diff options
author | John Criswell <criswell@uiuc.edu> | 2006-12-13 19:41:57 +0000 |
---|---|---|
committer | John Criswell <criswell@uiuc.edu> | 2006-12-13 19:41:57 +0000 |
commit | 2957f129a7390a068610e9af5a079c6fa1bead24 (patch) | |
tree | 5e33193ba255f6f8872fb0e56f0d2bed37158878 /lib/Analysis/DataStructure/DataStructure.cpp | |
parent | 64225643331b608ea3558623b6eee6649bca7c6c (diff) |
Remove DSA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32550 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/DataStructure/DataStructure.cpp')
-rw-r--r-- | lib/Analysis/DataStructure/DataStructure.cpp | 2435 |
1 files changed, 0 insertions, 2435 deletions
diff --git a/lib/Analysis/DataStructure/DataStructure.cpp b/lib/Analysis/DataStructure/DataStructure.cpp deleted file mode 100644 index 666b615825..0000000000 --- a/lib/Analysis/DataStructure/DataStructure.cpp +++ /dev/null @@ -1,2435 +0,0 @@ -//===- DataStructure.cpp - Implement the core data structure analysis -----===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the core data structure functionality. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/DataStructure/DSGraphTraits.h" -#include "llvm/Constants.h" -#include "llvm/Function.h" -#include "llvm/GlobalVariable.h" -#include "llvm/Instructions.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Target/TargetData.h" -#include "llvm/Assembly/Writer.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SCCIterator.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Support/Timer.h" -#include <algorithm> -using namespace llvm; - -#define COLLAPSE_ARRAYS_AGGRESSIVELY 0 - -namespace { - Statistic NumFolds ("dsa", "Number of nodes completely folded"); - Statistic NumCallNodesMerged("dsa", "Number of call nodes merged"); - Statistic NumNodeAllocated ("dsa", "Number of nodes allocated"); - Statistic NumDNE ("dsa", "Number of nodes removed by reachability"); - Statistic NumTrivialDNE ("dsa", "Number of nodes trivially removed"); - Statistic NumTrivialGlobalDNE("dsa", "Number of globals trivially removed"); - static cl::opt<unsigned> - DSAFieldLimit("dsa-field-limit", cl::Hidden, - cl::desc("Number of fields to track before collapsing a node"), - cl::init(256)); -} - -#if 0 -#define TIME_REGION(VARNAME, DESC) \ - NamedRegionTimer VARNAME(DESC) -#else -#define TIME_REGION(VARNAME, DESC) -#endif - -using namespace DS; - -/// isForwarding - Return true if this NodeHandle is forwarding to another -/// one. -bool DSNodeHandle::isForwarding() const { - return N && N->isForwarding(); -} - -DSNode *DSNodeHandle::HandleForwarding() const { - assert(N->isForwarding() && "Can only be invoked if forwarding!"); - DEBUG( - { //assert not looping - DSNode* NH = N; - std::set<DSNode*> seen; - while(NH && NH->isForwarding()) { - assert(seen.find(NH) == seen.end() && "Loop detected"); - seen.insert(NH); - NH = NH->ForwardNH.N; - } - } - ); - // Handle node forwarding here! - DSNode *Next = N->ForwardNH.getNode(); // Cause recursive shrinkage - Offset += N->ForwardNH.getOffset(); - - if (--N->NumReferrers == 0) { - // Removing the last referrer to the node, sever the forwarding link - N->stopForwarding(); - } - - N = Next; - N->NumReferrers++; - if (N->Size <= Offset) { - assert(N->Size <= 1 && "Forwarded to shrunk but not collapsed node?"); - Offset = 0; - } - return N; -} - -//===----------------------------------------------------------------------===// -// DSScalarMap Implementation -//===----------------------------------------------------------------------===// - -DSNodeHandle &DSScalarMap::AddGlobal(GlobalValue *GV) { - assert(ValueMap.count(GV) == 0 && "GV already exists!"); - - // If the node doesn't exist, check to see if it's a global that is - // equated to another global in the program. - EquivalenceClasses<GlobalValue*>::iterator ECI = GlobalECs.findValue(GV); - if (ECI != GlobalECs.end()) { - GlobalValue *Leader = *GlobalECs.findLeader(ECI); - if (Leader != GV) { - GV = Leader; - iterator I = ValueMap.find(GV); - if (I != ValueMap.end()) - return I->second; - } - } - - // Okay, this is either not an equivalenced