aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/LatencyPriorityQueue.cpp
diff options
context:
space:
mode:
authorDan Gohman <gohman@apple.com>2008-11-19 23:18:57 +0000
committerDan Gohman <gohman@apple.com>2008-11-19 23:18:57 +0000
commit343f0c046702831a4a6aec951b6a297a23241a55 (patch)
tree2f3b2796fd768abcb439099629af7cf407a61693 /lib/CodeGen/LatencyPriorityQueue.cpp
parent7d1cd3f21d68179f4ebf4ee18fb7a0ddca9c5a37 (diff)
Experimental post-pass scheduling support. Post-pass scheduling
is currently off by default, and can be enabled with -disable-post-RA-scheduler=false. This doesn't have a significant impact on most code yet because it doesn't yet do anything to address anti-dependencies and it doesn't attempt to disambiguate memory references. Also, several popular targets don't have pipeline descriptions yet. The majority of the changes here are splitting the SelectionDAG-specific code out of ScheduleDAG, so that ScheduleDAG can be moved to libLLVMCodeGen.a. The interface between ScheduleDAG-using code and the rest of the scheduling code is somewhat rough and will evolve. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59676 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/LatencyPriorityQueue.cpp')
-rw-r--r--lib/CodeGen/LatencyPriorityQueue.cpp165
1 files changed, 165 insertions, 0 deletions
diff --git a/lib/CodeGen/LatencyPriorityQueue.cpp b/lib/CodeGen/LatencyPriorityQueue.cpp
new file mode 100644
index 0000000000..70b6574996
--- /dev/null
+++ b/lib/CodeGen/LatencyPriorityQueue.cpp
@@ -0,0 +1,165 @@
+//===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LatencyPriorityQueue class, which is a
+// SchedulingPriorityQueue that schedules using latency information to
+// reduce the length of the critical path through the basic block.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "scheduler"
+#include "llvm/CodeGen/LatencyPriorityQueue.h"
+#include "llvm/Support/Debug.h"
+using namespace llvm;
+
+bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
+ unsigned LHSNum = LHS->NodeNum;
+ unsigned RHSNum = RHS->NodeNum;
+
+ // The most important heuristic is scheduling the critical path.
+ unsigned LHSLatency = PQ->getLatency(LHSNum);
+ unsigned RHSLatency = PQ->getLatency(RHSNum);
+ if (LHSLatency < RHSLatency) return true;
+ if (LHSLatency > RHSLatency) return false;
+
+ // After that, if two nodes have identical latencies, look to see if one will
+ // unblock more other nodes than the other.
+ unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
+ unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
+ if (LHSBlocked < RHSBlocked) return true;
+ if (LHSBlocked > RHSBlocked) return false;
+
+ // Finally, just to provide a stable ordering, use the node number as a
+ // deciding factor.
+ return LHSNum < RHSNum;
+}
+
+
+/// CalcNodePriority - Calculate the maximal path from the node to the exit.
+///
+int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
+ int &Latency = Latencies[SU.NodeNum];
+ if (Latency != -1)
+ return Latency;
+
+ std::vector<const SUnit*> WorkList;
+ WorkList.push_back(&SU);
+ while (!WorkList.empty()) {
+ const SUnit *Cur = WorkList.back();
+ bool AllDone = true;
+ int MaxSuccLatency = 0;
+ for (SUnit::const_succ_iterator I = Cur->Succs.begin(),E = Cur->Succs.end();
+ I != E; ++I) {
+ int SuccLatency = Latencies[I->Dep->NodeNum];
+ if (SuccLatency == -1) {
+ AllDone = false;
+ WorkList.push_back(I->Dep);
+ } else {
+ MaxSuccLatency = std::max(MaxSuccLatency, SuccLatency);
+ }
+ }
+ if (AllDone) {
+ Latencies[Cur->NodeNum] = MaxSuccLatency + Cur->Latency;
+ WorkList.pop_back();
+ }
+ }
+
+ return Latency;
+}
+
+/// CalculatePriorities - Calculate priorities of all scheduling units.
+void LatencyPriorityQueue::CalculatePriorities() {
+ Latencies.assign(SUnits->size(), -1);
+ NumNodesSolelyBlocking.assign(SUnits->size(), 0);
+
+ // For each node, calculate the maximal path from the node to the exit.
+ std::vector<std::pair<const SUnit*, unsigned> > WorkList;
+ for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
+ const SUnit *SU = &(*SUnits)[i];
+ if (SU->Succs.empty())
+ WorkList.push_back(std::make_pair(SU, 0U));
+ }
+
+ while (!WorkList.empty()) {
+ const SUnit *SU = WorkList.back().first;
+ unsigned SuccLat = WorkList.back().second;
+ WorkList.pop_back();
+ int &Latency = Latencies[SU->NodeNum];
+ if (Latency == -1 || (SU->Latency + SuccLat) > (unsigned)Latency) {
+ Latency = SU->Latency + SuccLat;
+ for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
+ I != E; ++I)
+ WorkList.push_back(std::make_pair(I->Dep, Latency));
+ }
+ }
+}
+
+/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
+/// of SU, return it, otherwise return null.
+SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
+ SUnit *OnlyAvailablePred = 0;
+ for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+ I != E; ++I) {
+ SUnit &Pred = *I->Dep;
+ if (!Pred.isScheduled) {
+ // We found an available, but not scheduled, predecessor. If it's the
+ // only one we have found, keep track of it... otherwise give up.
+ if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
+ return 0;
+ OnlyAvailablePred = &Pred;
+ }
+ }
+
+ return OnlyAvailablePred;
+}
+
+void LatencyPriorityQueue::push_impl(SUnit *SU) {
+ // Look at all of the successors of this node. Count the number of nodes that
+ // this node is the sole unscheduled node for.
+ unsigned NumNodesBlocking = 0;
+ for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
+ I != E; ++I)
+ if (getSingleUnscheduledPred(I->Dep) == SU)
+ ++NumNodesBlocking;
+ NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
+
+ Queue.push(SU);
+}
+
+
+// ScheduledNode - As nodes are scheduled, we look to see if there are any
+// successor nodes that have a single unscheduled predecessor. If so, that
+// single predecessor has a higher priority, since scheduling it will make
+// the node available.
+void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
+ for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
+ I != E; ++I)
+ AdjustPriorityOfUnscheduledPreds(I->Dep);
+}
+
+/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
+/// scheduled. If SU is not itself available, then there is at least one
+/// predecessor node that has not been scheduled yet. If SU has exactly ONE
+/// unscheduled predecessor, we want to increase its priority: it getting
+/// scheduled will make this node available, so it is better than some other
+/// node of the same priority that will not make a node available.
+void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
+ if (SU->isAvailable) return; // All preds scheduled.
+
+ SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
+ if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
+
+ // Okay, we found a single predecessor that is available, but not scheduled.
+ // Since it is available, it must be in the priority queue. First remove it.
+ remove(OnlyAvailablePred);
+
+ // Reinsert the node into the priority queue, which recomputes its
+ // NumNodesSolelyBlocking value.
+ push(OnlyAvailablePred);
+}