aboutsummaryrefslogtreecommitdiff
path: root/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp
blob: 3606e099cec2ee1f08e58bc8a5938888fb7531e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines RangeConstraintManager, a class that tracks simple
//  equality and inequality constraints on symbolic values of ProgramState.
//
//===----------------------------------------------------------------------===//

#include "SimpleConstraintManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace clang;
using namespace ento;

/// A Range represents the closed range [from, to].  The caller must
/// guarantee that from <= to.  Note that Range is immutable, so as not
/// to subvert RangeSet's immutability.
namespace {
class Range : public std::pair<const llvm::APSInt*,
                                                const llvm::APSInt*> {
public:
  Range(const llvm::APSInt &from, const llvm::APSInt &to)
    : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
    assert(from <= to);
  }
  bool Includes(const llvm::APSInt &v) const {
    return *first <= v && v <= *second;
  }
  const llvm::APSInt &From() const {
    return *first;
  }
  const llvm::APSInt &To() const {
    return *second;
  }
  const llvm::APSInt *getConcreteValue() const {
    return &From() == &To() ? &From() : NULL;
  }

  void Profile(llvm::FoldingSetNodeID &ID) const {
    ID.AddPointer(&From());
    ID.AddPointer(&To());
  }
};


class RangeTrait : public llvm::ImutContainerInfo<Range> {
public:
  // When comparing if one Range is less than another, we should compare
  // the actual APSInt values instead of their pointers.  This keeps the order
  // consistent (instead of comparing by pointer values) and can potentially
  // be used to speed up some of the operations in RangeSet.
  static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
    return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
                                       *lhs.second < *rhs.second);
  }
};

/// RangeSet contains a set of ranges. If the set is empty, then
///  there the value of a symbol is overly constrained and there are no
///  possible values for that symbol.
class RangeSet {
  typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
  PrimRangeSet ranges; // no need to make const, since it is an
                       // ImmutableSet - this allows default operator=
                       // to work.
public:
  typedef PrimRangeSet::Factory Factory;
  typedef PrimRangeSet::iterator iterator;

  RangeSet(PrimRangeSet RS) : ranges(RS) {}

  iterator begin() const { return ranges.begin(); }
  iterator end() const { return ranges.end(); }

  bool isEmpty() const { return ranges.isEmpty(); }

  /// Construct a new RangeSet representing '{ [from, to] }'.
  RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
    : ranges(F.add(F.getEmptySet(), Range(from, to))) {}

  /// Profile - Generates a hash profile of this RangeSet for use
  ///  by FoldingSet.
  void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }

  /// getConcreteValue - If a symbol is contrained to equal a specific integer
  ///  constant then this method returns that value.  Otherwise, it returns
  ///  NULL.
  const llvm::APSInt* getConcreteValue() const {
    return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : 0;
  }

private:
  void IntersectInRange(BasicValueFactory &BV, Factory &F,
                        const llvm::APSInt &Lower,
                        const llvm::APSInt &Upper,
                        PrimRangeSet &newRanges,
                        PrimRangeSet::iterator &i,
                        PrimRangeSet::iterator &e) const {
    // There are six cases for each range R in the set:
    //   1. R is entirely before the intersection range.
    //   2. R is entirely after the intersection range.
    //   3. R contains the entire intersection range.
    //   4. R starts before the intersection range and ends in the middle.
    //   5. R starts in the middle of the intersection range and ends after it.
    //   6. R is entirely contained in the intersection range.
    // These correspond to each of the conditions below.
    for (/* i = begin(), e = end() */; i != e; ++i) {
      if (i->To() < Lower) {
        continue;
      }
      if (i->From() > Upper) {
        break;
      }

      if (i->Includes(Lower)) {
        if (i->Includes(Upper)) {
          newRanges = F.add(newRanges, Range(BV.getValue(Lower),
                                             BV.getValue(Upper)));
          break;
        } else
          newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
      } else {
        if (i->Includes(Upper)) {
          newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
          break;
        } else
          newRanges = F.add(newRanges, *i);
      }
    }
  }

