aboutsummaryrefslogtreecommitdiff
path: root/utils/TableGen/NeonEmitter.cpp
blob: 6cd331133b16b2237fe5f6e619fe8cd8acd1b1f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
//===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting arm_neon.h, which includes
// a declaration and definition of each function specified by the ARM NEON
// compiler interface.  See ARM document DUI0348B.
//
// Each NEON instruction is implemented in terms of 1 or more functions which
// are suffixed with the element type of the input vectors.  Functions may be
// implemented in terms of generic vector operations such as +, *, -, etc. or
// by calling a __builtin_-prefixed function which will be handled by clang's
// CodeGen library.
//
// Additional validation code can be generated by this file when runHeader() is
// called, rather than the normal run() entry point.  A complete set of tests
// for Neon intrinsics can be generated by calling the runTests() entry point.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <string>
using namespace llvm;

enum OpKind {
  OpNone,
  OpUnavailable,
  OpAdd,
  OpAddl,
  OpAddw,
  OpSub,
  OpSubl,
  OpSubw,
  OpMul,
  OpMla,
  OpMlal,
  OpMls,
  OpMlsl,
  OpMulN,
  OpMlaN,
  OpMlsN,
  OpMlalN,
  OpMlslN,
  OpMulLane,
  OpMullLane,
  OpMlaLane,
  OpMlsLane,
  OpMlalLane,
  OpMlslLane,
  OpQDMullLane,
  OpQDMlalLane,
  OpQDMlslLane,
  OpQDMulhLane,
  OpQRDMulhLane,
  OpEq,
  OpGe,
  OpLe,
  OpGt,
  OpLt,
  OpNeg,
  OpNot,
  OpAnd,
  OpOr,
  OpXor,
  OpAndNot,
  OpOrNot,
  OpCast,
  OpConcat,
  OpDup,
  OpDupLane,
  OpHi,
  OpLo,
  OpSelect,
  OpRev16,
  OpRev32,
  OpRev64,
  OpReinterpret,
  OpAbdl,
  OpAba,
  OpAbal
};

enum ClassKind {
  ClassNone,
  ClassI,           // generic integer instruction, e.g., "i8" suffix
  ClassS,           // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
  ClassW,           // width-specific instruction, e.g., "8" suffix
  ClassB,           // bitcast arguments with enum argument to specify type
  ClassL,           // Logical instructions which are op instructions
                    // but we need to not emit any suffix for in our
                    // tests.
  ClassNoTest       // Instructions which we do not test since they are
                    // not TRUE instructions.
};

/// NeonTypeFlags - Flags to identify the types for overloaded Neon
/// builtins.  These must be kept in sync with the flags in
/// include/clang/Basic/TargetBuiltins.h.
namespace {
class NeonTypeFlags {
  enum {
    EltTypeMask = 0xf,
    UnsignedFlag = 0x10,
    QuadFlag = 0x20
  };
  uint32_t Flags;

public:
  enum EltType {
    Int8,
    Int16,
    Int32,
    Int64,
    Poly8,
    Poly16,
    Float16,
    Float32
  };

  NeonTypeFlags(unsigned F) : Flags(F) {}
  NeonTypeFlags(EltType ET, bool IsUnsigned, bool IsQuad) : Flags(ET) {
    if (IsUnsigned)
      Flags |= UnsignedFlag;
    if (IsQuad)
      Flags |= QuadFlag;
  }

  uint32_t getFlags() const { return Flags; }
};
} // end anonymous namespace

namespace {
class NeonEmitter {
  RecordKeeper &Records;
  StringMap<OpKind> OpMap;
  DenseMap<Record*, ClassKind> ClassMap;

public:
  NeonEmitter(RecordKeeper &R) : Records(R) {
    OpMap["OP_NONE"]  = OpNone;
    OpMap["OP_UNAVAILABLE"] = OpUnavailable;
    OpMap["OP_ADD"]   = OpAdd;
    OpMap["OP_ADDL"]  = OpAddl;
    OpMap["OP_ADDW"]  = OpAddw;
    OpMap["OP_SUB"]   = OpSub;
    OpMap["OP_SUBL"]  = OpSubl;
    OpMap["OP_SUBW"]  = OpSubw;
    OpMap["OP_MUL"]   = OpMul;
    OpMap["OP_MLA"]   = OpMla;
    OpMap["OP_MLAL"]  = OpMlal;
    OpMap["OP_MLS"]   = OpMls;
    OpMap["OP_MLSL"]  = OpMlsl;
    OpMap["OP_MUL_N"] = OpMulN;
    OpMap["OP_MLA_N"] = OpMlaN;
    OpMap["OP_MLS_N"] = OpMlsN;
    OpMap["OP_MLAL_N"] = OpMlalN;
    OpMap["OP_MLSL_N"] = OpMlslN;
    OpMap["OP_MUL_LN"]= OpMulLane;
    OpMap["OP_MULL_LN"] = OpMullLane;
    OpMap["OP_MLA_LN"]= OpMlaLane;
    OpMap["OP_MLS_LN"]= OpMlsLane;
    OpMap["OP_MLAL_LN"] = OpMlalLane;
    OpMap["OP_MLSL_LN"] = OpMlslLane;
    OpMap["OP_QDMULL_LN"] = OpQDMullLane;
    OpMap["OP_QDMLAL_LN"] = OpQDMlalLane;
    OpMap["OP_QDMLSL_LN"] = OpQDMlslLane;
    OpMap["OP_QDMULH_LN"] = OpQDMulhLane;
    OpMap["OP_QRDMULH_LN"] = OpQRDMulhLane;
    OpMap["OP_EQ"]    = OpEq;
    OpMap["OP_GE"]    = OpGe;
    OpMap["OP_LE"]    = OpLe;
    OpMap["OP_GT"]    = OpGt;
    OpMap["OP_LT"]    = OpLt;
    OpMap["OP_NEG"]   = OpNeg;
    OpMap["OP_NOT"]   = OpNot;
    OpMap["OP_AND"]   = OpAnd;
    OpMap["OP_OR"]    = OpOr;
    OpMap["OP_XOR"]   = OpXor;
    OpMap["OP_ANDN"]  = OpAndNot;
    OpMap["OP_ORN"]   = OpOrNot;
    OpMap["OP_CAST"]  = OpCast;
    OpMap["OP_CONC"]  = OpConcat;
    OpMap["OP_HI"]    = OpHi;
    OpMap["OP_LO"]    = OpLo;
    OpMap["OP_DUP"]   = OpDup;
    OpMap["OP_DUP_LN"] = OpDupLane;
    OpMap["OP_SEL"]   = OpSelect;
    OpMap["OP_REV16"] = OpRev16;
    OpMap["OP_REV32"] = OpRev32;
    OpMap["OP_REV64"] = OpRev64;
    OpMap["OP_REINT"] = OpReinterpret;
    OpMap["OP_ABDL"]  = OpAbdl;
    OpMap["OP_ABA"]   = OpAba;
    OpMap["OP_ABAL"]  = OpAbal;

    Record *SI = R.getClass("SInst");
    Record *II = R.getClass("IInst");
    Record *WI = R.getClass("WInst");
    Record *SOpI = R.getClass("SOpInst");
    Record *IOpI = R.getClass("IOpInst");
    Record *WOpI = R.getClass("WOpInst");
    Record *LOpI = R.getClass("LOpInst");
    Record *NoTestOpI = R.getClass("NoTestOpInst");

    ClassMap[SI] = ClassS;
    ClassMap[II] = ClassI;
    ClassMap[WI] = ClassW;
    ClassMap[SOpI] = ClassS;
    ClassMap[IOpI] = ClassI;
    ClassMap[WOpI] = ClassW;
    ClassMap[LOpI] = ClassL;
    ClassMap[NoTestOpI] = ClassNoTest;
  }

  // run - Emit arm_neon.h.inc
  void run(raw_ostream &o);

  // runHeader - Emit all the __builtin prototypes used in arm_neon.h
  void runHeader(raw_ostream &o);

  // runTests - Emit tests for all the Neon intrinsics.
  void runTests(raw_ostream &o);

private:
  void emitIntrinsic(raw_ostream &OS, Record *R);
};
} // end anonymous namespace

/// ParseTypes - break down a string such as "fQf" into a vector of StringRefs,
/// which each StringRef representing a single type declared in the string.
/// for "fQf" we would end up with 2 StringRefs, "f", and "Qf", representing
/// 2xfloat and 4xfloat respectively.
static void ParseTypes(Record *r, std::string &s,
                       SmallVectorImpl<StringRef> &TV) {
  const char *data = s.data();
  int len = 0;

  for (unsigned i = 0, e = s.size(); i != e; ++i, ++len) {
    if (data[len] == 'P' || data[len] == 'Q' || data[len] == 'U')
      continue;

    switch (data[len]) {
      case 'c':
      case 's':
      case 'i':
      case 'l':
      case 'h':
      case 'f':
        break;
      default:
        PrintFatalError(r->getLoc(),
                      "Unexpected letter: " + std::string(data + len, 1));
    }
    TV.push_back(StringRef(data, len + 1));
    data += len + 1;
    len = -1;
  }
}

/// Widen - Convert a type code into the next wider type.  char -> short,
/// short -> int, etc.
static char Widen(const char t) {
  switch (t) {
    case 'c':
      return 's';
    case 's':
      return 'i';
    case 'i':
      return 'l';
    case 'h':
      return 'f';
    default:
      PrintFatalError("unhandled type in widen!");
  }
}

