aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/DataStructure/DataStructure.cpp
diff options
context:
space:
mode:
authorJohn Criswell <criswell@uiuc.edu>2006-12-13 19:41:57 +0000
committerJohn Criswell <criswell@uiuc.edu>2006-12-13 19:41:57 +0000
commit2957f129a7390a068610e9af5a079c6fa1bead24 (patch)
tree5e33193ba255f6f8872fb0e56f0d2bed37158878 /lib/Analysis/DataStructure/DataStructure.cpp
parent64225643331b608ea3558623b6eee6649bca7c6c (diff)
Remove DSA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32550 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/DataStructure/DataStructure.cpp')
-rw-r--r--lib/Analysis/DataStructure/DataStructure.cpp2435
1 files changed, 0 insertions, 2435 deletions
diff --git a/lib/Analysis/DataStructure/DataStructure.cpp b/lib/Analysis/DataStructure/DataStructure.cpp
deleted file mode 100644
index 666b615825..0000000000
--- a/lib/Analysis/DataStructure/DataStructure.cpp
+++ /dev/null
@@ -1,2435 +0,0 @@
-//===- DataStructure.cpp - Implement the core data structure analysis -----===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the core data structure functionality.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/DataStructure/DSGraphTraits.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Instructions.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Assembly/Writer.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SCCIterator.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Support/Timer.h"
-#include <algorithm>
-using namespace llvm;
-
-#define COLLAPSE_ARRAYS_AGGRESSIVELY 0
-
-namespace {
- Statistic NumFolds ("dsa", "Number of nodes completely folded");
- Statistic NumCallNodesMerged("dsa", "Number of call nodes merged");
- Statistic NumNodeAllocated ("dsa", "Number of nodes allocated");
- Statistic NumDNE ("dsa", "Number of nodes removed by reachability");
- Statistic NumTrivialDNE ("dsa", "Number of nodes trivially removed");
- Statistic NumTrivialGlobalDNE("dsa", "Number of globals trivially removed");
- static cl::opt<unsigned>
- DSAFieldLimit("dsa-field-limit", cl::Hidden,
- cl::desc("Number of fields to track before collapsing a node"),
- cl::init(256));
-}
-
-#if 0
-#define TIME_REGION(VARNAME, DESC) \
- NamedRegionTimer VARNAME(DESC)
-#else
-#define TIME_REGION(VARNAME, DESC)
-#endif
-
-using namespace DS;
-
-/// isForwarding - Return true if this NodeHandle is forwarding to another
-/// one.
-bool DSNodeHandle::isForwarding() const {
- return N && N->isForwarding();
-}
-
-DSNode *DSNodeHandle::HandleForwarding() const {
- assert(N->isForwarding() && "Can only be invoked if forwarding!");
- DEBUG(
- { //assert not looping
- DSNode* NH = N;
- std::set<DSNode*> seen;
- while(NH && NH->isForwarding()) {
- assert(seen.find(NH) == seen.end() && "Loop detected");
- seen.insert(NH);
- NH = NH->ForwardNH.N;
- }
- }
- );
- // Handle node forwarding here!
- DSNode *Next = N->ForwardNH.getNode(); // Cause recursive shrinkage
- Offset += N->ForwardNH.getOffset();
-
- if (--N->NumReferrers == 0) {
- // Removing the last referrer to the node, sever the forwarding link
- N->stopForwarding();
- }
-
- N = Next;
- N->NumReferrers++;
- if (N->Size <= Offset) {
- assert(N->Size <= 1 && "Forwarded to shrunk but not collapsed node?");
- Offset = 0;
- }
- return N;
-}
-
-//===----------------------------------------------------------------------===//
-// DSScalarMap Implementation
-//===----------------------------------------------------------------------===//
-
-DSNodeHandle &DSScalarMap::AddGlobal(GlobalValue *GV) {
- assert(ValueMap.count(GV) == 0 && "GV already exists!");
-
- // If the node doesn't exist, check to see if it's a global that is
- // equated to another global in the program.
- EquivalenceClasses<GlobalValue*>::iterator ECI = GlobalECs.findValue(GV);
- if (ECI != GlobalECs.end()) {
- GlobalValue *Leader = *GlobalECs.findLeader(ECI);
- if (Leader != GV) {
- GV = Leader;
- iterator I = ValueMap.find(GV);
- if (I != ValueMap.end())
- return I->second;
- }
- }
-
- // Okay, this is either not an equivalenced global or it is the leader, it
- // will be inserted into the scalar map now.