  const llvm::APSInt &getMinValue() const {
    assert(!isEmpty());
    return ranges.begin()->From();
  }

  bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
    // This function has nine cases, the cartesian product of range-testing
    // both the upper and lower bounds against the symbol's type.
    // Each case requires a different pinning operation.
    // The function returns false if the described range is entirely outside
    // the range of values for the associated symbol.
    APSIntType Type(getMinValue());
    APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
    APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);

    switch (LowerTest) {
    case APSIntType::RTR_Below:
      switch (UpperTest) {
      case APSIntType::RTR_Below:
        // The entire range is outside the symbol's set of possible values.
        // If this is a conventionally-ordered range, the state is infeasible.
        if (Lower < Upper)
          return false;

        // However, if the range wraps around, it spans all possible values.
        Lower = Type.getMinValue();
        Upper = Type.getMaxValue();
        break;
      case APSIntType::RTR_Within:
        // The range starts below what's possible but ends within it. Pin.
        Lower = Type.getMinValue();
        Type.apply(Upper);
        break;
      case APSIntType::RTR_Above:
        // The range spans all possible values for the symbol. Pin.
        Lower = Type.getMinValue();
        Upper = Type.getMaxValue();
        break;
      }
      break;
    case APSIntType::RTR_Within:
      switch (UpperTest) {
      case APSIntType::RTR_Below:
        // The range wraps around, but all lower values are not possible.
        Type.apply(Lower);
        Upper = Type.getMaxValue();
        break;
      case APSIntType::RTR_Within:
        // The range may or may not wrap around, but both limits are valid.
        Type.apply(Lower);
        Type.apply(Upper);
        break;
      case APSIntType::RTR_Above:
        // The range starts within what's possible but ends above it. Pin.
        Type.apply(Lower);
        Upper = Type.getMaxValue();
        break;
      }
      break;
    case APSIntType::RTR_Above:
      switch (UpperTest) {
      case APSIntType::RTR_Below:
        // The range wraps but is outside the symbol's set of possible values.
        return false;
      case APSIntType::RTR_Within:
        // The range starts above what's possible but ends within it (wrap).
        Lower = Type.getMinValue();
        Type.apply(Upper);
        break;
      case APSIntType::RTR_Above:
        // The entire range is outside the symbol's set of possible values.
        // If this is a conventionally-ordered range, the state is infeasible.
        if (Lower < Upper)
          return false;

        // However, if the range wraps around, it spans all possible values.
        Lower = Type.getMinValue();
        Upper = Type.getMaxValue();
        break;
      }
      break;
    }

    return true;
  }

public:
  // Returns a set containing the values in the receiving set, intersected with
  // the closed range [Lower, Upper]. Unlike the Range type, this range uses
  // modular arithmetic, corresponding to the common treatment of C integer
  // overflow. Thus, if the Lower bound is greater than the Upper bound, the
  // range is taken to wrap around. This is equivalent to taking the
  // intersection with the two ranges [Min, Upper] and [Lower, Max],
  // or, alternatively, /removing/ all integers between Upper and Lower.
  RangeSet Intersect(BasicValueFactory &BV, Factory &F,
                     llvm::APSInt Lower, llvm::APSInt Upper) const {
    if (!pin(Lower, Upper))
      return F.getEmptySet();

    PrimRangeSet newRanges = F.getEmptySet();

    PrimRangeSet::iterator i = begin(), e = end();
    if (Lower <= Upper)
      IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
    else {
      // The order of the next two statements is important!
      // IntersectInRange() does not reset the iteration state for i and e.
      // Therefore, the lower range most be handled first.
      IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
      IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
    }

    return newRanges;
  }

  void print(raw_ostream &os) const {
    bool isFirst = true;
    os << "{ ";
    for (iterator i = begin(), e = end(); i != e; ++i) {
      if (isFirst)
        isFirst = false;
      else
        os << ", ";

      os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
         << ']';
    }
    os << " }";
  }

  bool operator==(const RangeSet &other) const {
    return ranges == other.ranges;
  }
};
} // end anonymous namespace

REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange,
                                 CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef,
                                                             RangeSet))

namespace {
class RangeConstraintManager : public SimpleConstraintManager{
  RangeSet GetRange(ProgramStateRef state, SymbolRef sym);
public:
  RangeConstraintManager(SubEngine *subengine, SValBuilder &SVB)
    : SimpleConstraintManager(subengine, SVB) {}

  ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
                             const llvm::APSInt& Int,
                             const llvm::APSInt& Adjustment);

  ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
                             const llvm::APSInt& Int,
                             const llvm::APSInt& Adjustment);

  ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
                             const llvm::APSInt& Int,
                             const llvm::APSInt& Adjustment);

  ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
                             const llvm::APSInt& Int,
                             const llvm::APSInt& Adjustment);

  ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
                             const llvm::APSInt& Int,
                             const llvm::APSInt& Adjustment);

  ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
                             const llvm::APSInt& Int,
                             const llvm::APSInt& Adjustment);

  const llvm::APSInt* getSymVal(ProgramStateRef St, SymbolRef sym) const;
  ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym);

  ProgramStateRef removeDeadBindings(ProgramStateRef St, SymbolReaper& SymReaper);

  void print(ProgramStateRef St, raw_ostream &Out,
             const char* nl, const char *sep);

private:
  RangeSet::Factory F;
};

} // end anonymous namespace

ConstraintManager *
ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) {
  return new RangeConstraintManager(Eng, StMgr.getSValBuilder());
}

const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St,
                                                      SymbolRef sym) const {
  const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
  return T ? T->getConcreteValue() : NULL;
}

ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
                                                    SymbolRef Sym) {
  const RangeSet *Ranges = State->get<ConstraintRange>(Sym);

  // If we don't have any information about this symbol, it's underconstrained.
  if (!Ranges)
    return ConditionTruthVal();

  // If we have a concrete value, see if it's zero.
  if (const llvm::APSInt *Value = Ranges->getConcreteValue())
    return *Value == 0;

  BasicValueFactory &BV = getBasicVals();
  APSIntType IntType = BV.getAPSIntType(Sym->getType());
  llvm::APSInt Zero = IntType.getZeroValue();

  // Check if zero is in the set of possible values.
  if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
    return false;

  // Zero is a possible value, but it is not the /only/ possible value.
  return ConditionTruthVal();
}

/// Scan all symbols referenced by the constraints. If the symbol is not alive
/// as marked in LSymbols, mark it as dead in DSymbols.
ProgramStateRef 
RangeConstraintManager::removeDeadBindings(ProgramStateRef state,
                                           SymbolReaper& SymReaper) {

  ConstraintRangeTy CR = state->get<ConstraintRange>();
  ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();

  for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
    SymbolRef sym = I.getKey();
    if (SymReaper.maybeDead(sym))
      CR = CRFactory.remove(CR, sym);
  }

  return state->set<ConstraintRange>(CR);
}

RangeSet
RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) {
  if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
    return *V;

  // Lazily generate a new RangeSet representing all possible values for the
  // given symbol type.
  BasicValueFactory &BV = getBasicVals();
  QualType T = sym->getType();

  RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T));

  // Special case: references are known to be non-zero.
  if (T->isReferenceType()) {
    APSIntType IntType = BV.getAPSIntType(T);
    Result = Result.Intersect(BV, F, ++IntType.getZeroValue(),
                                     --IntType.getZeroValue());
  }

  return Result;
}

//===------------------------------------------------------------------------===
// assumeSymX methods: public interface for RangeConstraintManager.
//===------------------------------------------------------------------------===/

// The syntax for ranges below is mathematical, using [x, y] for closed ranges
// and (x, y) for open ranges. These ranges are modular, corresponding with
// a common treatment of C integer overflow. This means that these methods
// do not have to worry about overflow; RangeSet::Intersect can handle such a
// "wraparound" range.
// As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
// UINT_MAX, 0, 1, and 2.