/// Narrow - Convert a type code into the next smaller type.  short -> char,
/// float -> half float, etc.
static char Narrow(const char t) {
  switch (t) {
    case 's':
      return 'c';
    case 'i':
      return 's';
    case 'l':
      return 'i';
    case 'f':
      return 'h';
    default:
      PrintFatalError("unhandled type in narrow!");
  }
}

/// For a particular StringRef, return the base type code, and whether it has
/// the quad-vector, polynomial, or unsigned modifiers set.
static char ClassifyType(StringRef ty, bool &quad, bool &poly, bool &usgn) {
  unsigned off = 0;

  // remember quad.
  if (ty[off] == 'Q') {
    quad = true;
    ++off;
  }

  // remember poly.
  if (ty[off] == 'P') {
    poly = true;
    ++off;
  }

  // remember unsigned.
  if (ty[off] == 'U') {
    usgn = true;
    ++off;
  }

  // base type to get the type string for.
  return ty[off];
}

/// ModType - Transform a type code and its modifiers based on a mod code. The
/// mod code definitions may be found at the top of arm_neon.td.
static char ModType(const char mod, char type, bool &quad, bool &poly,
                    bool &usgn, bool &scal, bool &cnst, bool &pntr) {
  switch (mod) {
    case 't':
      if (poly) {
        poly = false;
        usgn = true;
      }
      break;
    case 'u':
      usgn = true;
      poly = false;
      if (type == 'f')
        type = 'i';
      break;
    case 'x':
      usgn = false;
      poly = false;
      if (type == 'f')
        type = 'i';
      break;
    case 'f':
      if (type == 'h')
        quad = true;
      type = 'f';
      usgn = false;
      break;
    case 'g':
      quad = false;
      break;
    case 'w':
      type = Widen(type);
      quad = true;
      break;
    case 'n':
      type = Widen(type);
      break;
    case 'i':
      type = 'i';
      scal = true;
      break;
    case 'l':
      type = 'l';
      scal = true;
      usgn = true;
      break;
    case 's':
    case 'a':
      scal = true;
      break;
    case 'k':
      quad = true;
      break;
    case 'c':
      cnst = true;
    case 'p':
      pntr = true;
      scal = true;
      break;
    case 'h':
      type = Narrow(type);
      if (type == 'h')
        quad = false;
      break;
    case 'e':
      type = Narrow(type);
      usgn = true;
      break;
    default:
      break;
  }
  return type;
}

/// TypeString - for a modifier and type, generate the name of the typedef for
/// that type.  QUc -> uint8x8_t.
static std::string TypeString(const char mod, StringRef typestr) {
  bool quad = false;
  bool poly = false;
  bool usgn = false;
  bool scal = false;
  bool cnst = false;
  bool pntr = false;

  if (mod == 'v')
    return "void";
  if (mod == 'i')
    return "int";

  // base type to get the type string for.
  char type = ClassifyType(typestr, quad, poly, usgn);

  // Based on the modifying character, change the type and width if necessary.
  type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr);

  SmallString<128> s;

  if (usgn)
    s.push_back('u');

  switch (type) {
    case 'c':
      s += poly ? "poly8" : "int8";
      if (scal)
        break;
      s += quad ? "x16" : "x8";
      break;
    case 's':
      s += poly ? "poly16" : "int16";
      if (scal)
        break;
      s += quad ? "x8" : "x4";
      break;
    case 'i':
      s += "int32";
      if (scal)
        break;
      s += quad ? "x4" : "x2";
      break;
    case 'l':
      s += "int64";
      if (scal)
        break;
      s += quad ? "x2" : "x1";
      break;
    case 'h':
      s += "float16";
      if (scal)
        break;
      s += quad ? "x8" : "x4";
      break;
    case 'f':
      s += "float32";
      if (scal)
        break;
      s += quad ? "x4" : "x2";
      break;
    default:
      PrintFatalError("unhandled type!");
  }

  if (mod == '2')
    s += "x2";
  if (mod == '3')
    s += "x3";
  if (mod == '4')
    s += "x4";

  // Append _t, finishing the type string typedef type.
  s += "_t";

  if (cnst)
    s += " const";

  if (pntr)
    s += " *";

  return s.str();
}

/// BuiltinTypeString - for a modifier and type, generate the clang
/// BuiltinsARM.def prototype code for the function.  See the top of clang's
/// Builtins.def for a description of the type strings.
static std::string BuiltinTypeString(const char mod, StringRef typestr,
                                     ClassKind ck, bool ret) {
  bool quad = false;
  bool poly = false;
  bool usgn = false;
  bool scal = false;
  bool cnst = false;
  bool pntr = false;

  if (mod == 'v')
    return "v"; // void
  if (mod == 'i')
    return "i"; // int

  // base type to get the type string for.
  char type = ClassifyType(typestr, quad, poly, usgn);

  // Based on the modifying character, change the type and width if necessary.
  type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr);

  // All pointers are void* pointers.  Change type to 'v' now.
  if (pntr) {
    usgn = false;
    poly = false;
    type = 'v';
  }
  // Treat half-float ('h') types as unsigned short ('s') types.
  if (type == 'h') {
    type = 's';
    usgn = true;
  }
  usgn = usgn | poly | ((ck == ClassI || ck == ClassW) && scal && type != 'f');

  if (scal) {
    SmallString<128> s;

    if (usgn)
      s.push_back('U');
    else if (type == 'c')
      s.push_back('S'); // make chars explicitly signed

    if (type == 'l') // 64-bit long
      s += "LLi";
    else
      s.push_back(type);

    if (cnst)
      s.push_back('C');
    if (pntr)
      s.push_back('*');
    return s.str();
  }

  // Since the return value must be one type, return a vector type of the
  // appropriate width which we will bitcast.  An exception is made for
  // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
  // fashion, storing them to a pointer arg.
  if (ret) {
    if (mod >= '2' && mod <= '4')
      return "vv*"; // void result with void* first argument
    if (mod == 'f' || (ck != ClassB && type == 'f'))
      return quad ? "V4f" : "V2f";
    if (ck != ClassB && type == 's')
      return quad ? "V8s" : "V4s";
    if (ck != ClassB && type == 'i')
      return quad ? "V4i" : "V2i";
    if (ck != ClassB && type == 'l')
      return quad ? "V2LLi" : "V1LLi";

    return quad ? "V16Sc" : "V8Sc";
  }

  // Non-return array types are passed as individual vectors.
  if (mod == '2')
    return quad ? "V16ScV16Sc" : "V8ScV8Sc";
  if (mod == '3')
    return quad ? "V16ScV16ScV16Sc" : "V8ScV8ScV8Sc";
  if (mod == '4')
    return quad ? "V16ScV16ScV16ScV16Sc" : "V8ScV8ScV8ScV8Sc";

  if (mod == 'f' || (ck != ClassB && type == 'f'))
    return quad ? "V4f" : "V2f";
  if (ck != ClassB && type == 's')
    return quad ? "V8s" : "V4s";
  if (ck != ClassB && type == 'i')
    return quad ? "V4i" : "V2i";
  if (ck != ClassB && type == 'l')
    return quad ? "V2LLi" : "V1LLi";

  return quad ? "V16Sc" : "V8Sc";
}

/// InstructionTypeCode - Computes the ARM argument character code and
/// quad status for a specific type string and ClassKind.
static void InstructionTypeCode(const StringRef &typeStr,
                                const ClassKind ck,
                                bool &quad,
                                std::string &typeCode) {
  bool poly = false;
  bool usgn = false;
  char type = ClassifyType(typeStr, quad, poly, usgn);

  switch (type) {
  case 'c':
    switch (ck) {
    case ClassS: typeCode = poly ? "p8" : usgn ? "u8" : "s8"; break;
    case ClassI: typeCode = "i8"; break;
    case ClassW: typeCode = "8"; break;
    default: break;
    }
    break;
  case 's':
    switch (ck) {
    case ClassS: typeCode = poly ? "p16" : usgn ? "u16" : "s16"; break;
    case ClassI: typeCode = "i16"; break;
    case ClassW: typeCode = "16"; break;
    default: break;
    }
    break;
  case 'i':
    switch (ck) {
    case ClassS: typeCode = usgn ? "u32" : "s32"; break;
    case ClassI: typeCode = "i32"; break;
    case ClassW: typeCode = "32"; break;
    default: break;
    }
    break;
  case 'l':
    switch (ck) {
    case ClassS: typeCode = usgn ? "u64" : "s64"; break;
    case ClassI: typeCode = "i64"; break;
    case ClassW: typeCode = "64"; break;
    default: break;
    }
    break;
  case 'h':
    switch (ck) {
    case ClassS:
    case ClassI: typeCode = "f16"; break;
    case ClassW: typeCode = "16"; break;
    default: break;
    }
    break;
  case 'f':
    switch (ck) {
    case ClassS:
    case ClassI: typeCode = "f32"; break;
    case ClassW: typeCode = "32"; break;
    default: break;
    }
    break;
  default:
    PrintFatalError("unhandled type!");
  }
}

/// MangleName - Append a type or width suffix to a base neon function name,
/// and insert a 'q' in the appropriate location if the operation works on
/// 128b rather than 64b.   E.g. turn "vst2_lane" into "vst2q_lane_f32", etc.
static std::string MangleName(const std::string &name, StringRef typestr,
                              ClassKind ck) {
  if (name == "vcvt_f32_f16")
    return name;

  bool quad = false;
  std::string typeCode = "";

