aboutsummaryrefslogtreecommitdiff
path: root/lib/Sema/SemaOverload.cpp
blob: 7ef7d85426830bf67e1499abd2691ef8e3e5b5c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides Sema routines for C++ overloading.
//
//===----------------------------------------------------------------------===//

#include "Sema.h"
#include "SemaInherit.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/TypeOrdering.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>

namespace clang {

/// GetConversionCategory - Retrieve the implicit conversion
/// category corresponding to the given implicit conversion kind.
ImplicitConversionCategory 
GetConversionCategory(ImplicitConversionKind Kind) {
  static const ImplicitConversionCategory
    Category[(int)ICK_Num_Conversion_Kinds] = {
    ICC_Identity,
    ICC_Lvalue_Transformation,
    ICC_Lvalue_Transformation,
    ICC_Lvalue_Transformation,
    ICC_Qualification_Adjustment,
    ICC_Promotion,
    ICC_Promotion,
    ICC_Conversion,
    ICC_Conversion,
    ICC_Conversion,
    ICC_Conversion,
    ICC_Conversion,
    ICC_Conversion,
    ICC_Conversion
  };
  return Category[(int)Kind];
}

/// GetConversionRank - Retrieve the implicit conversion rank
/// corresponding to the given implicit conversion kind.
ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
  static const ImplicitConversionRank
    Rank[(int)ICK_Num_Conversion_Kinds] = {
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Promotion,
    ICR_Promotion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion
  };
  return Rank[(int)Kind];
}

/// GetImplicitConversionName - Return the name of this kind of
/// implicit conversion.
const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
    "No conversion",
    "Lvalue-to-rvalue",
    "Array-to-pointer",
    "Function-to-pointer",
    "Qualification",
    "Integral promotion",
    "Floating point promotion",
    "Integral conversion",
    "Floating conversion",
    "Floating-integral conversion",
    "Pointer conversion",
    "Pointer-to-member conversion",
    "Boolean conversion",
    "Derived-to-base conversion"
  };
  return Name[Kind];
}

/// StandardConversionSequence - Set the standard conversion
/// sequence to the identity conversion.
void StandardConversionSequence::setAsIdentityConversion() {
  First = ICK_Identity;
  Second = ICK_Identity;
  Third = ICK_Identity;
  Deprecated = false;
  ReferenceBinding = false;
  DirectBinding = false;
  CopyConstructor = 0;
}

/// getRank - Retrieve the rank of this standard conversion sequence
/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
/// implicit conversions.
ImplicitConversionRank StandardConversionSequence::getRank() const {
  ImplicitConversionRank Rank = ICR_Exact_Match;
  if  (GetConversionRank(First) > Rank)
    Rank = GetConversionRank(First);
  if  (GetConversionRank(Second) > Rank)
    Rank = GetConversionRank(Second);
  if  (GetConversionRank(Third) > Rank)
    Rank = GetConversionRank(Third);
  return Rank;
}

/// isPointerConversionToBool - Determines whether this conversion is
/// a conversion of a pointer or pointer-to-member to bool. This is
/// used as part of the ranking of standard conversion sequences 
/// (C++ 13.3.3.2p4).
bool StandardConversionSequence::isPointerConversionToBool() const
{
  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);

  // Note that FromType has not necessarily been transformed by the
  // array-to-pointer or function-to-pointer implicit conversions, so
  // check for their presence as well as checking whether FromType is
  // a pointer.
  if (ToType->isBooleanType() &&
      (FromType->isPointerType() || FromType->isBlockPointerType() ||
       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
    return true;

  return false;
}

/// isPointerConversionToVoidPointer - Determines whether this
/// conversion is a conversion of a pointer to a void pointer. This is
/// used as part of the ranking of standard conversion sequences (C++
/// 13.3.3.2p4).
bool 
StandardConversionSequence::
isPointerConversionToVoidPointer(ASTContext& Context) const
{
  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);