ProgramStateRef 
RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
    return St;

  llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
  llvm::APSInt Upper = Lower;
  --Lower;
  ++Upper;

  // [Int-Adjustment+1, Int-Adjustment-1]
  // Notice that the lower bound is greater than the upper bound.
  RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
  return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
}

ProgramStateRef 
RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
    return NULL;

  // [Int-Adjustment, Int-Adjustment]
  llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
  RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
  return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
}

ProgramStateRef 
RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  switch (AdjustmentType.testInRange(Int, true)) {
  case APSIntType::RTR_Below:
    return NULL;
  case APSIntType::RTR_Within:
    break;
  case APSIntType::RTR_Above:
    return St;
  }

  // Special case for Int == Min. This is always false.
  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
  llvm::APSInt Min = AdjustmentType.getMinValue();
  if (ComparisonVal == Min)
    return NULL;

  llvm::APSInt Lower = Min-Adjustment;
  llvm::APSInt Upper = ComparisonVal-Adjustment;
  --Upper;

  RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
  return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
}

ProgramStateRef 
RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  switch (AdjustmentType.testInRange(Int, true)) {
  case APSIntType::RTR_Below:
    return St;
  case APSIntType::RTR_Within:
    break;
  case APSIntType::RTR_Above:
    return NULL;
  }

  // Special case for Int == Max. This is always false.
  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
  llvm::APSInt Max = AdjustmentType.getMaxValue();
  if (ComparisonVal == Max)
    return NULL;

  llvm::APSInt Lower = ComparisonVal-Adjustment;
  llvm::APSInt Upper = Max-Adjustment;
  ++Lower;

  RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
  return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
}

ProgramStateRef 
RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  switch (AdjustmentType.testInRange(Int, true)) {
  case APSIntType::RTR_Below:
    return St;
  case APSIntType::RTR_Within:
    break;
  case APSIntType::RTR_Above:
    return NULL;
  }

  // Special case for Int == Min. This is always feasible.
  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
  llvm::APSInt Min = AdjustmentType.getMinValue();
  if (ComparisonVal == Min)
    return St;

  llvm::APSInt Max = AdjustmentType.getMaxValue();
  llvm::APSInt Lower = ComparisonVal-Adjustment;
  llvm::APSInt Upper = Max-Adjustment;

  RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
  return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
}

ProgramStateRef 
RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  switch (AdjustmentType.testInRange(Int, true)) {
  case APSIntType::RTR_Below:
    return NULL;
  case APSIntType::RTR_Within:
    break;
  case APSIntType::RTR_Above:
    return St;
  }

  // Special case for Int == Max. This is always feasible.
  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
  llvm::APSInt Max = AdjustmentType.getMaxValue();
  if (ComparisonVal == Max)
    return St;

  llvm::APSInt Min = AdjustmentType.getMinValue();
  llvm::APSInt Lower = Min-Adjustment;
  llvm::APSInt Upper = ComparisonVal-Adjustment;

  RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
  return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
}

//===------------------------------------------------------------------------===
// Pretty-printing.
//===------------------------------------------------------------------------===/

void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
                                   const char* nl, const char *sep) {

  ConstraintRangeTy Ranges = St->get<ConstraintRange>();

  if (Ranges.isEmpty()) {
    Out << nl << sep << "Ranges are empty." << nl;
    return;
  }

  Out << nl << sep << "Ranges of symbol values:";
  for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
    Out << nl << ' ' << I.getKey() << " : ";
    I.getData().print(Out);
  }
  Out << nl;
}