global or it is the leader, it - // will be inserted into the scalar map now. - GlobalSet.insert(GV); - - return ValueMap.insert(std::make_pair(GV, DSNodeHandle())).first->second; -} - - -//===----------------------------------------------------------------------===// -// DSNode Implementation -//===----------------------------------------------------------------------===// - -DSNode::DSNode(const Type *T, DSGraph *G) - : NumReferrers(0), Size(0), ParentGraph(G), Ty(Type::VoidTy), NodeType(0) { - // Add the type entry if it is specified... - if (T) mergeTypeInfo(T, 0); - if (G) G->addNode(this); - ++NumNodeAllocated; -} - -// DSNode copy constructor... do not copy over the referrers list! -DSNode::DSNode(const DSNode &N, DSGraph *G, bool NullLinks) - : NumReferrers(0), Size(N.Size), ParentGraph(G), - Ty(N.Ty), Globals(N.Globals), NodeType(N.NodeType) { - if (!NullLinks) { - Links = N.Links; - } else - Links.resize(N.Links.size()); // Create the appropriate number of null links - G->addNode(this); - ++NumNodeAllocated; -} - -/// getTargetData - Get the target data object used to construct this node. -/// -const TargetData &DSNode::getTargetData() const { - return ParentGraph->getTargetData(); -} - -void DSNode::assertOK() const { - assert((Ty != Type::VoidTy || - Ty == Type::VoidTy && (Size == 0 || - (NodeType & DSNode::Array))) && - "Node not OK!"); - - assert(ParentGraph && "Node has no parent?"); - const DSScalarMap &SM = ParentGraph->getScalarMap(); - for (unsigned i = 0, e = Globals.size(); i != e; ++i) { - assert(SM.global_count(Globals[i])); - assert(SM.find(Globals[i])->second.getNode() == this); - } -} - -/// forwardNode - Mark this node as being obsolete, and all references to it -/// should be forwarded to the specified node and offset. -/// -void DSNode::forwardNode(DSNode *To, unsigned Offset) { - assert(this != To && "Cannot forward a node to itself!"); - assert(ForwardNH.isNull() && "Already forwarding from this node!"); - if (To->Size <= 1) Offset = 0; - assert((Offset < To->Size || (Offset == To->Size && Offset == 0)) && - "Forwarded offset is wrong!"); - ForwardNH.setTo(To, Offset); - NodeType = DEAD; - Size = 0; - Ty = Type::VoidTy; - - // Remove this node from the parent graph's Nodes list. - ParentGraph->unlinkNode(this); - ParentGraph = 0; -} - -// addGlobal - Add an entry for a global value to the Globals list. This also -// marks the node with the 'G' flag if it does not already have it. -// -void DSNode::addGlobal(GlobalValue *GV) { - // First, check to make sure this is the leader if the global is in an - // equivalence class. - GV = getParentGraph()->getScalarMap().getLeaderForGlobal(GV); - - // Keep the list sorted. - std::vector<GlobalValue*>::iterator I = - std::lower_bound(Globals.begin(), Globals.end(), GV); - - if (I == Globals.end() || *I != GV) { - Globals.insert(I, GV); - NodeType |= GlobalNode; - } -} - -// removeGlobal - Remove the specified global that is explicitly in the globals -// list. -void DSNode::removeGlobal(GlobalValue *GV) { - std::vector<GlobalValue*>::iterator I = - std::lower_bound(Globals.begin(), Globals.end(), GV); - assert(I != Globals.end() && *I == GV && "Global not in node!"); - Globals.erase(I); -} - -/// foldNodeCompletely - If we determine that this node has some funny -/// behavior happening to it that we cannot represent, we fold it down to a -/// single, completely pessimistic, node. This node is represented as a -/// single byte with a single TypeEntry of "void". -/// -void DSNode::foldNodeCompletely() { - if (isNodeCompletelyFolded()) return; // If this node is already folded... - - ++NumFolds; - - // If this node has a size that is <= 1, we don't need to create a forwarding - // node. - if (getSize() <= 1) { - NodeType |= DSNode::Array; - Ty = Type::VoidTy; - Size = 1; - assert(Links.size() <= 1 && "Size is 1, but has more links?"); - Links.resize(1); - } else { - // Create the node we are going to forward to. This is required because - // some referrers may have an offset that is > 0. By forcing them to - // forward, the forwarder has the opportunity