  InstructionTypeCode(typestr, ck, quad, typeCode);

  std::string s = name;

  if (typeCode.size() > 0) {
    s += "_" + typeCode;
  }

  if (ck == ClassB)
    s += "_v";

  // Insert a 'q' before the first '_' character so that it ends up before
  // _lane or _n on vector-scalar operations.
  if (quad) {
    size_t pos = s.find('_');
    s = s.insert(pos, "q");
  }

  return s;
}

static void PreprocessInstruction(const StringRef &Name,
                                  const std::string &InstName,
                                  std::string &Prefix,
                                  bool &HasNPostfix,
                                  bool &HasLanePostfix,
                                  bool &HasDupPostfix,
                                  bool &IsSpecialVCvt,
                                  size_t &TBNumber) {
  // All of our instruction name fields from arm_neon.td are of the form
  //   <instructionname>_...
  // Thus we grab our instruction name via computation of said Prefix.
  const size_t PrefixEnd = Name.find_first_of('_');
  // If InstName is passed in, we use that instead of our name Prefix.
  Prefix = InstName.size() == 0? Name.slice(0, PrefixEnd).str() : InstName;

  const StringRef Postfix = Name.slice(PrefixEnd, Name.size());

  HasNPostfix = Postfix.count("_n");
  HasLanePostfix = Postfix.count("_lane");
  HasDupPostfix = Postfix.count("_dup");
  IsSpecialVCvt = Postfix.size() != 0 && Name.count("vcvt");

  if (InstName.compare("vtbl") == 0 ||
      InstName.compare("vtbx") == 0) {
    // If we have a vtblN/vtbxN instruction, use the instruction's ASCII
    // encoding to get its true value.
    TBNumber = Name[Name.size()-1] - 48;
  }
}

/// GenerateRegisterCheckPatternsForLoadStores - Given a bunch of data we have
/// extracted, generate a FileCheck pattern for a Load Or Store
static void
GenerateRegisterCheckPatternForLoadStores(const StringRef &NameRef,
                                          const std::string& OutTypeCode,
                                          const bool &IsQuad,
                                          const bool &HasDupPostfix,
                                          const bool &HasLanePostfix,
                                          const size_t Count,
                                          std::string &RegisterSuffix) {
  const bool IsLDSTOne = NameRef.count("vld1") || NameRef.count("vst1");
  // If N == 3 || N == 4 and we are dealing with a quad instruction, Clang
  // will output a series of v{ld,st}1s, so we have to handle it specially.
  if ((Count == 3 || Count == 4) && IsQuad) {
    RegisterSuffix += "{";
    for (size_t i = 0; i < Count; i++) {
      RegisterSuffix += "d{{[0-9]+}}";
      if (HasDupPostfix) {
        RegisterSuffix += "[]";
      }
      if (HasLanePostfix) {
        RegisterSuffix += "[{{[0-9]+}}]";
      }
      if (i < Count-1) {
        RegisterSuffix += ", ";
      }
    }
    RegisterSuffix += "}";
  } else {

    // Handle normal loads and stores.
    RegisterSuffix += "{";
    for (size_t i = 0; i < Count; i++) {
      RegisterSuffix += "d{{[0-9]+}}";
      if (HasDupPostfix) {
        RegisterSuffix += "[]";
      }
      if (HasLanePostfix) {
        RegisterSuffix += "[{{[0-9]+}}]";
      }
      if (IsQuad && !HasLanePostfix) {
        RegisterSuffix += ", d{{[0-9]+}}";
        if (HasDupPostfix) {
          RegisterSuffix += "[]";
        }
      }
      if (i < Count-1) {
        RegisterSuffix += ", ";
      }
    }
    RegisterSuffix += "}, [r{{[0-9]+}}";

    // We only include the alignment hint if we have a vld1.*64 or
    // a dup/lane instruction.
    if (IsLDSTOne) {
      if ((HasLanePostfix || HasDupPostfix) && OutTypeCode != "8") {
        RegisterSuffix += ", :" + OutTypeCode;
      } else if (OutTypeCode == "64") {
        RegisterSuffix += ", :64";
      }
    }

    RegisterSuffix += "]";
  }
}

static bool HasNPostfixAndScalarArgs(const StringRef &NameRef,
                                     const bool &HasNPostfix) {
  return (NameRef.count("vmla") ||
          NameRef.count("vmlal") ||
          NameRef.count("vmlsl") ||
          NameRef.count("vmull") ||
          NameRef.count("vqdmlal") ||
          NameRef.count("vqdmlsl") ||
          NameRef.count("vqdmulh") ||
          NameRef.count("vqdmull") ||
          NameRef.count("vqrdmulh")) && HasNPostfix;
}

static bool IsFiveOperandLaneAccumulator(const StringRef &NameRef,
                                         const bool &HasLanePostfix) {
  return (NameRef.count("vmla") ||
          NameRef.count("vmls") ||
          NameRef.count("vmlal") ||
          NameRef.count("vmlsl") ||
          (NameRef.count("vmul") && NameRef.size() == 3)||
          NameRef.count("vqdmlal") ||
          NameRef.count("vqdmlsl") ||
          NameRef.count("vqdmulh") ||
          NameRef.count("vqrdmulh")) && HasLanePostfix;
}

static bool IsSpecialLaneMultiply(const StringRef &NameRef,
                                  const bool &HasLanePostfix,
                                  const bool &IsQuad) {
  const bool IsVMulOrMulh = (NameRef.count("vmul") || NameRef.count("mulh"))
                               && IsQuad;
  const bool IsVMull = NameRef.count("mull") && !IsQuad;
  return (IsVMulOrMulh || IsVMull) && HasLanePostfix;
}

static void NormalizeProtoForRegisterPatternCreation(const std::string &Name,
                                                     const std::string &Proto,
                                                     const bool &HasNPostfix,
                                                     const bool &IsQuad,
                                                     const bool &HasLanePostfix,
                                                     const bool &HasDupPostfix,
                                                     std::string &NormedProto) {
  // Handle generic case.
  const StringRef NameRef(Name);
  for (size_t i = 0, end = Proto.size(); i < end; i++) {
    switch (Proto[i]) {
    case 'u':
    case 'f':
    case 'd':
    case 's':
    case 'x':
    case 't':
    case 'n':
      NormedProto += IsQuad? 'q' : 'd';
      break;
    case 'w':
    case 'k':
      NormedProto += 'q';
      break;
    case 'g':
    case 'h':
    case 'e':
      NormedProto += 'd';
      break;
    case 'i':
      NormedProto += HasLanePostfix? 'a' : 'i';
      break;
    case 'a':
      if (HasLanePostfix) {
        NormedProto += 'a';
      } else if (HasNPostfixAndScalarArgs(NameRef, HasNPostfix)) {
        NormedProto += IsQuad? 'q' : 'd';
      } else {
        NormedProto += 'i';
      }
      break;
    }
  }

  // Handle Special Cases.
  const bool IsNotVExt = !NameRef.count("vext");
  const bool IsVPADAL = NameRef.count("vpadal");
  const bool Is5OpLaneAccum = IsFiveOperandLaneAccumulator(NameRef,
                                                           HasLanePostfix);
  const bool IsSpecialLaneMul = IsSpecialLaneMultiply(NameRef, HasLanePostfix,
                                                      IsQuad);

  if (IsSpecialLaneMul) {
    // If
    NormedProto[2] = NormedProto[3];
    NormedProto.erase(3);
  } else if (NormedProto.size() == 4 &&
             NormedProto[0] == NormedProto[1] &&
             IsNotVExt) {
    // If NormedProto.size() == 4 and the first two proto characters are the
    // same, ignore the first.
    NormedProto = NormedProto.substr(1, 3);
  } else if (Is5OpLaneAccum) {
    // If we have a 5 op lane accumulator operation, we take characters 1,2,4
    std::string tmp = NormedProto.substr(1,2);
    tmp += NormedProto[4];
    NormedProto = tmp;
  } else if (IsVPADAL) {
    // If we have VPADAL, ignore the first character.
    NormedProto = NormedProto.substr(0, 2);
  } else if (NameRef.count("vdup") && NormedProto.size() > 2) {
    // If our instruction is a dup instruction, keep only the first and
    // last characters.
    std::string tmp = "";
    tmp += NormedProto[0];
    tmp += NormedProto[NormedProto.size()-1];
    NormedProto = tmp;
  }
}

/// GenerateRegisterCheckPatterns - Given a bunch of data we have
/// extracted, generate a FileCheck pattern to check that an
/// instruction's arguments are correct.
static void GenerateRegisterCheckPattern(const std::string &Name,
                                         const std::string &Proto,
                                         const std::string &OutTypeCode,
                                         const bool &HasNPostfix,
                                         const bool &IsQuad,
                                         const bool &HasLanePostfix,
                                         const bool &HasDupPostfix,
                                         const size_t &TBNumber,
                                         std::string &RegisterSuffix) {

  RegisterSuffix = "";

  const StringRef NameRef(Name);
  const StringRef ProtoRef(Proto);

  if ((NameRef.count("vdup") || NameRef.count("vmov")) && HasNPostfix) {
    return;
  }

  const bool IsLoadStore = NameRef.count("vld") || NameRef.count("vst");
  const bool IsTBXOrTBL = NameRef.count("vtbl") || NameRef.count("vtbx");

  if (IsLoadStore) {
    // Grab N value from  v{ld,st}N using its ascii representation.
    const size_t Count = NameRef[3] - 48;

    GenerateRegisterCheckPatternForLoadStores(NameRef, OutTypeCode, IsQuad,
                                              HasDupPostfix, HasLanePostfix,
                                              Count, RegisterSuffix);
  } else if (IsTBXOrTBL) {
    RegisterSuffix += "d{{[0-9]+}}, {";
    for (size_t i = 0; i < TBNumber-1; i++) {
      RegisterSuffix += "d{{[0-9]+}}, ";
    }
    RegisterSuffix += "d{{[0-9]+}}}, d{{[0-9]+}}";
  } else {
    // Handle a normal instruction.
    if (NameRef.count("vget") || NameRef.count("vset"))
      return;

    // We first normalize our proto, since we only need to emit 4
    // different types of checks, yet have more than 4 proto types
    // that map onto those 4 patterns.
    std::string NormalizedProto("");
    NormalizeProtoForRegisterPatternCreation(Name, Proto, HasNPostfix, IsQuad,
                                             HasLanePostfix, HasDupPostfix,
                                             NormalizedProto);

    for (size_t i = 0, end = NormalizedProto.size(); i < end; i++) {
      const char &c = NormalizedProto[i];
      switch (c) {
      case 'q':
        RegisterSuffix += "q{{[0-9]+}}, ";
        break;

      case 'd':
        RegisterSuffix += "d{{[0-9]+}}, ";
        break;

      case 'i':
        RegisterSuffix += "#{{[0-9]+}}, ";
        break;

      case 'a':
        RegisterSuffix += "d{{[0-9]+}}[{{[0-9]}}], ";
        break;
      }
    }

    // Remove extra ", ".
    RegisterSuffix = RegisterSuffix.substr(0, RegisterSuffix.size()-2);
  }
}

/// GenerateChecksForIntrinsic - Given a specific instruction name +
/// typestr + class kind, generate the proper set of FileCheck
/// Patterns to check for. We could just return a string, but instead
/// use a vector since it provides us with the extra flexibility of
/// emitting multiple checks, which comes in handy for certain cases
/// like mla where we want to check for 2 different instructions.
static void GenerateChecksForIntrinsic(const std::string &Name,
                                       const std::string &Proto,
                                       StringRef &OutTypeStr,
                                       StringRef &InTypeStr,
                                       ClassKind Ck,
                                       const std::string &InstName,
                                       bool IsHiddenLOp,
                                       std::vector<std::string>& Result) {

  // If Ck is a ClassNoTest instruction, just return so no test is
  // emitted.
  if(Ck == ClassNoTest)
    return;

  if (Name == "vcvt_f32_f16") {
    Result.push_back("vcvt.f32.f16");
    return;
  }


  // Now we preprocess our instruction given the data we have to get the
  // data that we need.
  // Create a StringRef for String Manipulation of our Name.
  const StringRef NameRef(Name);
  // Instruction Prefix.
  std::string Prefix;
  // The type code for our out type string.
  std::string OutTypeCode;
  // To handle our different cases, we need to check for different postfixes.
  // Is our instruction a quad instruction.
  bool IsQuad = false;
  // Our instruction is of the form <instructionname>_n.
  bool HasNPostfix = false;
  // Our instruction is of the form <instructionname>_lane.
  bool HasLanePostfix = false;
  // Our instruction is of the form <instructionname>_dup.
  bool HasDupPostfix  = false;
  // Our instruction is a vcvt instruction which requires special handling.
  bool IsSpecialVCvt = false;
  // If we have a vtbxN or vtblN instruction, this is set to N.
  size_t TBNumber = -1;
  // Register Suffix
  std::string RegisterSuffix;

  PreprocessInstruction(NameRef, InstName, Prefix,
                        HasNPostfix, HasLanePostfix, HasDupPostfix,
                        IsSpecialVCvt, TBNumber);

  InstructionTypeCode(OutTypeStr, Ck, IsQuad, OutTypeCode);
  GenerateRegisterCheckPattern(Name, Proto, OutTypeCode, HasNPostfix, IsQuad,
                               HasLanePostfix, HasDupPostfix, TBNumber,
                               RegisterSuffix);

  // In the following section, we handle a bunch of special cases. You can tell
  // a special case by the fact we are returning early.

  // If our instruction is a logical instruction without postfix or a
  // hidden LOp just return the current Prefix.
  if (Ck == ClassL || IsHiddenLOp) {
    Result.push_back(Prefix + " " + RegisterSuffix);
    return;
  }

  // If we have a vmov, due to the many different cases, some of which
  // vary within the different intrinsics generated for a single
  // instruction type, just output a vmov. (e.g. given an instruction
  // A, A.u32 might be vmov and A.u8 might be vmov.8).
  //
  // FIXME: Maybe something can be done about this. The two cases that we care
  // about are vmov as an LType and vmov as a WType.
  if (Prefix == "vmov") {
    Result.push_back(Prefix + " " + RegisterSuffix);
    return;
  }

  // In the following section, we handle special cases.

  if (OutTypeCode == "64") {
    // If we have a 64 bit vdup/vext and are handling an uint64x1_t
    // type, the intrinsic will be optimized away, so just return
    // nothing.  On the other hand if we are handling an uint64x2_t
    // (i.e. quad instruction), vdup/vmov instructions should be
    // emitted.
    if (Prefix == "vdup" || Prefix == "vext") {
      if (IsQuad) {
        Result.push_back("{{vmov|vdup}}");
      }
      return;
    }

    // v{st,ld}{2,3,4}_{u,s}64 emit v{st,ld}1.64 instructions with
    // multiple register operands.
    bool MultiLoadPrefix = Prefix == "vld2" || Prefix == "vld3"
                            || Prefix == "vld4";
    bool MultiStorePrefix = Prefix == "vst2" || Prefix == "vst3"
                            || Prefix == "vst4";
    if (MultiLoadPrefix || MultiStorePrefix) {
      Result.push_back(NameRef.slice(0, 3).str() + "1.64");
      return;
    }

    // v{st,ld}1_{lane,dup}_{u64,s64} use vldr/vstr/vmov/str instead of
    // emitting said instructions. So return a check for
    // vldr/vstr/vmov/str instead.
    if (HasLanePostfix || HasDupPostfix) {
      if (Prefix == "vst1") {
        Result.push_back("{{str|vstr|vmov}}");
        return;
      } else if (Prefix == "vld1") {
        Result.push_back("{{ldr|vldr|vmov}}");
        return;
      }
    }
  }

  // vzip.32/vuzp.32 are the same instruction as vtrn.32 and are
  // sometimes disassembled as vtrn.32. We use a regex to handle both
  // cases.
  if ((Prefix == "vzip" || Prefix == "vuzp") && OutTypeCode == "32") {
    Result.push_back("{{vtrn|" + Prefix + "}}.32 " + RegisterSuffix);
    return;
  }

  // Currently on most ARM processors, we do not use vmla/vmls for
  // quad floating point operations. Instead we output vmul + vadd. So
  // check if we have one of those instructions and just output a
  // check for vmul.
  if (OutTypeCode == "f32") {
    if (Prefix == "vmls") {
      Result.push_back("vmul." + OutTypeCode + " " + RegisterSuffix);
      Result.push_back("vsub." + OutTypeCode);
      return;
    } else if (Prefix == "vmla") {
      Result.push_back("vmul." + OutTypeCode + " " + RegisterSuffix);
      Result.push_back("vadd." + OutTypeCode);
      return;
    }
  }

  // If we have vcvt, get the input type from the instruction name
  // (which should be of the form instname_inputtype) and append it
  // before the output type.
  if (Prefix == "vcvt") {
    const std::string inTypeCode = NameRef.substr(NameRef.find_last_of("_")+1);
    Prefix += "." + inTypeCode;
  }

  // Append output type code to get our final mangled instruction.
  Prefix += "." + OutTypeCode;

  Result.push_back(Prefix + " " + RegisterSuffix);
}

/// UseMacro - Examine the prototype string to determine if the intrinsic
/// should be defined as a preprocessor macro instead of an inline function.
static bool UseMacro(const std::string &proto) {
  // If this builtin takes an immediate argument, we need to #define it rather
  // than use a standard declaration, so that SemaChecking can range check
  // the immediate passed by the user.
  if (proto.find('i') != std::string::npos)
    return true;

  // Pointer arguments need to use macros to avoid hiding aligned attributes
  // from the pointer type.
  if (proto.find('p') != std::string::npos ||
      proto.find('c') != std::string::npos)
    return true;

  return false;
}

/// MacroArgUsedDirectly - Return true if argument i for an intrinsic that is
/// defined as a macro should be accessed directly instead of being first
/// assigned to a local temporary.
static bool MacroArgUsedDirectly(const std::string &proto, unsigned i) {
  // True for constant ints (i), pointers (p) and const pointers (c).
  return (proto[i] == 'i' || proto[i] == 'p' || proto[i] == 'c');
}