  // Note that FromType has not necessarily been transformed by the
  // array-to-pointer implicit conversion, so check for its presence
  // and redo the conversion to get a pointer.
  if (First == ICK_Array_To_Pointer)
    FromType = Context.getArrayDecayedType(FromType);

  if (Second == ICK_Pointer_Conversion)
    if (const PointerType* ToPtrType = ToType->getAsPointerType())
      return ToPtrType->getPointeeType()->isVoidType();

  return false;
}

/// DebugPrint - Print this standard conversion sequence to standard
/// error. Useful for debugging overloading issues.
void StandardConversionSequence::DebugPrint() const {
  bool PrintedSomething = false;
  if (First != ICK_Identity) {
    fprintf(stderr, "%s", GetImplicitConversionName(First));
    PrintedSomething = true;
  }

  if (Second != ICK_Identity) {
    if (PrintedSomething) {
      fprintf(stderr, " -> ");
    }
    fprintf(stderr, "%s", GetImplicitConversionName(Second));

    if (CopyConstructor) {
      fprintf(stderr, " (by copy constructor)");
    } else if (DirectBinding) {
      fprintf(stderr, " (direct reference binding)");
    } else if (ReferenceBinding) {
      fprintf(stderr, " (reference binding)");
    }
    PrintedSomething = true;
  }

  if (Third != ICK_Identity) {
    if (PrintedSomething) {
      fprintf(stderr, " -> ");
    }
    fprintf(stderr, "%s", GetImplicitConversionName(Third));
    PrintedSomething = true;
  }

  if (!PrintedSomething) {
    fprintf(stderr, "No conversions required");
  }
}

/// DebugPrint - Print this user-defined conversion sequence to standard
/// error. Useful for debugging overloading issues.
void UserDefinedConversionSequence::DebugPrint() const {
  if (Before.First || Before.Second || Before.Third) {
    Before.DebugPrint();
    fprintf(stderr, " -> ");
  }
  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
  if (After.First || After.Second || After.Third) {
    fprintf(stderr, " -> ");
    After.DebugPrint();
  }
}

/// DebugPrint - Print this implicit conversion sequence to standard
/// error. Useful for debugging overloading issues.
void ImplicitConversionSequence::DebugPrint() const {
  switch (ConversionKind) {
  case StandardConversion:
    fprintf(stderr, "Standard conversion: ");
    Standard.DebugPrint();
    break;
  case UserDefinedConversion:
    fprintf(stderr, "User-defined conversion: ");
    UserDefined.DebugPrint();
    break;
  case EllipsisConversion:
    fprintf(stderr, "Ellipsis conversion");
    break;
  case BadConversion:
    fprintf(stderr, "Bad conversion");
    break;
  }

  fprintf(stderr, "\n");
}

// IsOverload - Determine whether the given New declaration is an
// overload of the Old declaration. This routine returns false if New
// and Old cannot be overloaded, e.g., if they are functions with the
// same signature (C++ 1.3.10) or if the Old declaration isn't a
// function (or overload set). When it does return false and Old is an
// OverloadedFunctionDecl, MatchedDecl will be set to point to the
// FunctionDecl that New cannot be overloaded with. 
//
// Example: Given the following input:
//
//   void f(int, float); // #1
//   void f(int, int); // #2
//   int f(int, int); // #3
//
// When we process #1, there is no previous declaration of "f",
// so IsOverload will not be used. 
//
// When we process #2, Old is a FunctionDecl for #1.  By comparing the
// parameter types, we see that #1 and #2 are overloaded (since they
// have different signatures), so this routine returns false;
// MatchedDecl is unchanged.
//
// When we process #3, Old is an OverloadedFunctionDecl containing #1
// and #2. We compare the signatures of #3 to #1 (they're overloaded,
// so we do nothing) and then #3 to #2. Since the signatures of #3 and
// #2 are identical (return types of functions are not part of the
// signature), IsOverload returns false and MatchedDecl will be set to
// point to the FunctionDecl for #2.
bool
Sema::IsOverload(FunctionDecl *New, Decl* OldD, 
                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
{
  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
    // Is this new function an overload of every function in the
    // overload set?
    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
                                           FuncEnd = Ovl->function_end();
    for (; Func != FuncEnd; ++Func) {
      if (!IsOverload(New, *Func, MatchedDecl)) {
        MatchedDecl = Func;
        return false;
      }
    }

    // This function overloads every function in the overload set.
    return true;
  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
    // Is the function New an overload of the function Old?
    QualType OldQType = Context.getCanonicalType(Old->getType());
    QualType NewQType = Context.getCanonicalType(New->getType());

    // Compare the signatures (C++ 1.3.10) of the two functions to
    // determine whether they are overloads. If we find any mismatch
    // in the signature, they are overloads.