to correct the offset. - DSNode *DestNode = new DSNode(0, ParentGraph); - DestNode->NodeType = NodeType|DSNode::Array; - DestNode->Ty = Type::VoidTy; - DestNode->Size = 1; - DestNode->Globals.swap(Globals); - - // Start forwarding to the destination node... - forwardNode(DestNode, 0); - - if (!Links.empty()) { - DestNode->Links.reserve(1); - - DSNodeHandle NH(DestNode); - DestNode->Links.push_back(Links[0]); - - // If we have links, merge all of our outgoing links together... - for (unsigned i = Links.size()-1; i != 0; --i) - NH.getNode()->Links[0].mergeWith(Links[i]); - Links.clear(); - } else { - DestNode->Links.resize(1); - } - } -} - -/// isNodeCompletelyFolded - Return true if this node has been completely -/// folded down to something that can never be expanded, effectively losing -/// all of the field sensitivity that may be present in the node. -/// -bool DSNode::isNodeCompletelyFolded() const { - return getSize() == 1 && Ty == Type::VoidTy && isArray(); -} - -/// addFullGlobalsList - Compute the full set of global values that are -/// represented by this node. Unlike getGlobalsList(), this requires fair -/// amount of work to compute, so don't treat this method call as free. -void DSNode::addFullGlobalsList(std::vector<GlobalValue*> &List) const { - if (globals_begin() == globals_end()) return; - - EquivalenceClasses<GlobalValue*> &EC = getParentGraph()->getGlobalECs(); - - for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) { - EquivalenceClasses<GlobalValue*>::iterator ECI = EC.findValue(*I); - if (ECI == EC.end()) - List.push_back(*I); - else - List.insert(List.end(), EC.member_begin(ECI), EC.member_end()); - } -} - -/// addFullFunctionList - Identical to addFullGlobalsList, but only return the -/// functions in the full list. -void DSNode::addFullFunctionList(std::vector<Function*> &List) const { - if (globals_begin() == globals_end()) return; - - EquivalenceClasses<GlobalValue*> &EC = getParentGraph()->getGlobalECs(); - - for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) { - EquivalenceClasses<GlobalValue*>::iterator ECI = EC.findValue(*I); - if (ECI == EC.end()) { - if (Function *F = dyn_cast<Function>(*I)) - List.push_back(F); - } else { - for (EquivalenceClasses<GlobalValue*>::member_iterator MI = - EC.member_begin(ECI), E = EC.member_end(); MI != E; ++MI) - if (Function *F = dyn_cast<Function>(*MI)) - List.push_back(F); - } - } -} - -namespace { - /// TypeElementWalker Class - Used for implementation of physical subtyping... - /// - class TypeElementWalker { - struct StackState { - const Type *Ty; - unsigned Offset; - unsigned Idx; - StackState(const Type *T, unsigned Off = 0) - : Ty(T), Offset(Off), Idx(0) {} - }; - - std::vector<StackState> Stack; - const TargetData &TD; - public: - TypeElementWalker(const Type *T, const TargetData &td) : TD(td) { - Stack.push_back(T); - StepToLeaf(); - } - - bool isDone() const { return Stack.empty(); } - const Type *getCurrentType() const { return Stack.back().Ty; } - unsigned getCurrentOffset() const { return Stack.back().Offset; } - - void StepToNextType() { - PopStackAndAdvance(); - StepToLeaf(); - } - - private: - /// PopStackAndAdvance - Pop the current element off of the stack and - /// advance the underlying element to the next contained member. - void PopStackAndAdvance() { - assert(!Stack.empty() && "Cannot pop an empty stack!"); - Stack.pop_back(); - while (!Stack.empty()) { - StackState &SS = Stack.back(); - if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) { - ++SS.Idx; - if (SS.Idx != ST->getNumElements()) { - const StructLayout *SL = TD.getStructLayout(ST); - SS.Offset += - unsigned(SL->MemberOffsets[SS.Idx]-SL->MemberOffsets[SS.Idx-1]); - return; - } - Stack.pop_back(); // At the end of the structure - } else { - const ArrayType *AT = cast<ArrayType>(SS.Ty); - ++SS.Idx; - if (SS.Idx != AT->getNumElements()) { - SS.Offset += unsigned(TD.getTypeSize(AT->getElementType())); - return; - } - Stack.pop_back(); // At the end of the array - } - } - } - - /// StepToLeaf - Used by physical subtyping to move to the first leaf node - /// on the type stack. - void StepToLeaf() { - if (Stack.empty()) return; - while (!Stack.empty() && !Stack.back().Ty->isFirstClassType()) { - StackState &SS = Stack.back(); - if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) { - if (ST->getNumElements() == 0) { - assert(SS.Idx == 0); - PopStackAndAdvance(); - } else { - // Step into the structure... - assert(SS.Idx < ST->getNumElements()); - const StructLayout *SL = TD.getStructLayout(ST); - Stack.push_back(StackState(ST->getElementType(SS.Idx), - SS.Offset+unsigned(SL->MemberOffsets[SS.Idx]))); - } - } else { - const ArrayType *AT = cast<ArrayType>(SS.Ty); - if (AT->getNumElements() == 0) { - assert(SS.Idx == 0); - PopStackAndAdvance(); - } else { - // Step into the array... - assert(SS.Idx < AT->getNumElements()); - Stack.push_back(StackState(AT->getElementType(), - SS.Offset+SS.Idx* - unsigned(TD.getTypeSize(AT->getElementType())))); - } - } - } - } - }; -} // end anonymous namespace - -/// ElementTypesAreCompatible - Check to see if the specified types are -/// "physically" compatible. If so, return true, else return false. We only -/// have to check the fields in T1: T2 may be larger than T1. If AllowLargerT1 -/// is true, then we also allow a larger T1. -/// -static bool ElementTypesAreCompatible(const Type *T1, const Type *T2, - bool AllowLargerT1, const TargetData &TD){ - TypeElementWalker T1W(T1, TD), T2W(T2, TD); - - while (!T1W.isDone() && !T2W.isDone()) { - if (T1W.getCurrentOffset() != T2W.getCurrentOffset()) - return false; - - const Type *T1 = T1W.getCurrentType(); - const Type *T2 = T2W.getCurrentType(); - if (T1 != T2 && !T1->canLosslesslyBitCastTo(T2)) - return false; - - T1W.StepToNextType(); - T2W.StepToNextType(); - } - - return AllowLargerT1 || T1W.isDone(); -} - - -/// mergeTypeInfo - This method merges the specified type into the current node -/// at the specified offset. This may update the current node's type record if -/// this gives more information to the node, it may do nothing to the node if -/// this information is already known, or it may merge the node completely (and -/// return true) if the information is incompatible with what is already known. -/// -/// This method returns true if the node is completely folded, otherwise false. -/// -bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset, - bool FoldIfIncompatible) { - DOUT << "merging " << *NewTy << " at " << Offset << " with " << *Ty << "\n"; - const TargetData &TD = getTargetData(); - // Check to make sure the Size member is up-to-date. Size can be one of the - // following: - // Size = 0, Ty = Void: Nothing is known about this node. - // Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero - // Size = 1, Ty = Void, Array = 1: The node is collapsed - // Otherwise, sizeof(Ty) = Size - // - assert(((Size == 0 && Ty == Type::VoidTy && !isArray()) || - (Size == 0 && !Ty->isSized() && !isArray()) || - (Size == 1 && Ty == Type::VoidTy && isArray()) || - (Size == 0 && !Ty->isSized() && !isArray()) || - (TD.getTypeSize(Ty) == Size)) && - "Size member of DSNode doesn't match the type structure!"); - assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!"); - - if (Offset == 0 && NewTy == Ty) - return false; // This should be a common case, handle it efficiently - - // Return true immediately if the node is completely folded. - if (isNodeCompletelyFolded()) return true; - - // If this is an array type, eliminate the outside arrays because they won't - // be used anyway. This greatly reduces the size of large static arrays used - // as global variables, for example. - // - bool WillBeArray = false; - while (const ArrayType *AT = dyn_cast<ArrayType>(NewTy)) { - // FIXME: we might want to keep small arrays, but must be careful about - // things like: [2 x [10000 x int*]] - NewTy = AT->getElementType(); - WillBeArray = true; - } - - // Figure out how big the new type we're merging in is... - unsigned NewTySize = NewTy->isSized() ? (unsigned)TD.getTypeSize(NewTy) : 0; - - // Otherwise check to see if we can fold this type into the current node. If - // we can't, we fold the node