- GlobalSet.insert(GV);
-
- return ValueMap.insert(std::make_pair(GV, DSNodeHandle())).first->second;
-}
-
-
-//===----------------------------------------------------------------------===//
-// DSNode Implementation
-//===----------------------------------------------------------------------===//
-
-DSNode::DSNode(const Type *T, DSGraph *G)
- : NumReferrers(0), Size(0), ParentGraph(G), Ty(Type::VoidTy), NodeType(0) {
- // Add the type entry if it is specified...
- if (T) mergeTypeInfo(T, 0);
- if (G) G->addNode(this);
- ++NumNodeAllocated;
-}
-
-// DSNode copy constructor... do not copy over the referrers list!
-DSNode::DSNode(const DSNode &N, DSGraph *G, bool NullLinks)
- : NumReferrers(0), Size(N.Size), ParentGraph(G),
- Ty(N.Ty), Globals(N.Globals), NodeType(N.NodeType) {
- if (!NullLinks) {
- Links = N.Links;
- } else
- Links.resize(N.Links.size()); // Create the appropriate number of null links
- G->addNode(this);
- ++NumNodeAllocated;
-}
-
-/// getTargetData - Get the target data object used to construct this node.
-///
-const TargetData &DSNode::getTargetData() const {
- return ParentGraph->getTargetData();
-}
-
-void DSNode::assertOK() const {
- assert((Ty != Type::VoidTy ||
- Ty == Type::VoidTy && (Size == 0 ||
- (NodeType & DSNode::Array))) &&
- "Node not OK!");
-
- assert(ParentGraph && "Node has no parent?");
- const DSScalarMap &SM = ParentGraph->getScalarMap();
- for (unsigned i = 0, e = Globals.size(); i != e; ++i) {
- assert(SM.global_count(Globals[i]));
- assert(SM.find(Globals[i])->second.getNode() == this);
- }
-}
-
-/// forwardNode - Mark this node as being obsolete, and all references to it
-/// should be forwarded to the specified node and offset.
-///
-void DSNode::forwardNode(DSNode *To, unsigned Offset) {
- assert(this != To && "Cannot forward a node to itself!");
- assert(ForwardNH.isNull() && "Already forwarding from this node!");
- if (To->Size <= 1) Offset = 0;
- assert((Offset < To->Size || (Offset == To->Size && Offset == 0)) &&
- "Forwarded offset is wrong!");
- ForwardNH.setTo(To, Offset);
- NodeType = DEAD;
- Size = 0;
- Ty = Type::VoidTy;
-
- // Remove this node from the parent graph's Nodes list.
- ParentGraph->unlinkNode(this);
- ParentGraph = 0;
-}
-
-// addGlobal - Add an entry for a global value to the Globals list. This also
-// marks the node with the 'G' flag if it does not already have it.
-//
-void DSNode::addGlobal(GlobalValue *GV) {
- // First, check to make sure this is the leader if the global is in an
- // equivalence class.
- GV = getParentGraph()->getScalarMap().getLeaderForGlobal(GV);
-
- // Keep the list sorted.
- std::vector<GlobalValue*>::iterator I =
- std::lower_bound(Globals.begin(), Globals.end(), GV);
-
- if (I == Globals.end() || *I != GV) {
- Globals.insert(I, GV);
- NodeType |= GlobalNode;
- }
-}
-
-// removeGlobal - Remove the specified global that is explicitly in the globals
-// list.
-void DSNode::removeGlobal(GlobalValue *GV) {
- std::vector<GlobalValue*>::iterator I =
- std::lower_bound(Globals.begin(), Globals.end(), GV);
- assert(I != Globals.end() && *I == GV && "Global not in node!");
- Globals.erase(I);
-}
-
-/// foldNodeCompletely - If we determine that this node has some funny
-/// behavior happening to it that we cannot represent, we fold it down to a
-/// single, completely pessimistic, node. This node is represented as a
-/// single byte with a single TypeEntry of "void".
-///
-void DSNode::foldNodeCompletely() {
- if (isNodeCompletelyFolded()) return; // If this node is already folded...
-
- ++NumFolds;
-
- // If this node has a size that is <= 1, we don't need to create a forwarding
- // node.
- if (getSize() <= 1) {
- NodeType |= DSNode::Array;
- Ty = Type::VoidTy;
- Size = 1;
- assert(Links.size() <= 1 && "Size is 1, but has more links?");
- Links.resize(1);
- } else {
- // Create the node we are going to forward to. This is required because
- // some referrers may have an offset that is > 0. By forcing them to
- // forward, the forwarder has the opportunity to correct the offset.