    // If either of these functions is a K&R-style function (no
    // prototype), then we consider them to have matching signatures.
    if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
        isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
      return false;

    FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
    FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());

    // The signature of a function includes the types of its
    // parameters (C++ 1.3.10), which includes the presence or absence
    // of the ellipsis; see C++ DR 357).
    if (OldQType != NewQType &&
        (OldType->getNumArgs() != NewType->getNumArgs() ||
         OldType->isVariadic() != NewType->isVariadic() ||
         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
                     NewType->arg_type_begin())))
      return true;

    // If the function is a class member, its signature includes the
    // cv-qualifiers (if any) on the function itself.
    //
    // As part of this, also check whether one of the member functions
    // is static, in which case they are not overloads (C++
    // 13.1p2). While not part of the definition of the signature,
    // this check is important to determine whether these functions
    // can be overloaded.
    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
    if (OldMethod && NewMethod && 
        !OldMethod->isStatic() && !NewMethod->isStatic() &&
        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
      return true;

    // The signatures match; this is not an overload.
    return false;
  } else {
    // (C++ 13p1):
    //   Only function declarations can be overloaded; object and type
    //   declarations cannot be overloaded.
    return false;
  }
}

/// TryImplicitConversion - Attempt to perform an implicit conversion
/// from the given expression (Expr) to the given type (ToType). This
/// function returns an implicit conversion sequence that can be used
/// to perform the initialization. Given
///
///   void f(float f);
///   void g(int i) { f(i); }
///
/// this routine would produce an implicit conversion sequence to
/// describe the initialization of f from i, which will be a standard
/// conversion sequence containing an lvalue-to-rvalue conversion (C++
/// 4.1) followed by a floating-integral conversion (C++ 4.9).
//
/// Note that this routine only determines how the conversion can be
/// performed; it does not actually perform the conversion. As such,
/// it will not produce any diagnostics if no conversion is available,
/// but will instead return an implicit conversion sequence of kind
/// "BadConversion".
///
/// If @p SuppressUserConversions, then user-defined conversions are
/// not permitted.
ImplicitConversionSequence
Sema::TryImplicitConversion(Expr* From, QualType ToType,
                            bool SuppressUserConversions)
{
  ImplicitConversionSequence ICS;
  if (IsStandardConversion(From, ToType, ICS.Standard))
    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
  else if (!SuppressUserConversions &&
           IsUserDefinedConversion(From, ToType, ICS.UserDefined)) {
    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
    // C++ [over.ics.user]p4:
    //   A conversion of an expression of class type to the same class
    //   type is given Exact Match rank, and a conversion of an
    //   expression of class type to a base class of that type is
    //   given Conversion rank, in spite of the fact that a copy
    //   constructor (i.e., a user-defined conversion function) is
    //   called for those cases.
    if (CXXConstructorDecl *Constructor 
          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
      if (Constructor->isCopyConstructor(Context)) {
        // Turn this into a "standard" conversion sequence, so that it
        // gets ranked with standard conversion sequences.
        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
        ICS.Standard.setAsIdentityConversion();
        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
        ICS.Standard.CopyConstructor = Constructor;
        if (IsDerivedFrom(From->getType().getUnqualifiedType(),
                          ToType.getUnqualifiedType()))
          ICS.Standard.Second = ICK_Derived_To_Base;
      }
    }
  } else
    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;

  return ICS;
}

/// IsStandardConversion - Determines whether there is a standard
/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
/// expression From to the type ToType. Standard conversion sequences
/// only consider non-class types; for conversions that involve class
/// types, use TryImplicitConversion. If a conversion exists, SCS will
/// contain the standard conversion sequence required to perform this
/// conversion and this routine will return true. Otherwise, this
/// routine will return false and the value of SCS is unspecified.
bool 
Sema::IsStandardConversion(Expr* From, QualType ToType, 
                           StandardConversionSequence &SCS)
{
  QualType FromType = From->getType();

  // There are no standard conversions for class types, so abort early.
  if (FromType->isRecordType() || ToType->isRecordType())
    return false;

  // Standard conversions (C++ [conv])
  SCS.setAsIdentityConversion();
  SCS.Deprecated = false;
  SCS.IncompatibleObjC = false;
  SCS.FromTypePtr = FromType.getAsOpaquePtr();
  SCS.CopyConstructor = 0;

  // The first conversion can be an lvalue-to-rvalue conversion,
  // array-to-pointer conversion, or function-to-pointer conversion
  // (C++ 4p1).