// Generate the string "(argtype a, argtype b, ...)"
static std::string GenArgs(const std::string &proto, StringRef typestr) {
  bool define = UseMacro(proto);
  char arg = 'a';

  std::string s;
  s += "(";

  for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) {
    if (define) {
      // Some macro arguments are used directly instead of being assigned
      // to local temporaries; prepend an underscore prefix to make their
      // names consistent with the local temporaries.
      if (MacroArgUsedDirectly(proto, i))
        s += "__";
    } else {
      s += TypeString(proto[i], typestr) + " __";
    }
    s.push_back(arg);
    if ((i + 1) < e)
      s += ", ";
  }

  s += ")";
  return s;
}

// Macro arguments are not type-checked like inline function arguments, so
// assign them to local temporaries to get the right type checking.
static std::string GenMacroLocals(const std::string &proto, StringRef typestr) {
  char arg = 'a';
  std::string s;
  bool generatedLocal = false;

  for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) {
    // Do not create a temporary for an immediate argument.
    // That would defeat the whole point of using a macro!
    if (MacroArgUsedDirectly(proto, i))
      continue;
    generatedLocal = true;

    s += TypeString(proto[i], typestr) + " __";
    s.push_back(arg);
    s += " = (";
    s.push_back(arg);
    s += "); ";
  }

  if (generatedLocal)
    s += "\\\n  ";
  return s;
}

// Use the vmovl builtin to sign-extend or zero-extend a vector.
static std::string Extend(StringRef typestr, const std::string &a) {
  std::string s;
  s = MangleName("vmovl", typestr, ClassS);
  s += "(" + a + ")";
  return s;
}

static std::string Duplicate(unsigned nElts, StringRef typestr,
                             const std::string &a) {
  std::string s;

  s = "(" + TypeString('d', typestr) + "){ ";
  for (unsigned i = 0; i != nElts; ++i) {
    s += a;
    if ((i + 1) < nElts)
      s += ", ";
  }
  s += " }";

  return s;
}

static std::string SplatLane(unsigned nElts, const std::string &vec,
                             const std::string &lane) {
  std::string s = "__builtin_shufflevector(" + vec + ", " + vec;
  for (unsigned i = 0; i < nElts; ++i)
    s += ", " + lane;
  s += ")";
  return s;
}

static unsigned GetNumElements(StringRef typestr, bool &quad) {
  quad = false;
  bool dummy = false;
  char type = ClassifyType(typestr, quad, dummy, dummy);
  unsigned nElts = 0;
  switch (type) {
  case 'c': nElts = 8; break;
  case 's': nElts = 4; break;
  case 'i': nElts = 2; break;
  case 'l': nElts = 1; break;
  case 'h': nElts = 4; break;
  case 'f': nElts = 2; break;
  default:
    PrintFatalError("unhandled type!");
  }
  if (quad) nElts <<= 1;
  return nElts;
}

// Generate the definition for this intrinsic, e.g. "a + b" for OpAdd.
static std::string GenOpString(OpKind op, const std::string &proto,
                               StringRef typestr) {
  bool quad;
  unsigned nElts = GetNumElements(typestr, quad);
  bool define = UseMacro(proto);

  std::string ts = TypeString(proto[0], typestr);
  std::string s;
  if (!define) {
    s = "return ";
  }

  switch(op) {
  case OpAdd:
    s += "__a + __b;";
    break;
  case OpAddl:
    s += Extend(typestr, "__a") + " + " + Extend(typestr, "__b") + ";";
    break;
  case OpAddw:
    s += "__a + " + Extend(typestr, "__b") + ";";
    break;
  case OpSub:
    s += "__a - __b;";
    break;
  case OpSubl:
    s += Extend(typestr, "__a") + " - " + Extend(typestr, "__b") + ";";
    break;
  case OpSubw:
    s += "__a - " + Extend(typestr, "__b") + ";";
    break;
  case OpMulN:
    s += "__a * " + Duplicate(nElts, typestr, "__b") + ";";
    break;
  case OpMulLane:
    s += "__a * " + SplatLane(nElts, "__b", "__c") + ";";
    break;
  case OpMul:
    s += "__a * __b;";
    break;
  case OpMullLane:
    s += MangleName("vmull", typestr, ClassS) + "(__a, " +
      SplatLane(nElts, "__b", "__c") + ");";
    break;
  case OpMlaN:
    s += "__a + (__b * " + Duplicate(nElts, typestr, "__c") + ");";
    break;
  case OpMlaLane:
    s += "__a + (__b * " + SplatLane(nElts, "__c", "__d") + ");";
    break;
  case OpMla:
    s += "__a + (__b * __c);";
    break;
  case OpMlalN:
    s += "__a + " + MangleName("vmull", typestr, ClassS) + "(__b, " +
      Duplicate(nElts, typestr, "__c") + ");";
    break;
  case OpMlalLane:
    s += "__a + " + MangleName("vmull", typestr, ClassS) + "(__b, " +
      SplatLane(nElts, "__c", "__d") + ");";
    break;
  case OpMlal:
    s += "__a + " + MangleName("vmull", typestr, ClassS) + "(__b, __c);";
    break;
  case OpMlsN:
    s += "__a - (__b * " + Duplicate(nElts, typestr, "__c") + ");";
    break;
  case OpMlsLane:
    s += "__a - (__b * " + SplatLane(nElts, "__c", "__d") + ");";
    break;
  case OpMls:
    s += "__a - (__b * __c);";
    break;
  case OpMlslN:
    s += "__a - " + MangleName("vmull", typestr, ClassS) + "(__b, " +
      Duplicate(nElts, typestr, "__c") + ");";
    break;
  case OpMlslLane:
    s += "__a - " + MangleName("vmull", typestr, ClassS) + "(__b, " +
      SplatLane(nElts, "__c", "__d") + ");";
    break;
  case OpMlsl:
    s += "__a - " + MangleName("vmull", typestr, ClassS) + "(__b, __c);";
    break;
  case OpQDMullLane:
    s += MangleName("vqdmull", typestr, ClassS) + "(__a, " +
      SplatLane(nElts, "__b", "__c") + ");";
    break;
  case OpQDMlalLane:
    s += MangleName("vqdmlal", typestr, ClassS) + "(__a, __b, " +
      SplatLane(nElts, "__c", "__d") + ");";
    break;
  case OpQDMlslLane:
    s += MangleName("vqdmlsl", typestr, ClassS) + "(__a, __b, " +
      SplatLane(nElts, "__c", "__d") + ");";
    break;
  case OpQDMulhLane:
    s += MangleName("vqdmulh", typestr, ClassS) + "(__a, " +
      SplatLane(nElts, "__b", "__c") + ");";
    break;
  case OpQRDMulhLane:
    s += MangleName("vqrdmulh", typestr, ClassS) + "(__a, " +
      SplatLane(nElts, "__b", "__c") + ");";
    break;
  case OpEq:
    s += "(" + ts + ")(__a == __b);";
    break;
  case OpGe:
    s += "(" + ts + ")(__a >= __b);";
    break;
  case OpLe:
    s += "(" + ts + ")(__a <= __b);";
    break;
  case OpGt:
    s += "(" + ts + ")(__a > __b);";
    break;
  case OpLt:
    s += "(" + ts + ")(__a < __b);";
    break;
  case OpNeg:
    s += " -__a;";
    break;
  case OpNot:
    s += " ~__a;";
    break;
  case OpAnd:
    s += "__a & __b;";
    break;
  case OpOr:
    s += "__a | __b;";
    break;
  case OpXor:
    s += "__a ^ __b;";
    break;
  case OpAndNot:
    s += "__a & ~__b;";
    break;
  case OpOrNot:
    s += "__a | ~__b;";
    break;
  case OpCast:
    s += "(" + ts + ")__a;";
    break;
  case OpConcat:
    s += "(" + ts + ")__builtin_shufflevector((int64x1_t)__a";
    s += ", (int64x1_t)__b, 0, 1);";
    break;
  case OpHi:
    s += "(" + ts +
      ")__builtin_shufflevector((int64x2_t)__a, (int64x2_t)__a, 1);";
    break;
  case OpLo:
    s += "(" + ts +
      ")__builtin_shufflevector((int64x2_t)__a, (int64x2_t)__a, 0);";
    break;
  case OpDup:
    s += Duplicate(nElts, typestr, "__a") + ";";
    break;
  case OpDupLane:
    s += SplatLane(nElts, "__a", "__b") + ";";
    break;
  case OpSelect:
    // ((0 & 1) | (~0 & 2))
    s += "(" + ts + ")";
    ts = TypeString(proto[1], typestr);
    s += "((__a & (" + ts + ")__b) | ";
    s += "(~__a & (" + ts + ")__c));";
    break;
  case OpRev16:
    s += "__builtin_shufflevector(__a, __a";
    for (unsigned i = 2; i <= nElts; i += 2)
      for (unsigned j = 0; j != 2; ++j)
        s += ", " + utostr(i - j - 1);
    s += ");";
    break;
  case OpRev32: {
    unsigned WordElts = nElts >> (1 + (int)quad);
    s += "__builtin_shufflevector(__a, __a";
    for (unsigned i = WordElts; i <= nElts; i += WordElts)
      for (unsigned j = 0; j != WordElts; ++j)
        s += ", " + utostr(i - j - 1);
    s += ");";
    break;
  }
  case OpRev64: {
    unsigned DblWordElts = nElts >> (int)quad;
    s += "__builtin_shufflevector(__a, __a";
    for (unsigned i = DblWordElts; i <= nElts; i += DblWordElts)
      for (unsigned j = 0; j != DblWordElts; ++j)
        s += ", " + utostr(i - j - 1);
    s += ");";
    break;
  }
  case OpAbdl: {
    std::string abd = MangleName("vabd", typestr, ClassS) + "(__a, __b)";
    if (typestr[0] != 'U') {
      // vabd results are always unsigned and must be zero-extended.
      std::string utype = "U" + typestr.str();
      s += "(" + TypeString(proto[0], typestr) + ")";
      abd = "(" + TypeString('d', utype) + ")" + abd;
      s += Extend(utype, abd) + ";";
    } else {
      s += Extend(typestr, abd) + ";";
    }
    break;
  }
  case OpAba:
    s += "__a + " + MangleName("vabd", typestr, ClassS) + "(__b, __c);";
    break;
  case OpAbal: {
    s += "__a + ";
    std::string abd = MangleName("vabd", typestr, ClassS) + "(__b, __c)";
    if (typestr[0] != 'U') {
      // vabd results are always unsigned and must be zero-extended.
      std::string utype = "U" + typestr.str();
      s += "(" + TypeString(proto[0], typestr) + ")";
      abd = "(" + TypeString('d', utype) + ")" + abd;
      s += Extend(utype, abd) + ";";
    } else {
      s += Extend(typestr, abd) + ";";
    }
    break;
  }
  default:
    PrintFatalError("unknown OpKind!");
  }
  return s;
}

static unsigned GetNeonEnum(const std::string &proto, StringRef typestr) {
  unsigned mod = proto[0];

  if (mod == 'v' || mod == 'f')
    mod = proto[1];

  bool quad = false;
  bool poly = false;
  bool usgn = false;
  bool scal = false;
  bool cnst = false;
  bool pntr = false;