- DSNode *DestNode = new DSNode(0, ParentGraph);
- DestNode->NodeType = NodeType|DSNode::Array;
- DestNode->Ty = Type::VoidTy;
- DestNode->Size = 1;
- DestNode->Globals.swap(Globals);
-
- // Start forwarding to the destination node...
- forwardNode(DestNode, 0);
-
- if (!Links.empty()) {
- DestNode->Links.reserve(1);
-
- DSNodeHandle NH(DestNode);
- DestNode->Links.push_back(Links[0]);
-
- // If we have links, merge all of our outgoing links together...
- for (unsigned i = Links.size()-1; i != 0; --i)
- NH.getNode()->Links[0].mergeWith(Links[i]);
- Links.clear();
- } else {
- DestNode->Links.resize(1);
- }
- }
-}
-
-/// isNodeCompletelyFolded - Return true if this node has been completely
-/// folded down to something that can never be expanded, effectively losing
-/// all of the field sensitivity that may be present in the node.
-///
-bool DSNode::isNodeCompletelyFolded() const {
- return getSize() == 1 && Ty == Type::VoidTy && isArray();
-}
-
-/// addFullGlobalsList - Compute the full set of global values that are
-/// represented by this node. Unlike getGlobalsList(), this requires fair
-/// amount of work to compute, so don't treat this method call as free.
-void DSNode::addFullGlobalsList(std::vector<GlobalValue*> &List) const {
- if (globals_begin() == globals_end()) return;
-
- EquivalenceClasses<GlobalValue*> &EC = getParentGraph()->getGlobalECs();
-
- for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) {
- EquivalenceClasses<GlobalValue*>::iterator ECI = EC.findValue(*I);
- if (ECI == EC.end())
- List.push_back(*I);
- else
- List.insert(List.end(), EC.member_begin(ECI), EC.member_end());
- }
-}
-
-/// addFullFunctionList - Identical to addFullGlobalsList, but only return the
-/// functions in the full list.
-void DSNode::addFullFunctionList(std::vector<Function*> &List) const {
- if (globals_begin() == globals_end()) return;
-
- EquivalenceClasses<GlobalValue*> &EC = getParentGraph()->getGlobalECs();
-
- for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) {
- EquivalenceClasses<GlobalValue*>::iterator ECI = EC.findValue(*I);
- if (ECI == EC.end()) {
- if (Function *F = dyn_cast<Function>(*I))
- List.push_back(F);
- } else {
- for (EquivalenceClasses<GlobalValue*>::member_iterator MI =
- EC.member_begin(ECI), E = EC.member_end(); MI != E; ++MI)
- if (Function *F = dyn_cast<Function>(*MI))
- List.push_back(F);
- }
- }
-}
-
-namespace {
- /// TypeElementWalker Class - Used for implementation of physical subtyping...
- ///
- class TypeElementWalker {
- struct StackState {
- const Type *Ty;
- unsigned Offset;
- unsigned Idx;
- StackState(const Type *T, unsigned Off = 0)
- : Ty(T), Offset(Off), Idx(0) {}
- };
-
- std::vector<StackState> Stack;
- const TargetData &TD;
- public:
- TypeElementWalker(const Type *T, const TargetData &td) : TD(td) {
- Stack.push_back(T);
- StepToLeaf();
- }
-
- bool isDone() const { return Stack.empty(); }
- const Type *getCurrentType() const { return Stack.back().Ty; }
- unsigned getCurrentOffset() const { return Stack.back().Offset; }
-
- void StepToNextType() {
- PopStackAndAdvance();
- StepToLeaf();
- }
-
- private:
- /// PopStackAndAdvance - Pop the current element off of the stack and
- /// advance the underlying element to the next contained member.
- void PopStackAndAdvance() {
- assert(!Stack.empty() && "Cannot pop an empty stack!");
- Stack.pop_back();
- while (!Stack.empty()) {
- StackState &SS = Stack.back();
- if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) {
- ++SS.Idx;
- if (SS.Idx != ST->getNumElements()) {
- const StructLayout *SL = TD.getStructLayout(ST);
- SS.Offset +=
- unsigned(SL->MemberOffsets[SS.Idx]-SL->MemberOffsets[SS.Idx-1]);
- return;
- }
- Stack.pop_back(); // At the end of the structure
- } else {
- const ArrayType *AT = cast<ArrayType>(SS.Ty);
- ++SS.Idx;
- if (SS.Idx != AT->getNumElements()) {
- SS.Offset += unsigned(TD.getTypeSize(AT->getElementType()));
- return;
- }
- Stack.pop_back(); // At the end of the array
- }
- }
- }
-
- /// StepToLeaf - Used by physical subtyping to move to the first leaf node
- /// on the type stack.