  // Lvalue-to-rvalue conversion (C++ 4.1): 
  //   An lvalue (3.10) of a non-function, non-array type T can be
  //   converted to an rvalue.
  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
  if (argIsLvalue == Expr::LV_Valid && 
      !FromType->isFunctionType() && !FromType->isArrayType() &&
      !FromType->isOverloadType()) {
    SCS.First = ICK_Lvalue_To_Rvalue;

    // If T is a non-class type, the type of the rvalue is the
    // cv-unqualified version of T. Otherwise, the type of the rvalue
    // is T (C++ 4.1p1).
    FromType = FromType.getUnqualifiedType();
  }
  // Array-to-pointer conversion (C++ 4.2)
  else if (FromType->isArrayType()) {
    SCS.First = ICK_Array_To_Pointer;

    // An lvalue or rvalue of type "array of N T" or "array of unknown
    // bound of T" can be converted to an rvalue of type "pointer to
    // T" (C++ 4.2p1).
    FromType = Context.getArrayDecayedType(FromType);

    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
      // This conversion is deprecated. (C++ D.4).
      SCS.Deprecated = true;

      // For the purpose of ranking in overload resolution
      // (13.3.3.1.1), this conversion is considered an
      // array-to-pointer conversion followed by a qualification
      // conversion (4.4). (C++ 4.2p2)
      SCS.Second = ICK_Identity;
      SCS.Third = ICK_Qualification;
      SCS.ToTypePtr = ToType.getAsOpaquePtr();
      return true;
    }
  }
  // Function-to-pointer conversion (C++ 4.3).
  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
    SCS.First = ICK_Function_To_Pointer;

    // An lvalue of function type T can be converted to an rvalue of
    // type "pointer to T." The result is a pointer to the
    // function. (C++ 4.3p1).
    FromType = Context.getPointerType(FromType);
  } 
  // Address of overloaded function (C++ [over.over]).
  else if (FunctionDecl *Fn 
             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
    SCS.First = ICK_Function_To_Pointer;

    // We were able to resolve the address of the overloaded function,
    // so we can convert to the type of that function.
    FromType = Fn->getType();
    if (ToType->isReferenceType())
      FromType = Context.getReferenceType(FromType);
    else
      FromType = Context.getPointerType(FromType);
  }
  // We don't require any conversions for the first step.
  else {
    SCS.First = ICK_Identity;
  }

  // The second conversion can be an integral promotion, floating
  // point promotion, integral conversion, floating point conversion,
  // floating-integral conversion, pointer conversion,
  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
  bool IncompatibleObjC = false;
  if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
      Context.getCanonicalType(ToType).getUnqualifiedType()) {
    // The unqualified versions of the types are the same: there's no
    // conversion to do.
    SCS.Second = ICK_Identity;
  }
  // Integral promotion (C++ 4.5).  
  else if (IsIntegralPromotion(From, FromType, ToType)) {
    SCS.Second = ICK_Integral_Promotion;
    FromType = ToType.getUnqualifiedType();
  } 
  // Floating point promotion (C++ 4.6).
  else if (IsFloatingPointPromotion(FromType, ToType)) {
    SCS.Second = ICK_Floating_Promotion;
    FromType = ToType.getUnqualifiedType();
  } 
  // Integral conversions (C++ 4.7).
  // FIXME: isIntegralType shouldn't be true for enums in C++.
  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
    SCS.Second = ICK_Integral_Conversion;
    FromType = ToType.getUnqualifiedType();
  }
  // Floating point conversions (C++ 4.8).
  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
    SCS.Second = ICK_Floating_Conversion;
    FromType = ToType.getUnqualifiedType();
  }
  // Floating-integral conversions (C++ 4.9).
  // FIXME: isIntegralType shouldn't be true for enums in C++.
  else if ((FromType->isFloatingType() &&
            ToType->isIntegralType() && !ToType->isBooleanType() &&
                                        !ToType->isEnumeralType()) ||
           ((FromType->isIntegralType() || FromType->isEnumeralType()) && 
            ToType->isFloatingType())) {
    SCS.Second = ICK_Floating_Integral;
    FromType = ToType.getUnqualifiedType();
  }
  // Pointer conversions (C++ 4.10).
  else if (IsPointerConversion(From, FromType, ToType, FromType, 
                               IncompatibleObjC)) {
    SCS.Second = ICK_Pointer_Conversion;
    SCS.IncompatibleObjC = IncompatibleObjC;
  }
  // FIXME: Pointer to member conversions (4.11).
  // Boolean conversions (C++ 4.12).
  // FIXME: pointer-to-member type
  else if (ToType->isBooleanType() &&
           (FromType->isArithmeticType() ||
            FromType->isEnumeralType() ||
            FromType->isPointerType() ||
            FromType->isBlockPointerType())) {
    SCS.Second = ICK_Boolean_Conversion;
    FromType = Context.BoolTy;
  } else {
    // No second conversion required.
    SCS.Second = ICK_Identity;
  }