completely, if we can, we potentially update our - // internal state. - // - if (Ty == Type::VoidTy) { - // If this is the first type that this node has seen, just accept it without - // question.... - assert(Offset == 0 && !isArray() && - "Cannot have an offset into a void node!"); - - // If this node would have to have an unreasonable number of fields, just - // collapse it. This can occur for fortran common blocks, which have stupid - // things like { [100000000 x double], [1000000 x double] }. - unsigned NumFields = (NewTySize+DS::PointerSize-1) >> DS::PointerShift; - if (NumFields > DSAFieldLimit) { - foldNodeCompletely(); - return true; - } - - Ty = NewTy; - NodeType &= ~Array; - if (WillBeArray) NodeType |= Array; - Size = NewTySize; - - // Calculate the number of outgoing links from this node. - Links.resize(NumFields); - return false; - } - - // Handle node expansion case here... - if (Offset+NewTySize > Size) { - // It is illegal to grow this node if we have treated it as an array of - // objects... - if (isArray()) { - if (FoldIfIncompatible) foldNodeCompletely(); - return true; - } - - // If this node would have to have an unreasonable number of fields, just - // collapse it. This can occur for fortran common blocks, which have stupid - // things like { [100000000 x double], [1000000 x double] }. - unsigned NumFields = (NewTySize+Offset+DS::PointerSize-1) >> DS::PointerShift; - if (NumFields > DSAFieldLimit) { - foldNodeCompletely(); - return true; - } - - if (Offset) { - //handle some common cases: - // Ty: struct { t1, t2, t3, t4, ..., tn} - // NewTy: struct { offset, stuff...} - // try merge with NewTy: struct {t1, t2, stuff...} if offset lands exactly - // on a field in Ty - if (isa<StructType>(NewTy) && isa<StructType>(Ty)) { - DOUT << "Ty: " << *Ty << "\nNewTy: " << *NewTy << "@" << Offset << "\n"; - const StructType *STy = cast<StructType>(Ty); - const StructLayout &SL = *TD.getStructLayout(STy); - unsigned i = SL.getElementContainingOffset(Offset); - //Either we hit it exactly or give up - if (SL.MemberOffsets[i] != Offset) { - if (FoldIfIncompatible) foldNodeCompletely(); - return true; - } - std::vector<const Type*> nt; - for (unsigned x = 0; x < i; ++x) - nt.push_back(STy->getElementType(x)); - STy = cast<StructType>(NewTy); - nt.insert(nt.end(), STy->element_begin(), STy->element_end()); - //and merge - STy = StructType::get(nt); - DOUT << "Trying with: " << *STy << "\n"; - return mergeTypeInfo(STy, 0); - } - - //Ty: struct { t1, t2, t3 ... tn} - //NewTy T offset x - //try merge with NewTy: struct : {t1, t2, T} if offset lands on a field - //in Ty - if (isa<StructType>(Ty)) { - DOUT << "Ty: " << *Ty << "\nNewTy: " << *NewTy << "@" << Offset << "\n"; - const StructType *STy = cast<StructType>(Ty); - const StructLayout &SL = *TD.getStructLayout(STy); - unsigned i = SL.getElementContainingOffset(Offset); - //Either we hit it exactly or give up - if (SL.MemberOffsets[i] != Offset) { - if (FoldIfIncompatible) foldNodeCompletely(); - return true; - } - std::vector<const Type*> nt; - for (unsigned x = 0; x < i; ++x) - nt.push_back(STy->getElementType(x)); - nt.push_back(NewTy); - //and merge - STy = StructType::get(nt); - DOUT << "Trying with: " << *STy << "\n"; - return mergeTypeInfo(STy, 0); - } - - assert(0 && - "UNIMP: Trying to merge a growth type into " - "offset != 0: Collapsing!"); - abort(); - if (FoldIfIncompatible) foldNodeCompletely(); - return true; - - } - - - // Okay, the situation is nice and simple, we are trying to merge a type in - // at offset 0 that is bigger than our current type. Implement this by - // switching to the new type and then merge in the smaller one, which should - // hit the other code path here. If the other code path decides it's not - // ok, it will collapse the node as appropriate. - // - - const Type *OldTy = Ty; - Ty = NewTy; - NodeType &= ~Array; - if (WillBeArray) NodeType |= Array; - Size = NewTySize; - - // Must grow links to be the appropriate size... - Links.resize(NumFields); - - // Merge in the old type now... which is guaranteed to be smaller than the - // "current" type. - return mergeTypeInfo(OldTy, 0); - } - - assert(Offset <= Size && - "Cannot merge something into a part of our type that doesn't exist!"); - - // Find the section of Ty that NewTy overlaps with... first we find the - // type that starts at offset Offset. - // - unsigned O = 0; - const Type *SubType = Ty; - while (O < Offset) { - assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!"); - - switch (SubType->getTypeID()) { - case Type::StructTyID: { - const StructType *STy = cast<StructType>(SubType); - const StructLayout &SL = *TD.getStructLayout(STy); - unsigned i = SL.getElementContainingOffset(Offset-O); - - // The offset we are looking for must be in the i'th element... - SubType = STy->getElementType(i); - O += (unsigned)SL.MemberOffsets[i]; - break; - } - case Type::ArrayTyID: { - SubType = cast<ArrayType>(SubType)->getElementType(); - unsigned ElSize = (unsigned)TD.getTypeSize(SubType); - unsigned Remainder = (Offset-O) % ElSize; - O = Offset-Remainder; - break; - } - default: - if (FoldIfIncompatible) foldNodeCompletely(); - return true; - } - } - - assert(O == Offset && "Could not achieve the correct offset!"); - - // If we found our type exactly, early exit - if (SubType == NewTy) return false; - - // Differing function types don't require us to merge. They are not values - // anyway. - if (isa<FunctionType>(SubType) && - isa<FunctionType>(NewTy)) return false; - - unsigned SubTypeSize = SubType->isSized() ? - (unsigned)TD.getTypeSize(SubType) : 0; - - // Ok, we are getting desperate now. Check for physical subtyping, where we - // just require each element in the node to be compatible. - if (NewTySize <= SubTypeSize && NewTySize && NewTySize < 256 && - SubTypeSize && SubTypeSize < 256 && - ElementTypesAreCompatible(NewTy, SubType, !isArray(), TD)) - return false; - - // Okay, so we found the leader type at the offset requested. Search the list - // of types that starts at this offset. If SubType is currently an array or - // structure, the type desired may actually be the first element of the - // composite type... - // - unsigned PadSize = SubTypeSize; // Size, including pad memory which is ignored - while (SubType != NewTy) { - const Type *NextSubType = 0; - unsigned NextSubTypeSize = 0; - unsigned NextPadSize = 0; - switch (SubType->getTypeID()) { - case Type::StructTyID: { - const StructType *STy = cast<StructType>(SubType); - const StructLayout &SL = *TD.getStructLayout(STy); - if (SL.MemberOffsets.size() > 1) - NextPadSize = (unsigned)SL.MemberOffsets[1]; - else - NextPadSize = SubTypeSize; - NextSubType = STy->getElementType(0); - NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType); - break; - } - case Type::ArrayTyID: - NextSubType = cast<ArrayType>(SubType)->getElementType(); - NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType); - NextPadSize = NextSubTypeSize; - break; - default: ; - // fall out - } - - if (NextSubType == 0) - break; // In the default case, break out of the loop - - if (NextPadSize < NewTySize) - break; // Don't allow shrinking to a smaller type than NewTySize - SubType = NextSubType; - SubTypeSize = NextSubTypeSize; - PadSize = NextPadSize; - } - - // If we found the type exactly, return it... - if (SubType == NewTy) - return false; - - // Check to see if we have a compatible, but different type... - if (NewTySize == SubTypeSize) { - // Check to see if this type is obviously convertible... int -> uint f.e. - if (NewTy->canLosslesslyBitCastTo(SubType)) - return false; - - // Check to see if we have a pointer & integer mismatch going on here, - // loading a pointer as a long, for example. - // - if (SubType->isInteger() && isa<PointerType>(NewTy) || - NewTy->isInteger() && isa<PointerType>(SubType)) - return false; - } else if (NewTySize > SubTypeSize && NewTySize <= PadSize) { - // We are accessing the field, plus some structure padding. Ignore the - // structure padding. - return false; - } - - Module *M = 0; - if (getParentGraph()->retnodes_begin() != getParentGraph()->retnodes_end()) - M = getParentGraph()->retnodes_begin()->first->getParent(); - - DOUT << "MergeTypeInfo Folding OrigTy: "; - DEBUG(WriteTypeSymbolic(*cerr.stream(), Ty, M) << "\n due to:"; - WriteTypeSymbolic(*cerr.stream(), NewTy, M) << " @ " << Offset << "!\n" - << "SubType: "; - WriteTypeSymbolic(*cerr.stream(), SubType, M) << "\n\n"); - - if (FoldIfIncompatible) foldNodeCompletely(); - return true; -} - - - -/// addEdgeTo - Add an edge from the current node to the specified node. This -/// can cause merging of nodes in the graph. -/// -void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) { - if (NH.isNull()) return; // Nothing to do - - if (isNodeCompletelyFolded()) - Offset = 0; - - DSNodeHandle &ExistingEdge = getLink(Offset); - if (!ExistingEdge.isNull()) { - // Merge the two nodes... - ExistingEdge.mergeWith(NH); - } else { // No merging to perform... - setLink(Offset, NH); // Just force a link in there... - } -} - - -/// MergeSortedVectors - Efficiently merge a vector into another vector where -/// duplicates are not allowed and both are sorted. This assumes that 'T's are -/// efficiently copyable and have sane comparison semantics. -/// -static void MergeSortedVectors(std::vector<GlobalValue*> &Dest, - const std::vector<GlobalValue*> &Src) { - // By far, the most common cases will be the simple ones. In these cases, - // avoid having to allocate a temporary vector... - // - if (Src.empty()) { // Nothing to merge in... - return; - } else if (Dest.empty()) { // Just copy the result in... - Dest = Src; - } else if (Src.size() == 1) { // Insert a single element... - const GlobalValue *V = Src[0]; - std::vector<GlobalValue*>::iterator I = - std::lower_bound(Dest.begin(), Dest.end(), V); - if (I == Dest.end() || *I != Src[0]) // If not already contained... - Dest.insert(I, Src[0]); - } else if (Dest.size() == 1) { - GlobalValue *Tmp = Dest[0]; // Save value in temporary... - Dest = Src; // Copy over list... - std::vector<GlobalValue*>::iterator I = - std::lower_bound(Dest.begin(), Dest.end(), Tmp); - if (I == Dest.end() || *I != Tmp) // If not already contained... - Dest.insert(I, Tmp); - - } else { - // Make a copy to the side of Dest... - std::vector<GlobalValue*> Old(Dest); - - // Make space for all of the type entries now... - Dest.resize(Dest.size()+Src.size()); - - // Merge the two sorted ranges together... into Dest. - std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin()); - - // Now erase any duplicate entries that may have accumulated into the - // vectors (because they were in both of the input sets) - Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end()); - } -} - -void DSNode::mergeGlobals(const std::vector<GlobalValue*> &RHS) { - MergeSortedVectors(Globals, RHS); -} - -// MergeNodes - Helper function for DSNode::mergeWith(). -// This function does the hard work of merging two nodes, CurNodeH -// and NH after filtering out trivial cases and making sure that -// CurNodeH.offset >= NH.offset. -// -// ***WARNING*** -// Since merging may cause either node to go away, we must always -// use the node-handles to refer to the nodes. These node handles are -// automatically updated during merging, so will always provide access -// to the correct node after a merge. -// -void DSNode::MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH) { - assert(CurNodeH.getOffset() >= NH.getOffset() && - "This should have been enforced in the caller."); - assert(CurNodeH.getNode()->getParentGraph()==NH.getNode()->getParentGraph() && - "Cannot merge two nodes that are not in the same graph!"); - - // Now we know that Offset >= NH.Offset, so convert it so our "Offset" (with - // respect to NH.Offset) is now zero. NOffset is the distance from the base - // of our object that N starts from. - // - unsigned NOffset = CurNodeH.getOffset()-NH.getOffset(); - unsigned NSize = NH.getNode()->getSize(); - - // If the two nodes are of different size, and the smaller node has the array - // bit set, collapse! - if (NSize != CurNodeH.getNode()->getSize()) { -#if COLLAPSE_ARRAYS_AGGRESSIVELY - if (NSize < CurNodeH.getNode()->getSize()) { - if (NH.getNode()->isArray()) - NH.getNode()->foldNodeCompletely(); - } else