISD::SETEQ; - CCs[RTLIB::OEQ_F64] = ISD::SETEQ; - CCs[RTLIB::OEQ_F128] = ISD::SETEQ; - CCs[RTLIB::UNE_F32] = ISD::SETNE; - CCs[RTLIB::UNE_F64] = ISD::SETNE; - CCs[RTLIB::UNE_F128] = ISD::SETNE; - CCs[RTLIB::OGE_F32] = ISD::SETGE; - CCs[RTLIB::OGE_F64] = ISD::SETGE; - CCs[RTLIB::OGE_F128] = ISD::SETGE; - CCs[RTLIB::OLT_F32] = ISD::SETLT; - CCs[RTLIB::OLT_F64] = ISD::SETLT; - CCs[RTLIB::OLT_F128] = ISD::SETLT; - CCs[RTLIB::OLE_F32] = ISD::SETLE; - CCs[RTLIB::OLE_F64] = ISD::SETLE; - CCs[RTLIB::OLE_F128] = ISD::SETLE; - CCs[RTLIB::OGT_F32] = ISD::SETGT; - CCs[RTLIB::OGT_F64] = ISD::SETGT; - CCs[RTLIB::OGT_F128] = ISD::SETGT; - CCs[RTLIB::UO_F32] = ISD::SETNE; - CCs[RTLIB::UO_F64] = ISD::SETNE; - CCs[RTLIB::UO_F128] = ISD::SETNE; - CCs[RTLIB::O_F32] = ISD::SETEQ; - CCs[RTLIB::O_F64] = ISD::SETEQ; - CCs[RTLIB::O_F128] = ISD::SETEQ; -} - /// NOTE: The constructor takes ownership of TLOF. TargetLowering::TargetLowering(const TargetMachine &tm, const TargetLoweringObjectFile *tlof) - : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) { - // All operations default to being supported. - memset(OpActions, 0, sizeof(OpActions)); - memset(LoadExtActions, 0, sizeof(LoadExtActions)); - memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); - memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); - memset(CondCodeActions, 0, sizeof(CondCodeActions)); - - // Set default actions for various operations. - for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { - // Default all indexed load / store to expand. - for (unsigned IM = (unsigned)ISD::PRE_INC; - IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { - setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand); - setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand); - } - - // These operations default to expand. - setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand); - } - - // Most targets ignore the @llvm.prefetch intrinsic. - setOperationAction(ISD::PREFETCH, MVT::Other, Expand); - - // ConstantFP nodes default to expand. Targets can either change this to - // Legal, in which case all fp constants are legal, or use isFPImmLegal() - // to optimize expansions for certain constants. - setOperationAction(ISD::ConstantFP, MVT::f16, Expand); - setOperationAction(ISD::ConstantFP, MVT::f32, Expand); - setOperationAction(ISD::ConstantFP, MVT::f64, Expand); - setOperationAction(ISD::ConstantFP, MVT::f80, Expand); - setOperationAction(ISD::ConstantFP, MVT::f128, Expand); - - // These library functions default to expand. - setOperationAction(ISD::FLOG , MVT::f16, Expand); - setOperationAction(ISD::FLOG2, MVT::f16, Expand); - setOperationAction(ISD::FLOG10, MVT::f16, Expand); - setOperationAction(ISD::FEXP , MVT::f16, Expand); - setOperationAction(ISD::FEXP2, MVT::f16, Expand); - setOperationAction(ISD::FFLOOR, MVT::f16, Expand); - setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand); - setOperationAction(ISD::FCEIL, MVT::f16, Expand); - setOperationAction(ISD::FRINT, MVT::f16, Expand); - setOperationAction(ISD::FTRUNC, MVT::f16, Expand); - setOperationAction(ISD::FLOG , MVT::f32, Expand); - setOperationAction(ISD::FLOG2, MVT::f32, Expand); - setOperationAction(ISD::FLOG10, MVT::f32, Expand); - setOperationAction(ISD::FEXP , MVT::f32, Expand); - setOperationAction(ISD::FEXP2, MVT::f32, Expand); - setOperationAction(ISD::FFLOOR, MVT::f32, Expand); - setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand); - setOperationAction(ISD::FCEIL, MVT::f32, Expand); - setOperationAction(ISD::FRINT, MVT::f32, Expand); - setOperationAction(ISD::FTRUNC, MVT::f32, Expand); - setOperationAction(ISD::FLOG , MVT::f64, Expand); - setOperationAction(ISD::FLOG2, MVT::f64, Expand); - setOperationAction(ISD::FLOG10, MVT::f64, Expand); - setOperationAction(ISD::FEXP , MVT::f64, Expand); - setOperationAction(ISD::FEXP2, MVT::f64, Expand); - setOperationAction(ISD::FFLOOR, MVT::f64, Expand); - setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand); - setOperationAction(ISD::FCEIL, MVT::f64, Expand); - setOperationAction(ISD::FRINT, MVT::f64, Expand); - setOperationAction(ISD::FTRUNC, MVT::f64, Expand); - setOperationAction(ISD::FLOG , MVT::f128, Expand); - setOperationAction(ISD::FLOG2, MVT::f128, Expand); - setOperationAction(ISD::FLOG10, MVT::f128, Expand); - setOperationAction(ISD::FEXP , MVT::f128, Expand); - setOperationAction(ISD::FEXP2, MVT::f128, Expand); - setOperationAction(ISD::FFLOOR, MVT::f128, Expand); - setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand); - setOperationAction(ISD::FCEIL, MVT::f128, Expand); - setOperationAction(ISD::FRINT, MVT::f128, Expand); - setOperationAction(ISD::FTRUNC, MVT::f128, Expand); - - // Default ISD::TRAP to expand (which turns it into abort). - setOperationAction(ISD::TRAP, MVT::Other, Expand); - - // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" - // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. - // - setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); - - IsLittleEndian = TD->isLittleEndian(); - PointerTy = MVT::getIntegerVT(8*TD->getPointerSize(0)); - memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); - memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); - maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8; - maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize - = maxStoresPerMemmoveOptSize = 4; - benefitFromCodePlacementOpt = false; - UseUnderscoreSetJmp = false; - UseUnderscoreLongJmp = false; - SelectIsExpensive = false; - IntDivIsCheap = false; - Pow2DivIsCheap = false; - JumpIsExpensive = false; - predictableSelectIsExpensive = false; - StackPointerRegisterToSaveRestore = 0; - ExceptionPointerRegister = 0; - ExceptionSelectorRegister = 0; - BooleanContents = UndefinedBooleanContent; - BooleanVectorContents = UndefinedBooleanContent; - SchedPreferenceInfo = Sched::ILP; - JumpBufSize = 0; - JumpBufAlignment = 0; - MinFunctionAlignment = 0; - PrefFunctionAlignment = 0; - PrefLoopAlignment = 0; - MinStackArgumentAlignment = 1; - ShouldFoldAtomicFences = false; - InsertFencesForAtomic = false; - SupportJumpTables = true; - MinimumJumpTableEntries = 4; - - InitLibcallNames(LibcallRoutineNames); - InitCmpLibcallCCs(CmpLibcallCCs); - InitLibcallCallingConvs(LibcallCallingConvs); -} - -TargetLowering::~TargetLowering() { - delete &TLOF; -} - -MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const { - return MVT::getIntegerVT(8*TD->getPointerSize(0)); -} - -/// canOpTrap - Returns true if the operation can trap for the value type. -/// VT must be a legal type. -bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const { - assert(isTypeLegal(VT)); - switch (Op) { - default: - return false; - case ISD::FDIV: - case ISD::FREM: - case ISD::SDIV: - case ISD::UDIV: - case ISD::SREM: - case ISD::UREM: - return true; - } -} - - -static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, - unsigned &NumIntermediates, - MVT &RegisterVT, - TargetLowering *TLI) { - // Figure out the right, legal destination reg to copy into. - unsigned NumElts = VT.getVectorNumElements(); - MVT EltTy = VT.getVectorElementType(); - - unsigned NumVectorRegs = 1; - - // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we - // could break down into LHS/RHS like LegalizeDAG does. - if (!isPowerOf2_32(NumElts)) { - NumVectorRegs = NumElts; - NumElts = 1; - } - - // Divide the input until we get to a supported size. This will always - // end with a scalar if the target doesn't support vectors. - while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { - NumElts >>= 1; - NumVectorRegs <<= 1; - } - - NumIntermediates = NumVectorRegs; - - MVT NewVT = MVT::getVectorVT(EltTy, NumElts); - if (!TLI->isTypeLegal(NewVT)) - NewVT = EltTy; - IntermediateVT = NewVT; - - unsigned NewVTSize = NewVT.getSizeInBits(); - - // Convert sizes such as i33 to i64. - if (!isPowerOf2_32(NewVTSize)) - NewVTSize = NextPowerOf2(NewVTSize); - - MVT DestVT = TLI->getRegisterType(NewVT); - RegisterVT = DestVT; - if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. - return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); - - // Otherwise, promotion or legal types use the same number of registers as - // the vector decimated to the appropriate level. - return