diff options
author | Duncan Sands <baldrick@free.fr> | 2011-10-27 19:16:21 +0000 |
---|---|---|
committer | Duncan Sands <baldrick@free.fr> | 2011-10-27 19:16:21 +0000 |
commit | 32a43cc0fc3cd42702d7859eaa58dd42f561a54d (patch) | |
tree | 56449a56539910bed314212d85f556a4d59768c0 /lib/Analysis/ValueTracking.cpp | |
parent | 6eb1ed8c9c6a6d3f9b57900c44fc076d08a358bd (diff) |
Reapply commit 143028 with a fix: the problem was casting a ConstantExpr Mul
using BinaryOperator (which only works for instructions) when it should have
been a cast to OverflowingBinaryOperator (which also works for constants).
While there, correct a few other dubious looking uses of BinaryOperator.
Thanks to Chad Rosier for the testcase. Original commit message:
My super-optimizer noticed that we weren't folding this expression to
true: (x *nsw x) sgt 0, where x = (y | 1). This occurs in 464.h264ref.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143125 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/ValueTracking.cpp')
-rw-r--r-- | lib/Analysis/ValueTracking.cpp | 56 |
1 files changed, 49 insertions, 7 deletions
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp index 9a234c068b..90757f9798 100644 --- a/lib/Analysis/ValueTracking.cpp +++ b/lib/Analysis/ValueTracking.cpp @@ -201,9 +201,36 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + bool isKnownNegative = false; + bool isKnownNonNegative = false; + // If the multiplication is known not to overflow, compute the sign bit. + if (Mask.isNegative() && + cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap()) { + Value *Op1 = I->getOperand(1), *Op2 = I->getOperand(0); + if (Op1 == Op2) { + // The product of a number with itself is non-negative. + isKnownNonNegative = true; + } else { + bool isKnownNonNegative1 = KnownZero.isNegative(); + bool isKnownNonNegative2 = KnownZero2.isNegative(); + bool isKnownNegative1 = KnownOne.isNegative(); + bool isKnownNegative2 = KnownOne2.isNegative(); + // The product of two numbers with the same sign is non-negative. + isKnownNonNegative = (isKnownNegative1 && isKnownNegative2) || + (isKnownNonNegative1 && isKnownNonNegative2); + // The product of a negative number and a non-negative number is either + // negative or zero. + if (!isKnownNonNegative) + isKnownNegative = (isKnownNegative1 && isKnownNonNegative2 && + isKnownNonZero(Op2, TD, Depth)) || + (isKnownNegative2 && isKnownNonNegative1 && + isKnownNonZero(Op1, TD, Depth)); + } + } + // If low bits are zero in either operand, output low known-0 bits. // Also compute a conserative estimate for high known-0 bits. // More trickiness is possible, but this is sufficient for the @@ -220,6 +247,12 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | APInt::getHighBitsSet(BitWidth, LeadZ); KnownZero &= Mask; + + if (isKnownNonNegative) + KnownZero.setBit(BitWidth - 1); + else if (isKnownNegative) + KnownOne.setBit(BitWidth - 1); + return; } case Instruction::UDiv: { @@ -784,7 +817,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { } // The remaining tests are all recursive, so bail out if we hit the limit. - if (Depth++ == MaxDepth) + if (Depth++ >= MaxDepth) return false; unsigned BitWidth = getBitWidth(V->getType(), TD); @@ -802,7 +835,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { // if the lowest bit is shifted off the end. if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { // shl nuw can't remove any non-zero bits. - BinaryOperator *BO = cast<BinaryOperator>(V); + OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); if (BO->hasNoUnsignedWrap()) return isKnownNonZero(X, TD, Depth); @@ -816,7 +849,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { // defined if the sign bit is shifted off the end. else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { // shr exact can only shift out zero bits. - BinaryOperator *BO = cast<BinaryOperator>(V); + PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); if (BO->isExact()) return isKnownNonZero(X, TD, Depth); @@ -827,7 +860,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { } // div exact can only produce a zero if the dividend is zero. else if (match(V, m_IDiv(m_Value(X), m_Value()))) { - BinaryOperator *BO = cast<BinaryOperator>(V); + PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); if (BO->isExact()) return isKnownNonZero(X, TD, Depth); } @@ -868,6 +901,15 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth)) return true; } + // X * Y. + else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { + OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); + // If X and Y are non-zero then so is X * Y as long as the multiplication + // does not overflow. + if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && + isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) + return true; + } // (C ? X : Y) != 0 if X != 0 and Y != 0. else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && |