aboutsummaryrefslogtreecommitdiff
path: root/include/llvm/Target
diff options
context:
space:
mode:
authorChandler Carruth <chandlerc@gmail.com>2013-01-07 01:37:14 +0000
committerChandler Carruth <chandlerc@gmail.com>2013-01-07 01:37:14 +0000
commitaeef83c6afa1e18d1cf9d359cc678ca0ad556175 (patch)
treed79f0bdd4339c6518779ad9a1db4e7d220606a14 /include/llvm/Target
parent916d52a03ebd45f4b6d9dea185ee616623feeaf0 (diff)
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'include/llvm/Target')
-rw-r--r--include/llvm/Target/TargetLowering.h12
-rw-r--r--include/llvm/Target/TargetMachine.h12
-rw-r--r--include/llvm/Target/TargetTransformImpl.h104
3 files changed, 20 insertions, 108 deletions
diff --git a/include/llvm/Target/TargetLowering.h b/include/llvm/Target/TargetLowering.h
index ce6abc5170..8359a5c68c 100644
--- a/include/llvm/Target/TargetLowering.h
+++ b/include/llvm/Target/TargetLowering.h
@@ -895,6 +895,18 @@ public:
}
//===--------------------------------------------------------------------===//
+ /// \name Helpers for TargetTransformInfo implementations
+ /// @{
+
+ /// Get the ISD node that corresponds to the Instruction class opcode.
+ int InstructionOpcodeToISD(unsigned Opcode) const;
+
+ /// Estimate the cost of type-legalization and the legalized type.
+ std::pair<unsigned, MVT> getTypeLegalizationCost(Type *Ty) const;
+
+ /// @}
+
+ //===--------------------------------------------------------------------===//
// TargetLowering Optimization Methods
//
diff --git a/include/llvm/Target/TargetMachine.h b/include/llvm/Target/TargetMachine.h
index 5756f2c552..aa049f02fc 100644
--- a/include/llvm/Target/TargetMachine.h
+++ b/include/llvm/Target/TargetMachine.h
@@ -108,10 +108,6 @@ public:
virtual const TargetLowering *getTargetLowering() const { return 0; }
virtual const TargetSelectionDAGInfo *getSelectionDAGInfo() const{ return 0; }
virtual const DataLayout *getDataLayout() const { return 0; }
- virtual const ScalarTargetTransformInfo*
- getScalarTargetTransformInfo() const { return 0; }
- virtual const VectorTargetTransformInfo*
- getVectorTargetTransformInfo() const { return 0; }
/// getMCAsmInfo - Return target specific asm information.
///
@@ -232,6 +228,9 @@ public:
/// sections.
static void setFunctionSections(bool);
+ /// \brief Register analysis passes for this target with a pass manager.
+ virtual void addAnalysisPasses(PassManagerBase &) {}
+
/// CodeGenFileType - These enums are meant to be passed into
/// addPassesToEmitFile to indicate what type of file to emit, and returned by
/// it to indicate what type of file could actually be made.
@@ -290,6 +289,11 @@ protected: // Can only create subclasses.
CodeGenOpt::Level OL);
public:
+ /// \brief Register analysis passes for this target with a pass manager.
+ ///
+ /// This registers target independent analysis passes.
+ virtual void addAnalysisPasses(PassManagerBase &PM);
+
/// createPassConfig - Create a pass configuration object to be used by
/// addPassToEmitX methods for generating a pipeline of CodeGen passes.
virtual TargetPassConfig *createPassConfig(PassManagerBase &PM);
diff --git a/include/llvm/Target/TargetTransformImpl.h b/include/llvm/Target/TargetTransformImpl.h
deleted file mode 100644
index 2069927619..0000000000
--- a/include/llvm/Target/TargetTransformImpl.h
+++ /dev/null
@@ -1,104 +0,0 @@
-//=- llvm/Target/TargetTransformImpl.h - Target Loop Trans Info----*- C++ -*-=//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains the target-specific implementations of the
-// TargetTransform interfaces.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TARGET_TARGET_TRANSFORMATION_IMPL_H
-#define LLVM_TARGET_TARGET_TRANSFORMATION_IMPL_H
-
-#include "llvm/CodeGen/ValueTypes.h"
-#include "llvm/TargetTransformInfo.h"
-
-namespace llvm {
-
-class TargetLowering;
-
-/// ScalarTargetTransformInfo - This is a default implementation for the
-/// ScalarTargetTransformInfo interface. Different targets can implement
-/// this interface differently.
-class ScalarTargetTransformImpl : public ScalarTargetTransformInfo {
-protected:
- const TargetLowering *TLI;
-
-public:
- /// Ctor
- explicit ScalarTargetTransformImpl(const TargetLowering *TL) : TLI(TL) {}
-
- virtual bool isLegalAddImmediate(int64_t imm) const;
-
- virtual bool isLegalICmpImmediate(int64_t imm) const;
-
- virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale) const;
-
- virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
-
- virtual bool isTypeLegal(Type *Ty) const;
-
- virtual unsigned getJumpBufAlignment() const;
-
- virtual unsigned getJumpBufSize() const;
-
- virtual bool shouldBuildLookupTables() const;
-};
-
-class VectorTargetTransformImpl : public VectorTargetTransformInfo {
-protected:
- const TargetLowering *TLI;
-
- /// Estimate the cost of type-legalization and the legalized type.
- std::pair<unsigned, MVT> getTypeLegalizationCost(Type *Ty) const;
-
- /// Estimate the overhead of scalarizing an instruction. Insert and Extract
- /// are set if the result needs to be inserted and/or extracted from vectors.
- unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
-
- // Get the ISD node that corresponds to the Instruction class opcode.
- int InstructionOpcodeToISD(unsigned Opcode) const;
-
-public:
- explicit VectorTargetTransformImpl(const TargetLowering *TL) : TLI(TL) {}
-
- virtual ~VectorTargetTransformImpl() {}
-
- virtual unsigned getNumberOfRegisters(bool Vector) const;
-
- virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const;
-
- virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
- int Index, Type *SubTp) const;
-
- virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
- Type *Src) const;
-
- virtual unsigned getCFInstrCost(unsigned Opcode) const;
-
- virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
- Type *CondTy) const;
-
- virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
- unsigned Index) const;
-
- virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
- unsigned Alignment,
- unsigned AddressSpace) const;
-
- virtual unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy,
- ArrayRef<Type*> Tys) const;
-
- virtual unsigned getNumberOfParts(Type *Tp) const;
-};
-
-} // end llvm namespace
-
-#endif