1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
//= RValues.cpp - Abstract RValues for Path-Sens. Value Tracking -*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines SVal, Loc, and NonLoc, classes that represent
// abstract r-values for use with path-sensitive value tracking.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/AST/ExprObjC.h"
#include "clang/Basic/IdentifierTable.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
using llvm::APSInt;
//===----------------------------------------------------------------------===//
// Symbol iteration within an SVal.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Utility methods.
//===----------------------------------------------------------------------===//
bool SVal::hasConjuredSymbol() const {
if (Optional<nonloc::SymbolVal> SV = getAs<nonloc::SymbolVal>()) {
SymbolRef sym = SV->getSymbol();
if (isa<SymbolConjured>(sym))
return true;
}
if (Optional<loc::MemRegionVal> RV = getAs<loc::MemRegionVal>()) {
const MemRegion *R = RV->getRegion();
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
SymbolRef sym = SR->getSymbol();
if (isa<SymbolConjured>(sym))
return true;
}
}
return false;
}
const FunctionDecl *SVal::getAsFunctionDecl() const {
if (Optional<loc::MemRegionVal> X = getAs<loc::MemRegionVal>()) {
const MemRegion* R = X->getRegion();
if (const FunctionTextRegion *CTR = R->getAs<FunctionTextRegion>())
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CTR->getDecl()))
return FD;
}
return 0;
}
/// \brief If this SVal is a location (subclasses Loc) and wraps a symbol,
/// return that SymbolRef. Otherwise return 0.
///
/// Implicit casts (ex: void* -> char*) can turn Symbolic region into Element
/// region. If that is the case, gets the underlining region.
/// When IncludeBaseRegions is set to true and the SubRegion is non-symbolic,
/// the first symbolic parent region is returned.
SymbolRef SVal::getAsLocSymbol(bool IncludeBaseRegions) const {
// FIXME: should we consider SymbolRef wrapped in CodeTextRegion?
if (Optional<nonloc::LocAsInteger> X = getAs<nonloc::LocAsInteger>())
return X->getLoc().getAsLocSymbol();
if (Optional<loc::MemRegionVal> X = getAs<loc::MemRegionVal>()) {
const MemRegion *R = X->getRegion();
if (const SymbolicRegion *SymR = IncludeBaseRegions ?
R->getSymbolicBase() :
dyn_cast<SymbolicRegion>(R->StripCasts()))
return SymR->getSymbol();
}
return 0;
}
/// Get the symbol in the SVal or its base region.
SymbolRef SVal::getLocSymbolInBase() const {
Optional<loc::MemRegionVal> X = getAs<loc::MemRegionVal>();
if (!X)
return 0;
const MemRegion *R = X->getRegion();
while (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SR))
return SymR->getSymbol();
else
R = SR->getSuperRegion();
}
return 0;
}
// TODO: The next 3 functions have to be simplified.
/// \brief If this SVal wraps a symbol return that SymbolRef.
/// Otherwise, return 0.
///
/// Casts are ignored during lookup.
/// \param IncludeBaseRegions The boolean that controls whether the search
/// should continue to the base regions if the region is not symbolic.
SymbolRef SVal::getAsSymbol(bool IncludeBaseRegion) const {
// FIXME: should we consider SymbolRef wrapped in CodeTextRegion?
if (Optional<nonloc::SymbolVal> X = getAs<nonloc::SymbolVal>())
return X->getSymbol();
return getAsLocSymbol(IncludeBaseRegion);
}
/// getAsSymbolicExpression - If this Sval wraps a symbolic expression then
/// return that expression. Otherwise return NULL.
const SymExpr *SVal::getAsSymbolicExpression() const {
if (Optional<nonloc::SymbolVal> X = getAs<nonloc::SymbolVal>())
return X->getSymbol();
return getAsSymbol();
}
const SymExpr* SVal::getAsSymExpr() const {
const SymExpr* Sym = getAsSymbol();
if (!Sym)
Sym = getAsSymbolicExpression();
return Sym;
}
const MemRegion *SVal::getAsRegion() const {
if (Optional<loc::MemRegionVal> X = getAs<loc::MemRegionVal>())
return X->getRegion();
if (Optional<nonloc::LocAsInteger> X = getAs<nonloc::LocAsInteger>())
return X->getLoc().getAsRegion();
return 0;
}
const MemRegion *loc::MemRegionVal::stripCasts(bool StripBaseCasts) const {
const MemRegion *R = getRegion();
return R ? R->StripCasts(StripBaseCasts) : NULL;
}
const void *nonloc::LazyCompoundVal::getStore() const {
return static_cast<const LazyCompoundValData*>(Data)->getStore();
}
const TypedValueRegion *nonloc::LazyCompoundVal::getRegion() const {
return static_cast<const LazyCompoundValData*>(Data)->getRegion();
}
//===----------------------------------------------------------------------===//
// Other Iterators.