  // Base type to get the type string for.
  char type = ClassifyType(typestr, quad, poly, usgn);

  // Based on the modifying character, change the type and width if necessary.
  type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr);

  NeonTypeFlags::EltType ET;
  switch (type) {
    case 'c':
      ET = poly ? NeonTypeFlags::Poly8 : NeonTypeFlags::Int8;
      break;
    case 's':
      ET = poly ? NeonTypeFlags::Poly16 : NeonTypeFlags::Int16;
      break;
    case 'i':
      ET = NeonTypeFlags::Int32;
      break;
    case 'l':
      ET = NeonTypeFlags::Int64;
      break;
    case 'h':
      ET = NeonTypeFlags::Float16;
      break;
    case 'f':
      ET = NeonTypeFlags::Float32;
      break;
    default:
      PrintFatalError("unhandled type!");
  }
  NeonTypeFlags Flags(ET, usgn, quad && proto[1] != 'g');
  return Flags.getFlags();
}

// Generate the definition for this intrinsic, e.g. __builtin_neon_cls(a)
static std::string GenBuiltin(const std::string &name, const std::string &proto,
                              StringRef typestr, ClassKind ck) {
  std::string s;

  // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
  // sret-like argument.
  bool sret = (proto[0] >= '2' && proto[0] <= '4');

  bool define = UseMacro(proto);

  // Check if the prototype has a scalar operand with the type of the vector
  // elements.  If not, bitcasting the args will take care of arg checking.
  // The actual signedness etc. will be taken care of with special enums.
  if (proto.find('s') == std::string::npos)
    ck = ClassB;

  if (proto[0] != 'v') {
    std::string ts = TypeString(proto[0], typestr);

    if (define) {
      if (sret)
        s += ts + " r; ";
      else
        s += "(" + ts + ")";
    } else if (sret) {
      s += ts + " r; ";
    } else {
      s += "return (" + ts + ")";
    }
  }

  bool splat = proto.find('a') != std::string::npos;

  s += "__builtin_neon_";
  if (splat) {
    // Call the non-splat builtin: chop off the "_n" suffix from the name.
    std::string vname(name, 0, name.size()-2);
    s += MangleName(vname, typestr, ck);
  } else {
    s += MangleName(name, typestr, ck);
  }
  s += "(";

  // Pass the address of the return variable as the first argument to sret-like
  // builtins.
  if (sret)
    s += "&r, ";

  char arg = 'a';
  for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) {
    std::string args = std::string(&arg, 1);

    // Use the local temporaries instead of the macro arguments.
    args = "__" + args;

    bool argQuad = false;
    bool argPoly = false;
    bool argUsgn = false;
    bool argScalar = false;
    bool dummy = false;
    char argType = ClassifyType(typestr, argQuad, argPoly, argUsgn);
    argType = ModType(proto[i], argType, argQuad, argPoly, argUsgn, argScalar,
                      dummy, dummy);

    // Handle multiple-vector values specially, emitting each subvector as an
    // argument to the __builtin.
    if (proto[i] >= '2' && proto[i] <= '4') {
      // Check if an explicit cast is needed.
      if (argType != 'c' || argPoly || argUsgn)
        args = (argQuad ? "(int8x16_t)" : "(int8x8_t)") + args;

      for (unsigned vi = 0, ve = proto[i] - '0'; vi != ve; ++vi) {
        s += args + ".val[" + utostr(vi) + "]";
        if ((vi + 1) < ve)
          s += ", ";
      }
      if ((i + 1) < e)
        s += ", ";

      continue;
    }

    if (splat && (i + 1) == e)
      args = Duplicate(GetNumElements(typestr, argQuad), typestr, args);

    // Check if an explicit cast is needed.
    if ((splat || !argScalar) &&
        ((ck == ClassB && argType != 'c') || argPoly || argUsgn)) {
      std::string argTypeStr = "c";
      if (ck != ClassB)
        argTypeStr = argType;
      if (argQuad)
        argTypeStr = "Q" + argTypeStr;
      args = "(" + TypeString('d', argTypeStr) + ")" + args;
    }

    s += args;
    if ((i + 1) < e)
      s += ", ";
  }

  // Extra constant integer to hold type class enum for this function, e.g. s8
  if (ck == ClassB)
    s += ", " + utostr(GetNeonEnum(proto, typestr));

  s += ");";

  if (proto[0] != 'v' && sret) {
    if (define)
      s += " r;";
    else
      s += " return r;";
  }
  return s;
}

static std::string GenBuiltinDef(const std::string &name,
                                 const std::string &proto,
                                 StringRef typestr, ClassKind ck) {
  std::string s("BUILTIN(__builtin_neon_");

  // If all types are the same size, bitcasting the args will take care
  // of arg checking.  The actual signedness etc. will be taken care of with
  // special enums.
  if (proto.find('s') == std::string::npos)
    ck = ClassB;

  s += MangleName(name, typestr, ck);
  s += ", \"";

  for (unsigned i = 0, e = proto.size(); i != e; ++i)
    s += BuiltinTypeString(proto[i], typestr, ck, i == 0);

  // Extra constant integer to hold type class enum for this function, e.g. s8
  if (ck == ClassB)
    s += "i";

  s += "\", \"n\")";
  return s;
}

static std::string GenIntrinsic(const std::string &name,
                                const std::string &proto,
                                StringRef outTypeStr, StringRef inTypeStr,
                                OpKind kind, ClassKind classKind) {
  assert(!proto.empty() && "");
  bool define = UseMacro(proto) && kind != OpUnavailable;
  std::string s;

  // static always inline + return type
  if (define)
    s += "#define ";
  else
    s += "__ai " + TypeString(proto[0], outTypeStr) + " ";

  // Function name with type suffix
  std::string mangledName = MangleName(name, outTypeStr, ClassS);
  if (outTypeStr != inTypeStr) {
    // If the input type is different (e.g., for vreinterpret), append a suffix
    // for the input type.  String off a "Q" (quad) prefix so that MangleName
    // does not insert another "q" in the name.
    unsigned typeStrOff = (inTypeStr[0] == 'Q' ? 1 : 0);
    StringRef inTypeNoQuad = inTypeStr.substr(typeStrOff);
    mangledName = MangleName(mangledName, inTypeNoQuad, ClassS);
  }
  s += mangledName;

  // Function arguments
  s += GenArgs(proto, inTypeStr);

  // Definition.
  if (define) {
    s += " __extension__ ({ \\\n  ";
    s += GenMacroLocals(proto, inTypeStr);
  } else if (kind == OpUnavailable) {
    s += " __attribute__((unavailable));\n";
    return s;
  } else
    s += " {\n  ";

  if (kind != OpNone)
    s += GenOpString(kind, proto, outTypeStr);
  else
    s += GenBuiltin(name, proto, outTypeStr, classKind);
  if (define)
    s += " })";
  else
    s += " }";
  s += "\n";
  return s;
}

/// run - Read the records in arm_neon.td and output arm_neon.h.  arm_neon.h
/// is comprised of type definitions and function declarations.
void NeonEmitter::run(raw_ostream &OS) {
  OS << 
    "/*===---- arm_neon.h - ARM Neon intrinsics ------------------------------"
    "---===\n"
    " *\n"
    " * Permission is hereby granted, free of charge, to any person obtaining "
    "a copy\n"
    " * of this software and associated documentation files (the \"Software\"),"
    " to deal\n"
    " * in the Software without restriction, including without limitation the "
    "rights\n"
    " * to use, copy, modify, merge, publish, distribute, sublicense, "
    "and/or sell\n"
    " * copies of the Software, and to permit persons to whom the Software is\n"
    " * furnished to do so, subject to the following conditions:\n"
    " *\n"
    " * The above copyright notice and this permission notice shall be "
    "included in\n"
    " * all copies or substantial portions of the Software.\n"
    " *\n"
    " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
    "EXPRESS OR\n"
    " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
    "MERCHANTABILITY,\n"
    " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
    "SHALL THE\n"
    " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
    "OTHER\n"
    " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
    "ARISING FROM,\n"
    " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
    "DEALINGS IN\n"
    " * THE SOFTWARE.\n"
    " *\n"
    " *===--------------------------------------------------------------------"
    "---===\n"
    " */\n\n";

  OS << "#ifndef __ARM_NEON_H\n";
  OS << "#define __ARM_NEON_H\n\n";