- void StepToLeaf() {
- if (Stack.empty()) return;
- while (!Stack.empty() && !Stack.back().Ty->isFirstClassType()) {
- StackState &SS = Stack.back();
- if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) {
- if (ST->getNumElements() == 0) {
- assert(SS.Idx == 0);
- PopStackAndAdvance();
- } else {
- // Step into the structure...
- assert(SS.Idx < ST->getNumElements());
- const StructLayout *SL = TD.getStructLayout(ST);
- Stack.push_back(StackState(ST->getElementType(SS.Idx),
- SS.Offset+unsigned(SL->MemberOffsets[SS.Idx])));
- }
- } else {
- const ArrayType *AT = cast<ArrayType>(SS.Ty);
- if (AT->getNumElements() == 0) {
- assert(SS.Idx == 0);
- PopStackAndAdvance();
- } else {
- // Step into the array...
- assert(SS.Idx < AT->getNumElements());
- Stack.push_back(StackState(AT->getElementType(),
- SS.Offset+SS.Idx*
- unsigned(TD.getTypeSize(AT->getElementType()))));
- }
- }
- }
- }
- };
-} // end anonymous namespace
-
-/// ElementTypesAreCompatible - Check to see if the specified types are
-/// "physically" compatible. If so, return true, else return false. We only
-/// have to check the fields in T1: T2 may be larger than T1. If AllowLargerT1
-/// is true, then we also allow a larger T1.
-///
-static bool ElementTypesAreCompatible(const Type *T1, const Type *T2,
- bool AllowLargerT1, const TargetData &TD){
- TypeElementWalker T1W(T1, TD), T2W(T2, TD);
-
- while (!T1W.isDone() && !T2W.isDone()) {
- if (T1W.getCurrentOffset() != T2W.getCurrentOffset())
- return false;
-
- const Type *T1 = T1W.getCurrentType();
- const Type *T2 = T2W.getCurrentType();
- if (T1 != T2 && !T1->canLosslesslyBitCastTo(T2))
- return false;
-
- T1W.StepToNextType();
- T2W.StepToNextType();
- }
-
- return AllowLargerT1 || T1W.isDone();
-}
-
-
-/// mergeTypeInfo - This method merges the specified type into the current node
-/// at the specified offset. This may update the current node's type record if
-/// this gives more information to the node, it may do nothing to the node if
-/// this information is already known, or it may merge the node completely (and
-/// return true) if the information is incompatible with what is already known.
-///
-/// This method returns true if the node is completely folded, otherwise false.
-///
-bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset,
- bool FoldIfIncompatible) {
- DOUT << "merging " << *NewTy << " at " << Offset << " with " << *Ty << "\n";
- const TargetData &TD = getTargetData();
- // Check to make sure the Size member is up-to-date. Size can be one of the
- // following:
- // Size = 0, Ty = Void: Nothing is known about this node.
- // Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero
- // Size = 1, Ty = Void, Array = 1: The node is collapsed
- // Otherwise, sizeof(Ty) = Size
- //
- assert(((Size == 0 && Ty == Type::VoidTy && !isArray()) ||
- (Size == 0 && !Ty->isSized() && !isArray()) ||
- (Size == 1 && Ty == Type::VoidTy && isArray()) ||
- (Size == 0 && !Ty->isSized() && !isArray()) ||
- (TD.getTypeSize(Ty) == Size)) &&
- "Size member of DSNode doesn't match the type structure!");
- assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!");
-
- if (Offset == 0 && NewTy == Ty)
- return false; // This should be a common case, handle it efficiently
-
- // Return true immediately if the node is completely folded.
- if (isNodeCompletelyFolded()) return true;
-
- // If this is an array type, eliminate the outside arrays because they won't
- // be used anyway. This greatly reduces the size of large static arrays used
- // as global variables, for example.
- //
- bool WillBeArray = false;
- while (const ArrayType *AT = dyn_cast<ArrayType>(NewTy)) {
- // FIXME: we might want to keep small arrays, but must be careful about
- // things like: [2 x [10000 x int*]]
- NewTy = AT->getElementType();
- WillBeArray = true;
- }
-
- // Figure out how big the new type we're merging in is...
- unsigned NewTySize = NewTy->isSized() ? (unsigned)TD.getTypeSize(NewTy) : 0;
-
- // Otherwise check to see if we can fold this type into the current node. If
- // we can't, we fold the node completely, if we can, we potentially update our
- // internal state.