//===----------------------------------------------------------------------===//
nonloc::CompoundVal::iterator nonloc::CompoundVal::begin() const {
return getValue()->begin();
}
nonloc::CompoundVal::iterator nonloc::CompoundVal::end() const {
return getValue()->end();
}
//===----------------------------------------------------------------------===//
// Useful predicates.
//===----------------------------------------------------------------------===//
bool SVal::isConstant() const {
return getAs<nonloc::ConcreteInt>() || getAs<loc::ConcreteInt>();
}
bool SVal::isConstant(int I) const {
if (Optional<loc::ConcreteInt> LV = getAs<loc::ConcreteInt>())
return LV->getValue() == I;
if (Optional<nonloc::ConcreteInt> NV = getAs<nonloc::ConcreteInt>())
return NV->getValue() == I;
return false;
}
bool SVal::isZeroConstant() const {
return isConstant(0);
}
//===----------------------------------------------------------------------===//
// Transfer function dispatch for Non-Locs.
//===----------------------------------------------------------------------===//
SVal nonloc::ConcreteInt::evalBinOp(SValBuilder &svalBuilder,
BinaryOperator::Opcode Op,
const nonloc::ConcreteInt& R) const {
const llvm::APSInt* X =
svalBuilder.getBasicValueFactory().evalAPSInt(Op, getValue(), R.getValue());
if (X)
return nonloc::ConcreteInt(*X);
else
return UndefinedVal();
}
nonloc::ConcreteInt
nonloc::ConcreteInt::evalComplement(SValBuilder &svalBuilder) const {
return svalBuilder.makeIntVal(~getValue());
}
nonloc::ConcreteInt
nonloc::ConcreteInt::evalMinus(SValBuilder &svalBuilder) const {
return svalBuilder.makeIntVal(-getValue());
}
//===----------------------------------------------------------------------===//
// Transfer function dispatch for Locs.
//===----------------------------------------------------------------------===//
SVal loc::ConcreteInt::evalBinOp(BasicValueFactory& BasicVals,
BinaryOperator::Opcode Op,
const loc::ConcreteInt& R) const {
assert(BinaryOperator::isComparisonOp(Op) || Op == BO_Sub);
const llvm::APSInt *X = BasicVals.evalAPSInt(Op, getValue(), R.getValue());
if (X)
return nonloc::ConcreteInt(*X);
else
return UndefinedVal();
}
//===----------------------------------------------------------------------===//
// Pretty-Printing.
//===----------------------------------------------------------------------===//
void SVal::dump() const { dumpToStream(llvm::errs()); }
void SVal::dumpToStream(raw_ostream &os) const {
switch (getBaseKind()) {
case UnknownKind:
os << "Unknown";
break;
case NonLocKind:
castAs<NonLoc>().dumpToStream(os);
break;
case LocKind:
castAs<Loc>().dumpToStream(os);
break;
case UndefinedKind:
os << "Undefined";
break;
}
}
void NonLoc::dumpToStream(raw_ostream &os) const {
switch (getSubKind()) {
case nonloc::ConcreteIntKind: {
const nonloc::ConcreteInt& C = castAs<nonloc::ConcreteInt>();
if (C.getValue().isUnsigned())
os << C.getValue().getZExtValue();
else
os << C.getValue().getSExtValue();
os << ' ' << (C.getValue().isUnsigned() ? 'U' : 'S')
<< C.getValue().getBitWidth() << 'b';
break;
}
case nonloc::SymbolValKind: {
os << castAs<nonloc::SymbolVal>().getSymbol();
break;
}
case nonloc::LocAsIntegerKind: {
const nonloc::LocAsInteger& C = castAs<nonloc::LocAsInteger>();
os << C.getLoc() << " [as " << C.getNumBits() << " bit integer]";
break;
}
case nonloc::CompoundValKind: {
const nonloc::CompoundVal& C = castAs<nonloc::CompoundVal>();
os << "compoundVal{";
bool first = true;
for (nonloc::CompoundVal::iterator I=C.begin(), E=C.end(); I!=E; ++I) {
if (first) {
os << ' '; first = false;
}
else
os << ", ";
(*I).dumpToStream(os);
}
os << "}";
break;
}
case nonloc::LazyCompoundValKind: {
const nonloc::LazyCompoundVal &C = castAs<nonloc::LazyCompoundVal>();
os << "lazyCompoundVal{" << const_cast<void *>(C.getStore())
<< ',' << C.getRegion()
<< '}';
break;
}
default:
assert (false && "Pretty-printed not implemented for this NonLoc.");
break;
}
}
void Loc::dumpToStream(raw_ostream &os) const {
switch (getSubKind()) {
case loc::ConcreteIntKind:
os << castAs<loc::ConcreteInt>().getValue().getZExtValue() << " (Loc)";
break;
case loc::GotoLabelKind:
os << "&&" << castAs<loc::GotoLabel>().getLabel()->getName();
break;
case loc::MemRegionKind:
os << '&' << castAs<loc::MemRegionVal>().getRegion()->getString();
break;
default:
llvm_unreachable("Pretty-printing not implemented for this Loc.");
}
}
|