if (CurNodeH.getNode()->isArray()) { - NH.getNode()->foldNodeCompletely(); - } -#endif - } - - // Merge the type entries of the two nodes together... - if (NH.getNode()->Ty != Type::VoidTy) - CurNodeH.getNode()->mergeTypeInfo(NH.getNode()->Ty, NOffset); - assert(!CurNodeH.getNode()->isDeadNode()); - - // If we are merging a node with a completely folded node, then both nodes are - // now completely folded. - // - if (CurNodeH.getNode()->isNodeCompletelyFolded()) { - if (!NH.getNode()->isNodeCompletelyFolded()) { - NH.getNode()->foldNodeCompletely(); - assert(NH.getNode() && NH.getOffset() == 0 && - "folding did not make offset 0?"); - NOffset = NH.getOffset(); - NSize = NH.getNode()->getSize(); - assert(NOffset == 0 && NSize == 1); - } - } else if (NH.getNode()->isNodeCompletelyFolded()) { - CurNodeH.getNode()->foldNodeCompletely(); - assert(CurNodeH.getNode() && CurNodeH.getOffset() == 0 && - "folding did not make offset 0?"); - NSize = NH.getNode()->getSize(); - NOffset = NH.getOffset(); - assert(NOffset == 0 && NSize == 1); - } - - DSNode *N = NH.getNode(); - if (CurNodeH.getNode() == N || N == 0) return; - assert(!CurNodeH.getNode()->isDeadNode()); - - // Merge the NodeType information. - CurNodeH.getNode()->NodeType |= N->NodeType; - - // Start forwarding to the new node! - N->forwardNode(CurNodeH.getNode(), NOffset); - assert(!CurNodeH.getNode()->isDeadNode()); - - // Make all of the outgoing links of N now be outgoing links of CurNodeH. - // - for (unsigned i = 0; i < N->getNumLinks(); ++i) { - DSNodeHandle &Link = N->getLink(i << DS::PointerShift); - if (Link.getNode()) { - // Compute the offset into the current node at which to - // merge this link. In the common case, this is a linear - // relation to the offset in the original node (with - // wrapping), but if the current node gets collapsed due to - // recursive merging, we must make sure to merge in all remaining - // links at offset zero. - unsigned MergeOffset = 0; - DSNode *CN = CurNodeH.getNode(); - if (CN->Size != 1) - MergeOffset = ((i << DS::PointerShift)+NOffset) % CN->getSize(); - CN->addEdgeTo(MergeOffset, Link); - } - } - - // Now that there are no outgoing edges, all of the Links are dead. - N->Links.clear(); - - // Merge the globals list... - if (!N->Globals.empty()) { - CurNodeH.getNode()->mergeGlobals(N->Globals); - - // Delete the globals from the old node... - std::vector<GlobalValue*>().swap(N->Globals); - } -} - - -/// mergeWith - Merge this node and the specified node, moving all links to and -/// from the argument node into the current node, deleting the node argument. -/// Offset indicates what offset the specified node is to be merged into the -/// current node. -/// -/// The specified node may be a null pointer (in which case, we update it to -/// point to this node). -/// -void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) { - DSNode *N = NH.getNode(); - if (N == this && NH.getOffset() == Offset) - return; // Noop - - // If the RHS is a null node, make it point to this node! - if (N == 0) { - NH.mergeWith(DSNodeHandle(this, Offset)); - return; - } - - assert(!N->isDeadNode() && !isDeadNode()); - assert(!hasNoReferrers() && "Should not try to fold a useless node!"); - - if (N == this) { - // We cannot merge two pieces of the same node together, collapse the node - // completely. - DOUT << "Attempting to merge two chunks of the same node together!\n"; - foldNodeCompletely(); - return; - } - - // If both nodes are not at offset 0, make sure that we are merging the node - // at an later offset into the node with the zero offset. - // - if (Offset < NH.getOffset()) { - N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); - return; - } else if (Offset == NH.getOffset() && getSize() < N->getSize()) { - // If the offsets are the same, merge the smaller node into the bigger node - N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); - return; - } - - // Ok, now we can merge the two nodes. Use a static helper that works with - // two node handles, since "this" may get merged away at intermedi |