- //
- if (Ty == Type::VoidTy) {
- // If this is the first type that this node has seen, just accept it without
- // question....
- assert(Offset == 0 && !isArray() &&
- "Cannot have an offset into a void node!");
-
- // If this node would have to have an unreasonable number of fields, just
- // collapse it. This can occur for fortran common blocks, which have stupid
- // things like { [100000000 x double], [1000000 x double] }.
- unsigned NumFields = (NewTySize+DS::PointerSize-1) >> DS::PointerShift;
- if (NumFields > DSAFieldLimit) {
- foldNodeCompletely();
- return true;
- }
-
- Ty = NewTy;
- NodeType &= ~Array;
- if (WillBeArray) NodeType |= Array;
- Size = NewTySize;
-
- // Calculate the number of outgoing links from this node.
- Links.resize(NumFields);
- return false;
- }
-
- // Handle node expansion case here...
- if (Offset+NewTySize > Size) {
- // It is illegal to grow this node if we have treated it as an array of
- // objects...
- if (isArray()) {
- if (FoldIfIncompatible) foldNodeCompletely();
- return true;
- }
-
- // If this node would have to have an unreasonable number of fields, just
- // collapse it. This can occur for fortran common blocks, which have stupid
- // things like { [100000000 x double], [1000000 x double] }.
- unsigned NumFields = (NewTySize+Offset+DS::PointerSize-1) >> DS::PointerShift;
- if (NumFields > DSAFieldLimit) {
- foldNodeCompletely();
- return true;
- }
-
- if (Offset) {
- //handle some common cases:
- // Ty: struct { t1, t2, t3, t4, ..., tn}
- // NewTy: struct { offset, stuff...}
- // try merge with NewTy: struct {t1, t2, stuff...} if offset lands exactly
- // on a field in Ty
- if (isa<StructType>(NewTy) && isa<StructType>(Ty)) {
- DOUT << "Ty: " << *Ty << "\nNewTy: " << *NewTy << "@" << Offset << "\n";
- const StructType *STy = cast<StructType>(Ty);
- const StructLayout &SL = *TD.getStructLayout(STy);
- unsigned i = SL.getElementContainingOffset(Offset);
- //Either we hit it exactly or give up
- if (SL.MemberOffsets[i] != Offset) {
- if (FoldIfIncompatible) foldNodeCompletely();
- return true;
- }
- std::vector<const Type*> nt;
- for (unsigned x = 0; x < i; ++x)
- nt.push_back(STy->getElementType(x));
- STy = cast<StructType>(NewTy);
- nt.insert(nt.end(), STy->element_begin(), STy->element_end());
- //and merge
- STy = StructType::get(nt);
- DOUT << "Trying with: " << *STy << "\n";
- return mergeTypeInfo(STy, 0);
- }
-
- //Ty: struct { t1, t2, t3 ... tn}
- //NewTy T offset x
- //try merge with NewTy: struct : {t1, t2, T} if offset lands on a field
- //in Ty
- if (isa<StructType>(Ty)) {
- DOUT << "Ty: " << *Ty << "\nNewTy: " << *NewTy << "@" << Offset << "\n";
- const StructType *STy = cast<StructType>(Ty);
- const StructLayout &SL = *TD.getStructLayout(STy);
- unsigned i = SL.getElementContainingOffset(Offset);
- //Either we hit it exactly or give up
- if (SL.MemberOffsets[i] != Offset) {
- if (FoldIfIncompatible) foldNodeCompletely();
- return true;
- }
- std::vector<const Type*> nt;
- for (unsigned x = 0; x < i; ++x)
- nt.push_back(STy->getElementType(x));
- nt.push_back(NewTy);
- //and merge
- STy = StructType::get(nt);
- DOUT << "Trying with: " << *STy << "\n";
- return mergeTypeInfo(STy, 0);
- }
-
- assert(0 &&
- "UNIMP: Trying to merge a growth type into "
- "offset != 0: Collapsing!");
- abort();
- if (FoldIfIncompatible) foldNodeCompletely();
- return true;
-
- }
-
-
- // Okay, the situation is nice and simple, we are trying to merge a type in
- // at offset 0 that is bigger than our current type. Implement this by
- // switching to the new type and then merge in the smaller one, which should
- // hit the other code path here. If the other code path decides it's not
- // ok, it will collapse the node as appropriate.