NumVectorRegs; -} - -/// isLegalRC - Return true if the value types that can be represented by the -/// specified register class are all legal. -bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const { - for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); - I != E; ++I) { - if (isTypeLegal(*I)) - return true; - } - return false; -} - -/// findRepresentativeClass - Return the largest legal super-reg register class -/// of the register class for the specified type and its associated "cost". -std::pair<const TargetRegisterClass*, uint8_t> -TargetLowering::findRepresentativeClass(MVT VT) const { - const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); - const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; - if (!RC) - return std::make_pair(RC, 0); - - // Compute the set of all super-register classes. - BitVector SuperRegRC(TRI->getNumRegClasses()); - for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) - SuperRegRC.setBitsInMask(RCI.getMask()); - - // Find the first legal register class with the largest spill size. - const TargetRegisterClass *BestRC = RC; - for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) { - const TargetRegisterClass *SuperRC = TRI->getRegClass(i); - // We want the largest possible spill size. - if (SuperRC->getSize() <= BestRC->getSize()) - continue; - if (!isLegalRC(SuperRC)) - continue; - BestRC = SuperRC; - } - return std::make_pair(BestRC, 1); -} - -/// computeRegisterProperties - Once all of the register classes are added, -/// this allows us to compute derived properties we expose. -void TargetLowering::computeRegisterProperties() { - assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE && - "Too many value types for ValueTypeActions to hold!"); - - // Everything defaults to needing one register. - for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { - NumRegistersForVT[i] = 1; - RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; - } - // ...except isVoid, which doesn't need any registers. - NumRegistersForVT[MVT::isVoid] = 0; - - // Find the largest integer register class. - unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; - for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) - assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); - - // Every integer value type larger than this largest register takes twice as - // many registers to represent as the previous ValueType. - for (unsigned ExpandedReg = LargestIntReg + 1; - ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { - NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; - RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; - TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); - ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, - TypeExpandInteger); - } - - // Inspect all of the ValueType's smaller than the largest integer - // register to see which ones need promotion. - unsigned LegalIntReg = LargestIntReg; - for (unsigned IntReg = LargestIntReg - 1; - IntReg >= (unsigned)MVT::i1; --IntReg) { - MVT IVT = (MVT::SimpleValueType)IntReg; - if (isTypeLegal(IVT)) { - LegalIntReg = IntReg; - } else { - RegisterTypeForVT[IntReg] = TransformToType[IntReg] = - (const MVT::SimpleValueType)LegalIntReg; - ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); - } - } - - // ppcf128 type is really two f64's. - if (!isTypeLegal(MVT::ppcf128)) { - NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; - RegisterTypeForVT[MVT::ppcf128] = MVT::f64; - TransformToType[MVT::ppcf128] = MVT::f64; - ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); - } - - // Decide how to handle f64. If the target does not have native f64 support, - // expand it to i64 and we will be generating soft float library calls. - if (!isTypeLegal(MVT::f64)) { - NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; - RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; - TransformToType[MVT::f64] = MVT::i64; - ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); - } - - // Decide how to handle f32. If the target does not have native support for - // f32, promote it to f64 if it is legal. Otherwise, expand it to i32. - if (!isTypeLegal(MVT::f32)) { - if (isTypeLegal(MVT::f64)) { - NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64]; - RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64]; - TransformToType[MVT::f32] = MVT::f64; - ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger); - } else { - NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; - RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; - TransformToType[MVT::f32] = MVT::i32; - ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); - } - } - - // Loop over all of the vector value types to see which need transformations. - for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; - i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { - MVT VT = (MVT::SimpleValueType)i; - if (isTypeLegal(VT)) continue; - - // Determine if there is a legal wider type. If so, we should promote to - // that wider vector type. - MVT EltVT = VT.getVectorElementType(); - unsigned NElts = VT.getVectorNumElements(); - if (NElts != 1 && !shouldSplitVectorElementType(EltVT)) { - bool IsLegalWiderType = false; - // First try to promote the elements of integer vectors. If no legal - // promotion was found, fallback to the widen-vector method. - for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { - MVT SVT = (MVT::SimpleValueType)nVT; - // Promote vectors of integers to vectors with the same number - // of elements, with a wider element type. - if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() - && SVT.getVectorNumElements() == NElts && - isTypeLegal(SVT) && SVT.getScalarType().isInteger()) { - TransformToType[i] = SVT; - RegisterTypeForVT[i] = SVT; - NumRegistersForVT[i] = 1; - ValueTypeActions.setTypeAction(VT, TypePromoteInteger); - IsLegalWiderType = true; - break; - } - } - - if (IsLegalWiderType) continue; - - // Try to widen the vector. - for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { - MVT SVT = (MVT::SimpleValueType)nVT; - if (SVT.getVectorElementType() == EltVT && - SVT.getVectorNumElements() > NElts && - isTypeLegal(SVT)) { - TransformToType[i] = SVT; - RegisterTypeForVT[i] = SVT; - NumRegistersForVT[i] = 1; - ValueTypeActions.setTypeAction(VT, TypeWidenVector); - IsLegalWiderType = true; - break; - } - } - if (IsLegalWiderType) continue; - } - - MVT IntermediateVT; - MVT RegisterVT; - unsigned NumIntermediates; - NumRegistersForVT[i] = - getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates, - RegisterVT, this); - RegisterTypeForVT[i] = RegisterVT; - - MVT NVT = VT.getPow2VectorType(); - if (NVT == VT) { - // Type is already a power of 2. The default action is to split. - TransformToType[i] = MVT::Other; - unsigned NumElts = VT.getVectorNumElements(); - ValueTypeActions.setTypeAction(VT, - NumElts > 1 ? TypeSplitVector : TypeScalarizeVector); - } else { - TransformToType[i] = NVT; - ValueTypeActions.setTypeAction(VT, TypeWidenVector); - } - } - - // Determine the 'representative' register class for each value type. - // An representative register class is the largest (meaning one which is - // not a sub-register class / subreg register class) legal register class for - // a group of value types. For example, on i386, i8, i16, and i32 - // representative would be GR32; while on x86_64 it's GR64. - for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { - const TargetRegisterClass* RRC; - uint8_t Cost; - tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i); - RepRegClassForVT[i] = RRC; - RepRegClassCostForVT[i] = Cost; - } -} + : TargetLoweringBase(tm, tlof) {} const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { return NULL; } -EVT TargetLowering::getSetCCResultType(EVT VT) const { - assert(!VT.isVector() && "No default SetCC type for vectors!"); - return getPointerTy(0).SimpleTy; -} - -MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const { - return MVT::i32; // return the default value -} - /// Check whether a given call node is in tail position within its function. If /// so, it sets Chain to the input chain of the tail call. bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, @@ -1167,80 +417,6 @@ void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, } } -/// getVectorTypeBreakdown - Vector types are broken down into some number of -/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 -/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. -/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. -/// -/// This method returns the number of registers needed, and the VT for each -/// register. It also returns the VT and quantity of the intermediate values -/// before they are promoted/expanded. -/// -unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, - EVT &IntermediateVT, - unsigned &NumIntermediates, - MVT &RegisterVT) const { - unsigned NumElts = VT.getVectorNumElements(); - - // If there is a wider vector type with the same element type as this one, - // or a promoted vector type that has the same number of elements which - // are wider, then we should convert to that legal vector type. - // This handles things like <2 x float> -> <4 x float> and - // <4 x i1> -> <4 x i32>. - LegalizeTypeAction TA = getTypeAction(Context, VT); - if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { - EVT RegisterEVT = getTypeToTransformTo(Context, VT); - if (isTypeLegal(RegisterEVT)) { - IntermediateVT = RegisterEVT; - RegisterVT = RegisterEVT.getSimpleVT(); - NumIntermediates = 1; - return 1; - } - } - - // Figure out the right, legal destination reg to copy into. - EVT EltTy = VT.getVectorElementType(); - - unsigned NumVectorRegs = 1; - - // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we - // could break down into LHS/RHS like LegalizeDAG does. - if (!isPowerOf2_32(NumElts)) { - NumVectorRegs = NumElts; - NumElts = 1; - } - - // Divide the input until we get to a supported size. This will always - // end with a scalar if the target doesn't support vectors. - while (NumElts > 1 && !isTypeLegal( - EVT::getVectorVT(Context, EltTy, NumElts))) { - NumElts >>= 1; - NumVectorRegs <<= 1; - } - - NumIntermediates = NumVectorRegs; - - EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); - if (!isTypeLegal(NewVT)) - NewVT = EltTy; - IntermediateVT = NewVT; - - MVT DestVT = getRegisterType(Context, NewVT); - RegisterVT = DestVT; - unsigned NewVTSize = NewVT.getSizeInBits(); - - // Convert sizes such as i33 to i64. - if (!isPowerOf2_32(NewVTSize)) - NewVTSize = NextPowerOf2(NewVTSize); - - if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. - return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); - - // Otherwise, promotion or legal types use the same number of registers as - // the vector decimated to the appropriate level. - return NumVectorRegs; -} - /// Get the EVTs and ArgFlags collections that represent the legalized return /// type of the given function. This does not require a DAG or a return value, /// and is suitable for use before any DAGs for the function are constructed. @@ -1291,13 +467,6 @@ void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr, } } -/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate -/// function arguments in the caller parameter area. This is the actual -/// alignment, not its logarithm. -unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const { - return TD->getCallFrameTypeAlignment(Ty); -} - /// getJumpTableEncoding - Return the entry encoding for a jump table in the /// current function. The returned value is a member of the /// MachineJumpTableInfo::JTEntryKind enum. @@ -1354,103 +523,6 @@ TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { } //===----------------------------------------------------------------------===// -// TargetTransformInfo Helpers -//===----------------------------------------------------------------------===// - -int TargetLowering::InstructionOpcodeToISD(unsigned Opcode) const { - enum InstructionOpcodes { -#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, -#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM -#include "llvm/IR/Instruction.def" - }; - switch (static_cast<InstructionOpcodes>(Opcode)) { - case Ret: return 0; - case Br: return 0; - case Switch: return 0; - case IndirectBr: return 0; - case Invoke: return 0; - case Resume: return 0; - case Unreachable: return 0; |