  OS << "#ifndef __ARM_NEON__\n";
  OS << "#error \"NEON support not enabled\"\n";
  OS << "#endif\n\n";

  OS << "#include <stdint.h>\n\n";

  // Emit NEON-specific scalar typedefs.
  OS << "typedef float float32_t;\n";
  OS << "typedef int8_t poly8_t;\n";
  OS << "typedef int16_t poly16_t;\n";
  OS << "typedef uint16_t float16_t;\n";

  // Emit Neon vector typedefs.
  std::string TypedefTypes("cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfPcQPcPsQPs");
  SmallVector<StringRef, 24> TDTypeVec;
  ParseTypes(0, TypedefTypes, TDTypeVec);

  // Emit vector typedefs.
  for (unsigned i = 0, e = TDTypeVec.size(); i != e; ++i) {
    bool dummy, quad = false, poly = false;
    (void) ClassifyType(TDTypeVec[i], quad, poly, dummy);
    if (poly)
      OS << "typedef __attribute__((neon_polyvector_type(";
    else
      OS << "typedef __attribute__((neon_vector_type(";

    unsigned nElts = GetNumElements(TDTypeVec[i], quad);
    OS << utostr(nElts) << "))) ";
    if (nElts < 10)
      OS << " ";

    OS << TypeString('s', TDTypeVec[i]);
    OS << " " << TypeString('d', TDTypeVec[i]) << ";\n";
  }
  OS << "\n";

  // Emit struct typedefs.
  for (unsigned vi = 2; vi != 5; ++vi) {
    for (unsigned i = 0, e = TDTypeVec.size(); i != e; ++i) {
      std::string ts = TypeString('d', TDTypeVec[i]);
      std::string vs = TypeString('0' + vi, TDTypeVec[i]);
      OS << "typedef struct " << vs << " {\n";
      OS << "  " << ts << " val";
      OS << "[" << utostr(vi) << "]";
      OS << ";\n} ";
      OS << vs << ";\n\n";
    }
  }

  OS<<"#define __ai static inline __attribute__((__always_inline__, __nodebug__))\n\n";

  std::vector<Record*> RV = Records.getAllDerivedDefinitions("Inst");

  // Emit vmovl, vmull and vabd intrinsics first so they can be used by other
  // intrinsics.  (Some of the saturating multiply instructions are also
  // used to implement the corresponding "_lane" variants, but tablegen
  // sorts the records into alphabetical order so that the "_lane" variants
  // come after the intrinsics they use.)
  emitIntrinsic(OS, Records.getDef("VMOVL"));
  emitIntrinsic(OS, Records.getDef("VMULL"));
  emitIntrinsic(OS, Records.getDef("VABD"));

  for (unsigned i = 0, e = RV.size(); i != e; ++i) {
    Record *R = RV[i];
    if (R->getName() != "VMOVL" &&
        R->getName() != "VMULL" &&
        R->getName() != "VABD")
      emitIntrinsic(OS, R);
  }

  OS << "#undef __ai\n\n";
  OS << "#endif /* __ARM_NEON_H */\n";
}

/// emitIntrinsic - Write out the arm_neon.h header file definitions for the
/// intrinsics specified by record R.
void NeonEmitter::emitIntrinsic(raw_ostream &OS, Record *R) {
  std::string name = R->getValueAsString("Name");
  std::string Proto = R->getValueAsString("Prototype");
  std::string Types = R->getValueAsString("Types");

  SmallVector<StringRef, 16> TypeVec;
  ParseTypes(R, Types, TypeVec);

  OpKind kind = OpMap[R->getValueAsDef("Operand")->getName()];

  ClassKind classKind = ClassNone;
  if (R->getSuperClasses().size() >= 2)
    classKind = ClassMap[R->getSuperClasses()[1]];
  if (classKind == ClassNone && kind == OpNone)
    PrintFatalError(R->getLoc(), "Builtin has no class kind");

  for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) {
    if (kind == OpReinterpret) {
      bool outQuad = false;
      bool dummy = false;
      (void)ClassifyType(TypeVec[ti], outQuad, dummy, dummy);
      for (unsigned srcti = 0, srcte = TypeVec.size();
           srcti != srcte; ++srcti) {
        bool inQuad = false;
        (void)ClassifyType(TypeVec[srcti], inQuad, dummy, dummy);
        if (srcti == ti || inQuad != outQuad)
          continue;
        OS << GenIntrinsic(name, Proto, TypeVec[ti], TypeVec[srcti],
                           OpCast, ClassS);
      }
    } else {
      OS << GenIntrinsic(name, Proto, TypeVec[ti], TypeVec[ti],
                         kind, classKind);
    }
  }
  OS << "\n";
}

static unsigned RangeFromType(const char mod, StringRef typestr) {
  // base type to get the type string for.
  bool quad = false, dummy = false;
  char type = ClassifyType(typestr, quad, dummy, dummy);
  type = ModType(mod, type, quad, dummy, dummy, dummy, dummy, dummy);

  switch (type) {
    case 'c':
      return (8 << (int)quad) - 1;
    case 'h':
    case 's':
      return (4 << (int)quad) - 1;
    case 'f':
    case 'i':
      return (2 << (int)quad) - 1;
    case 'l':
      return (1 << (int)quad) - 1;
    default:
      PrintFatalError("unhandled type!");
  }
}

/// runHeader - Emit a file with sections defining:
/// 1. the NEON section of BuiltinsARM.def.
/// 2. the SemaChecking code for the type overload checking.
/// 3. the SemaChecking code for validation of intrinsic immediate arguments.
void NeonEmitter::runHeader(raw_ostream &OS) {
  std::vector<Record*> RV = Records.getAllDerivedDefinitions("Inst");

  StringMap<OpKind> EmittedMap;

  // Generate BuiltinsARM.def for NEON
  OS << "#ifdef GET_NEON_BUILTINS\n";
  for (unsigned i = 0, e = RV.size(); i != e; ++i) {
    Record *R = RV[i];
    OpKind k = OpMap[R->getValueAsDef("Operand")->getName()];
    if (k != OpNone)
      continue;

    std::string Proto = R->getValueAsString("Prototype");

    // Functions with 'a' (the splat code) in the type prototype should not get
    // their own builtin as they use the non-splat variant.
    if (Proto.find('a') != std::string::npos)
      continue;

    std::string Types = R->getValueAsString("Types");
    SmallVector<StringRef, 16> TypeVec;
    ParseTypes(R, Types, TypeVec);

    if (R->getSuperClasses().size() < 2)
      PrintFatalError(R->getLoc(), "Builtin has no class kind");

    std::string name = R->getValueAsString("Name");
    ClassKind ck = ClassMap[R->getSuperClasses()[1]];

    for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) {
      // Generate the BuiltinsARM.def declaration for this builtin, ensuring
      // that each unique BUILTIN() macro appears only once in the output
      // stream.
      std::string bd = GenBuiltinDef(name, Proto, TypeVec[ti], ck);
      if (EmittedMap.count(bd))
        continue;

      EmittedMap[bd] = OpNone;
      OS << bd << "\n";
    }
  }
  OS << "#endif\n\n";

  // Generate the overloaded type checking code for SemaChecking.cpp
  OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
  for (unsigned i = 0, e = RV.size(); i != e; ++i) {
    Record *R = RV[i];
    OpKind k = OpMap[R->getValueAsDef("Operand")->getName()];
    if (k != OpNone)
      continue;

    std::string Proto = R->getValueAsString("Prototype");
    std::string Types = R->getValueAsString("Types");
    std::string name = R->getValueAsString("Name");

    // Functions with 'a' (the splat code) in the type prototype should not get
    // their own builtin as they use the non-splat variant.
    if (Proto.find('a') != std::string::npos)
      continue;

    // Functions which have a scalar argument cannot be overloaded, no need to
    // check them if we are emitting the type checking code.
    if (Proto.find('s') != std::string::npos)
      continue;

    SmallVector<StringRef, 16> TypeVec;
    ParseTypes(R, Types, TypeVec);

    if (R->getSuperClasses().size() < 2)
      PrintFatalError(R->getLoc(), "Builtin has no class kind");

    int si = -1, qi = -1;
    uint64_t mask = 0, qmask = 0;
    for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) {
      // Generate the switch case(s) for this builtin for the type validation.
      bool quad = false, poly = false, usgn = false;
      (void) ClassifyType(TypeVec[ti], quad, poly, usgn);

      if (quad) {
        qi = ti;
        qmask |= 1ULL << GetNeonEnum(Proto, TypeVec[ti]);
      } else {
        si = ti;
        mask |= 1ULL << GetNeonEnum(Proto, TypeVec[ti]);
      }
    }

    // Check if the builtin function has a pointer or const pointer argument.
    int PtrArgNum = -1;
    bool HasConstPtr = false;
    for (unsigned arg = 1, arge = Proto.size(); arg != arge; ++arg) {
      char ArgType = Proto[arg];
      if (ArgType == 'c') {
        HasConstPtr = true;
        PtrArgNum = arg - 1;
        break;
      }
      if (ArgType == 'p') {
        PtrArgNum = arg - 1;
        break;
      }
    }
    // For sret builtins, adjust the pointer argument index.
    if (PtrArgNum >= 0 && (Proto[0] >= '2' && Proto[0] <= '4'))
      PtrArgNum += 1;

    // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
    // and vst1_lane intrinsics.  Using a pointer to the vector element
    // type with one of those operations causes codegen to select an aligned
    // load/store instruction.  If you want an unaligned operation,
    // the pointer argument needs to have less alignment than element type,
    // so just accept any pointer type.
    if (name == "vld1_lane" || name == "vld1_dup" || name == "vst1_lane") {
      PtrArgNum = -1;
      HasConstPtr = false;
    }

    if (mask) {
      OS << "case ARM::BI__builtin_neon_"
         << MangleName(name, TypeVec[si], ClassB)
         << ": mask = " << "0x" << utohexstr(mask) << "ULL";
      if (PtrArgNum >= 0)
        OS << "; PtrArgNum = " << PtrArgNum;
      if (HasConstPtr)
        OS << "; HasConstPtr = true";
      OS << "; break;\n";
    }
    if (qmask) {
      OS << "case ARM::BI__builtin_neon_"
         << MangleName(name, TypeVec[qi], ClassB)
         << ": mask = " << "0x" << utohexstr(qmask) << "ULL";
      if (PtrArgNum >= 0)
        OS << "; PtrArgNum = " << PtrArgNum;
      if (HasConstPtr)
        OS << "; HasConstPtr = true";
      OS << "; break;\n";
    }
  }
  OS << "#endif\n\n";

  // Generate the intrinsic range checking code for shift/lane immediates.
  OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
  for (unsigned i = 0, e = RV.size(); i != e; ++i) {
    Record *R = RV[i];

    OpKind k = OpMap[R->getValueAsDef("Operand")->getName()];
    if (k != OpNone)
      continue;

    std::string name = R->getValueAsString("Name");
    std::string Proto = R->getValueAsString("Prototype");
    std::string Types = R->getValueAsString("Types");

    // Functions with 'a' (the splat code) in the type prototype should not get
    // their own builtin as they use the non-splat variant.
    if (Proto.find('a') != std::string::npos)
      continue;

    // Functions which do not have an immediate do not need to have range
    // checking code emitted.
    size_t immPos = Proto.find('i');
    if (immPos == std::string::npos)
      continue;

    SmallVector<StringRef, 16> TypeVec;
    ParseTypes(R, Types, TypeVec);

    if (R->getSuperClasses().size() < 2)
      PrintFatalError(R->getLoc(), "Builtin has no class kind");

    ClassKind ck = ClassMap[R->getSuperClasses()[1]];

    for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) {
      std::string namestr, shiftstr, rangestr;

      if (R->getValueAsBit("isVCVT_N")) {
        // VCVT between floating- and fixed-point values takes an immediate
        // in the range 1 to 32.
        ck = ClassB;
        rangestr = "l = 1; u = 31"; // upper bound = l + u
      } else if (Proto.find('s') == std::string::npos) {
        // Builtins which are overloaded by type will need to have their upper
        // bound computed at Sema time based on the type constant.
        ck = ClassB;
        if (R->getValueAsBit("isShift")) {
          shiftstr = ", true";

          // Right shifts have an 'r' in the name, left shifts do not.
          if (name.find('r') != std::string::npos)
            rangestr = "l = 1; ";
        }
        rangestr += "u = RFT(TV" + shiftstr + ")";
      } else {
        // The immediate generally refers to a lane in the preceding argument.
        assert(immPos > 0 && "unexpected immediate operand");
        rangestr = "u = " + utostr(RangeFromType(Proto[immPos-1], TypeVec[ti]));
      }
      // Make sure cases appear only once by uniquing them in a string map.
      namestr = MangleName(name, TypeVec[ti], ck);
      if (EmittedMap.count(namestr))
        continue;
      EmittedMap[namestr] = OpNone;

      // Calculate the index of the immediate that should be range checked.
      unsigned immidx = 0;

      // Builtins that return a struct of multiple vectors have an extra
      // leading arg for the struct return.
      if (Proto[0] >= '2' && Proto[0] <= '4')
        ++immidx;

      // Add one to the index for each argument until we reach the immediate
      // to be checked.  Structs of vectors are passed as multiple arguments.
      for (unsigned ii = 1, ie = Proto.size(); ii != ie; ++ii) {
        switch (Proto[ii]) {
          default:  immidx += 1; break;
          case '2': immidx += 2; break;
          case '3': immidx += 3; break;
          case '4': immidx += 4; break;
          case 'i': ie = ii + 1; break;
        }
      }
      OS << "case ARM::BI__builtin_neon_" << MangleName(name, TypeVec[ti], ck)
         << ": i = " << immidx << "; " << rangestr << "; break;\n";
    }
  }
  OS << "#endif\n\n";
}

/// GenTest - Write out a test for the intrinsic specified by the name and
/// type strings, including the embedded patterns for FileCheck to match.
static std::string GenTest(const std::string &name,
                           const std::string &proto,
                           StringRef outTypeStr, StringRef inTypeStr,
                           bool isShift, bool isHiddenLOp,
                           ClassKind ck, const std::string &InstName) {
  assert(!proto.empty() && "");
  std::string s;

  // Function name with type suffix
  std::string mangledName = MangleName(name, outTypeStr, ClassS);
  if (outTypeStr != inTypeStr) {
    // If the input type is different (e.g., for vreinterpret), append a suffix
    // for the input type.  String off a "Q" (quad) prefix so that MangleName
    // does not insert another "q" in the name.
    unsigned typeStrOff = (inTypeStr[0] == 'Q' ? 1 : 0);
    StringRef inTypeNoQuad = inTypeStr.substr(typeStrOff);
    mangledName = MangleName(mangledName, inTypeNoQuad, ClassS);
  }

  std::vector<std::string> FileCheckPatterns;
  GenerateChecksForIntrinsic(name, proto, outTypeStr, inTypeStr, ck, InstName,
                             isHiddenLOp, FileCheckPatterns);

  // Emit the FileCheck patterns.
  s += "// CHECK: test_" + mangledName + "\n";
  // If for any reason we do not want to emit a check, mangledInst
  // will be the empty string.
  if (FileCheckPatterns.size()) {
    for (std::vector<std::string>::const_iterator i = FileCheckPatterns.begin(),
                                                  e = FileCheckPatterns.end();
         i != e;
         ++i) {
      s += "// CHECK: " + *i + "\n";
    }
  }

  // Emit the start of the test function.
  s += TypeString(proto[0], outTypeStr) + " test_" + mangledName + "(";
  char arg = 'a';
  std::string comma;
  for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) {
    // Do not create arguments for values that must be immediate constants.
    if (proto[i] == 'i')
      continue;
    s += comma + TypeString(proto[i], inTypeStr) + " ";
    s.push_back(arg);
    comma = ", ";
  }
  s += ") {\n  ";

  if (proto[0] != 'v')
    s += "return ";
  s += mangledName + "(";
  arg = 'a';
  for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) {
    if (proto[i] == 'i') {
      // For immediate operands, test the maximum value.
      if (isShift)
        s += "1"; // FIXME
      else
        // The immediate generally refers to a lane in the preceding argument.
        s += utostr(RangeFromType(proto[i-1], inTypeStr));
    } else {
      s.push_back(arg);
    }
    if ((i + 1) < e)
      s += ", ";
  }
  s += ");\n}\n\n";
  return s;
}

/// runTests - Write out a complete set of tests for all of the Neon
/// intrinsics.
void NeonEmitter::runTests(raw_ostream &OS) {
  OS <<
    "// RUN: %clang_cc1 -triple thumbv7-apple-darwin \\\n"
    "// RUN:  -target-cpu swift -ffreestanding -Os -S -o - %s\\\n"
    "// RUN:  | FileCheck %s\n"
    "\n"
    "#include <arm_neon.h>\n"
    "\n";

  std::vector<Record*> RV = Records.getAllDerivedDefinitions("Inst");
  for (unsigned i = 0, e = RV.size(); i != e; ++i) {
    Record *R = RV[i];
    std::string name = R->getValueAsString("Name");
    std::string Proto = R->getValueAsString("Prototype");
    std::string Types = R->getValueAsString("Types");
    bool isShift = R->getValueAsBit("isShift");
    std::string InstName = R->getValueAsString("InstName");
    bool isHiddenLOp = R->getValueAsBit("isHiddenLInst");

    SmallVector<StringRef, 16> TypeVec;
    ParseTypes(R, Types, TypeVec);

    ClassKind ck = ClassMap[R->getSuperClasses()[1]];
    OpKind kind = OpMap[R->getValueAsDef("Operand")->getName()];
    if (kind == OpUnavailable)
      continue;
    for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) {
      if (kind == OpReinterpret) {
        bool outQuad = false;
        bool dummy = false;
        (void)ClassifyType(TypeVec[ti], outQuad, dummy, dummy);
        for (unsigned srcti = 0, srcte = TypeVec.size();
             srcti != srcte; ++srcti) {
          bool inQuad = false;
          (void)ClassifyType(TypeVec[srcti], inQuad, dummy, dummy);
          if (srcti == ti || inQuad != outQuad)
            continue;
          OS << GenTest(name, Proto, TypeVec[ti], TypeVec[srcti],
                        isShift, isHiddenLOp, ck, InstName);
        }
      } else {
        OS << GenTest(name, Proto, TypeVec[ti], TypeVec[ti],
                      isShift, isHiddenLOp, ck, InstName);
      }
    }
    OS << "\n";
  }
}

namespace clang {
void EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
  NeonEmitter(Records).run(OS);
}
void EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
  NeonEmitter(Records).runHeader(OS);
}
void EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
  NeonEmitter(Records).runTests(OS);
}
} // End namespace clang