- //
-
- const Type *OldTy = Ty;
- Ty = NewTy;
- NodeType &= ~Array;
- if (WillBeArray) NodeType |= Array;
- Size = NewTySize;
-
- // Must grow links to be the appropriate size...
- Links.resize(NumFields);
-
- // Merge in the old type now... which is guaranteed to be smaller than the
- // "current" type.
- return mergeTypeInfo(OldTy, 0);
- }
-
- assert(Offset <= Size &&
- "Cannot merge something into a part of our type that doesn't exist!");
-
- // Find the section of Ty that NewTy overlaps with... first we find the
- // type that starts at offset Offset.
- //
- unsigned O = 0;
- const Type *SubType = Ty;
- while (O < Offset) {
- assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!");
-
- switch (SubType->getTypeID()) {
- case Type::StructTyID: {
- const StructType *STy = cast<StructType>(SubType);
- const StructLayout &SL = *TD.getStructLayout(STy);
- unsigned i = SL.getElementContainingOffset(Offset-O);
-
- // The offset we are looking for must be in the i'th element...
- SubType = STy->getElementType(i);
- O += (unsigned)SL.MemberOffsets[i];
- break;
- }
- case Type::ArrayTyID: {
- SubType = cast<ArrayType>(SubType)->getElementType();
- unsigned ElSize = (unsigned)TD.getTypeSize(SubType);
- unsigned Remainder = (Offset-O) % ElSize;
- O = Offset-Remainder;
- break;
- }
- default:
- if (FoldIfIncompatible) foldNodeCompletely();
- return true;
- }
- }
-
- assert(O == Offset && "Could not achieve the correct offset!");
-
- // If we found our type exactly, early exit
- if (SubType == NewTy) return false;
-
- // Differing function types don't require us to merge. They are not values
- // anyway.
- if (isa<FunctionType>(SubType) &&
- isa<FunctionType>(NewTy)) return false;
-
- unsigned SubTypeSize = SubType->isSized() ?
- (unsigned)TD.getTypeSize(SubType) : 0;
-
- // Ok, we are getting desperate now. Check for physical subtyping, where we
- // just require each element in the node to be compatible.
- if (NewTySize <= SubTypeSize && NewTySize && NewTySize < 256 &&
- SubTypeSize && SubTypeSize < 256 &&
- ElementTypesAreCompatible(NewTy, SubType, !isArray(), TD))
- return false;
-
- // Okay, so we found the leader type at the offset requested. Search the list
- // of types that starts at this offset. If SubType is currently an array or
- // structure, the type desired may actually be the first element of the
- // composite type...
- //
- unsigned PadSize = SubTypeSize; // Size, including pad memory which is ignored
- while (SubType != NewTy) {
- const Type *NextSubType = 0;
- unsigned NextSubTypeSize = 0;
- unsigned NextPadSize = 0;
- switch (SubType->getTypeID()) {
- case Type::StructTyID: {
- const StructType *STy = cast<StructType>(SubType);
- const StructLayout &SL = *TD.getStructLayout(STy);
- if (SL.MemberOffsets.size() > 1)
- NextPadSize = (unsigned)SL.MemberOffsets[1];
- else
- NextPadSize = SubTypeSize;
- NextSubType = STy->getElementType(0);
- NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType);
- break;
- }
- case Type::ArrayTyID:
- NextSubType = cast<ArrayType>(SubType)->getElementType();
- NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType);
- NextPadSize = NextSubTypeSize;
- break;
- default: ;
- // fall out
- }
-
- if (NextSubType == 0)
- break; // In the default case, break out of the loop
-
- if (NextPadSize < NewTySize)
- break; // Don't allow shrinking to a smaller type than NewTySize
- SubType = NextSubType;
- SubTypeSize = NextSubTypeSize;
- PadSize = NextPadSize;
- }
-
- // If we found the type exactly, return it...
- if (SubType == NewTy)
- return false;
-
- // Check to see if we have a compatible, but different type...
- if (NewTySize == SubTypeSize) {
- // Check to see if this type is obviously convertible... int -> uint f.e.
- if (NewTy->canLosslesslyBitCastTo(SubType))
- return false;
-
- // Check to see if we have a pointer & integer mismatch going on here,
- // loading a pointer as a long, for example.
- //
- if (SubType->isInteger() && isa<PointerType>(NewTy) ||
- NewTy->isInteger() && isa<PointerType>(SubType))
- return false;
- } else if (NewTySize > SubTypeSize && NewTySize <= PadSize) {
- // We are accessing the field, plus some structure padding. Ignore the
- // structure padding.
- return false;
- }
-
- Module *M = 0;
- if (getParentGraph()->retnodes_begin() != getParentGraph()->retnodes_end())
- M = getParentGraph()->retnodes_begin()->first->getParent();
-
- DOUT << "MergeTypeInfo Folding OrigTy: ";
- DEBUG(WriteTypeSymbolic(*cerr.stream(), Ty, M) << "\n due to:";
- WriteTypeSymbolic(*cerr.stream(), NewTy, M) << " @ " << Offset << "!\n"
- << "SubType: ";
- WriteTypeSymbolic(*cerr.stream(), SubType, M) << "\n\n");
-
- if (FoldIfIncompatible) foldNodeCompletely();
- return true;
-}
-
-
-
-/// addEdgeTo - Add an edge from the current node to the specified node. This
-/// can cause merging of nodes in the graph.
-///
-void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
- if (NH.isNull()) return; // Nothing to do
-
- if (isNodeCompletelyFolded())
- Offset = 0;
-
- DSNodeHandle &ExistingEdge = getLink(Offset);
- if (!ExistingEdge.isNull()) {
- // Merge the two nodes...
- ExistingEdge.mergeWith(NH);
- } else { // No merging to perform...
- setLink(Offset, NH); // Just force a link in there...
- }
-}
-
-
-/// MergeSortedVectors - Efficiently merge a vector into another vector where
-/// duplicates are not allowed and both are sorted. This assumes that 'T's are
-/// efficiently copyable and have sane comparison semantics.
-///
-static void MergeSortedVectors(std::vector<GlobalValue*> &Dest,
- const std::vector<GlobalValue*> &Src) {
- // By far, the most common cases will be the simple ones. In these cases,
- // avoid having to allocate a temporary vector...
- //
- if (Src.empty()) { // Nothing to merge in...
- return;
- } else if (Dest.empty()) { // Just copy the result in...
- Dest = Src;
- } else if (Src.size() == 1) { // Insert a single element...
- const GlobalValue *V = Src[0];
- std::vector<GlobalValue*>::iterator I =
- std::lower_bound(Dest.begin(), Dest.end(), V);
- if (I == Dest.end() || *I != Src[0]) // If not already contained...
- Dest.insert(I, Src[0]);
- } else if (Dest.size() == 1) {
- GlobalValue *Tmp = Dest[0]; // Save value in temporary...
- Dest = Src; // Copy over list...
- std::vector<GlobalValue*>::iterator I =
- std::lower_bound(Dest.begin(), Dest.end(), Tmp);
- if (I == Dest.end() || *I != Tmp) // If not already contained...
- Dest.insert(I, Tmp);
-
- } else {
- // Make a copy to the side of Dest...
- std::vector<GlobalValue*> Old(Dest);
-
- // Make space for all of the type entries now...
- Dest.resize(Dest.size()+Src.size());
-
- // Merge the two sorted ranges together... into Dest.
- std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin());
-
- // Now erase any duplicate entries that may have accumulated into the
- // vectors (because they were in both of the input sets)
- Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end());
- }
-}
-
-void DSNode::mergeGlobals(const std::vector<GlobalValue*> &RHS) {
- MergeSortedVectors(Globals, RHS);
-}
-
-// MergeNodes - Helper function for DSNode::mergeWith().
-// This function does the hard work of merging two nodes, CurNodeH
-// and NH after filtering out trivial cases and making sure that
-// CurNodeH.offset >= NH.offset.
-//
-// ***WARNING***
-// Since merging may cause either node to go away, we must always
-// use the node-handles to refer to the nodes. These node handles are
-// automatically updated during merging, so will always provide access
-// to the correct node after a merge.
-//
-void DSNode::MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH) {
- assert(CurNodeH.getOffset() >= NH.getOffset() &&
- "This should have been enforced in the caller.");
- assert(CurNodeH.getNode()->getParentGraph()==NH.getNode()->getParentGraph() &&
- "Cannot merge two nodes that are not in the same graph!");
-
- // Now we know that Offset >= NH.Offset, so convert it so our "Offset" (with
- // respect to NH.Offset) is now zero. NOffset is the distance from the base
- // of our object that N starts from.
- //
- unsigned NOffset = CurNodeH.getOffset()-NH.getOffset();
- unsigned NSize = NH.getNode()->getSize();
-
- // If the two nodes are of different size, and the smaller node has the array
- // bit set, collapse!
- if (NSize != CurNodeH.getNode()->getSize()) {
-#if COLLAPSE_ARRAYS_AGGRESSIVELY
- if (NSize < CurNodeH.getNode()->getSize()) {
- if (NH.getNode()->isArray())
- NH.getNode()->foldNodeCompletely();
- } else if (CurNodeH.getNode()->isArray()) {
- NH.getNode()->foldNodeCompletely();
- }
-#endif
- }
-
- // Merge the type entries of the two nodes together...
- if (NH.getNode()->Ty != Type::VoidTy)
- CurNodeH.getNode()->mergeTypeInfo(NH.getNode()->Ty, NOffset);
- assert(!CurNodeH.getNode()->isDeadNode());
-
- // If we are merging a node with a completely folded node, then both nodes are
- // now completely folded.
- //
- if (CurNodeH.getNode()->isNodeCompletelyFolded()) {
- if (!NH.getNode()->isNodeCompletelyFolded()) {
- NH.getNode()->foldNodeCompletely();
- assert(NH.getNode() && NH.getOffset() == 0 &&
- "folding did not make offset 0?");
- NOffset = NH.getOffset();
- NSize = NH.getNode()->getSize();
- assert(NOffset == 0 && NSize == 1);
- }
- } else if (NH.getNode()->isNodeCompletelyFolded()) {
- CurNodeH.getNode()->foldNodeCompletely();
- assert(CurNodeH.getNode() && CurNodeH.getOffset() == 0 &&
- "folding did not make offset 0?");
- NSize = NH.getNode()->getSize();
- NOffset = NH.getOffset();
- assert(NOffset == 0 && NSize == 1);
- }
-
- DSNode *N = NH.getNode();
- if (CurNodeH.getNode() == N || N == 0) return;
- assert(!CurNodeH.getNode()->isDeadNode());
-
- // Merge the NodeType information.
- CurNodeH.getNode()->NodeType |= N->NodeType;
-
- // Start forwarding to the new node!
- N->forwardNode(CurNodeH.getNode(), NOffset);
- assert(!CurNodeH.getNode()->isDeadNode());
-
- // Make all of the outgoing links of N now be outgoing links of CurNodeH.
- //
- for (unsigned i = 0; i < N->getNumLinks(); ++i) {
- DSNodeHandle &Link = N->getLink(i << DS::PointerShift);
- if (Link.getNode()) {
- // Compute the offset into the current node at which to
- // merge this link. In the common case, this is a linear
- // relation to the offset in the original node (with
- // wrapping), but if the current node gets collapsed due to
- // recursive merging, we must make sure to merge in all remaining
- // links at offset zero.
- unsigned MergeOffset = 0;
- DSNode *CN = CurNodeH.getNode();
- if (CN->Size != 1)
- MergeOffset = ((i << DS::PointerShift)+NOffset) % CN->getSize();
- CN->addEdgeTo(MergeOffset, Link);
- }
- }
-
- // Now that there are no outgoing edges, all of the Links are dead.
- N->Links.clear();
-
- // Merge the globals list...
- if (!N->Globals.empty()) {
- CurNodeH.getNode()->mergeGlobals(N->Globals);
-
- // Delete the globals from the old node...
- std::vector<GlobalValue*>().swap(N->Globals);
- }
-}
-
-
-/// mergeWith - Merge this node and the specified node, moving all links to and
-/// from the argument node into the current node, deleting the node argument.
-/// Offset indicates what offset the specified node is to be merged into the
-/// current node.
-///
-/// The specified node may be a null pointer (in which case, we update it to
-/// point to this node).
-///
-void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
- DSNode *N = NH.getNode();
- if (N == this && NH.getOffset() == Offset)
- return; // Noop
-
- // If the RHS is a null node, make it point to this node!
- if (N == 0) {
- NH.mergeWith(DSNodeHandle(this, Offset));
- return;
- }
-
- assert(!N->isDeadNode() && !isDeadNode());
- assert(!hasNoReferrers() && "Should not try to fold a useless node!");
-
- if (N == this) {
- // We cannot merge two pieces of the same node together, collapse the node
- // completely.
- DOUT << "Attempting to merge two chunks of the same node together!\n";
- foldNodeCompletely();
- return;
- }
-
- // If both nodes are not at offset 0, make sure that we are merging the node
- // at an later offset into the node with the zero offset.
- //
- if (Offset < NH.getOffset()) {
- N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
- return;
- } else if (Offset == NH.getOffset() && getSize() < N->getSize()) {
- // If the offsets are the same, merge the smaller node into the bigger node
- N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
- return;
- }
-
- // Ok, now we can merge the two nodes. Use a static helper that works with
- // two node handles, since "this" may get merged away at intermedi