  QualType CanonFrom;
  QualType CanonTo;
  // The third conversion can be a qualification conversion (C++ 4p1).
  if (IsQualificationConversion(FromType, ToType)) {
    SCS.Third = ICK_Qualification;
    FromType = ToType;
    CanonFrom = Context.getCanonicalType(FromType);
    CanonTo = Context.getCanonicalType(ToType);
  } else {
    // No conversion required
    SCS.Third = ICK_Identity;

    // C++ [over.best.ics]p6: 
    //   [...] Any difference in top-level cv-qualification is
    //   subsumed by the initialization itself and does not constitute
    //   a conversion. [...]
    CanonFrom = Context.getCanonicalType(FromType);
    CanonTo = Context.getCanonicalType(ToType);    
    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
      FromType = ToType;
      CanonFrom = CanonTo;
    }
  }

  // If we have not converted the argument type to the parameter type,
  // this is a bad conversion sequence.
  if (CanonFrom != CanonTo)
    return false;

  SCS.ToTypePtr = FromType.getAsOpaquePtr();
  return true;
}

/// IsIntegralPromotion - Determines whether the conversion from the
/// expression From (whose potentially-adjusted type is FromType) to
/// ToType is an integral promotion (C++ 4.5). If so, returns true and
/// sets PromotedType to the promoted type.
bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
{
  const BuiltinType *To = ToType->getAsBuiltinType();
  // All integers are built-in.
  if (!To) {
    return false;
  }

  // An rvalue of type char, signed char, unsigned char, short int, or
  // unsigned short int can be converted to an rvalue of type int if
  // int can represent all the values of the source type; otherwise,
  // the source rvalue can be converted to an rvalue of type unsigned
  // int (C++ 4.5p1).
  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
    if (// We can promote any signed, promotable integer type to an int
        (FromType->isSignedIntegerType() ||
         // We can promote any unsigned integer type whose size is
         // less than int to an int.
         (!FromType->isSignedIntegerType() && 
          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
      return To->getKind() == BuiltinType::Int;
    }

    return To->getKind() == BuiltinType::UInt;
  }

  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
  // can be converted to an rvalue of the first of the following types
  // that can represent all the values of its underlying type: int,
  // unsigned int, long, or unsigned long (C++ 4.5p2).
  if ((FromType->isEnumeralType() || FromType->isWideCharType())
      && ToType->isIntegerType()) {
    // Determine whether the type we're converting from is signed or
    // unsigned.
    bool FromIsSigned;
    uint64_t FromSize = Context.getTypeSize(FromType);
    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
      FromIsSigned = UnderlyingType->isSignedIntegerType();
    } else {
      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
      FromIsSigned = true;
    }

    // The types we'll try to promote to, in the appropriate
    // order. Try each of these types.
    QualType PromoteTypes[6] = { 
      Context.IntTy, Context.UnsignedIntTy, 
      Context.LongTy, Context.UnsignedLongTy ,
      Context.LongLongTy, Context.UnsignedLongLongTy
    };
    for (int Idx = 0; Idx < 6; ++Idx) {
      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
      if (FromSize < ToSize ||
          (FromSize == ToSize && 
           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
        // We found the type that we can promote to. If this is the
        // type we wanted, we have a promotion. Otherwise, no
        // promotion.
        return Context.getCanonicalType(ToType).getUnqualifiedType()
          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
      }
    }
  }

  // An rvalue for an integral bit-field (9.6) can be converted to an
  // rvalue of type int if int can represent all the values of the
  // bit-field; otherwise, it can be converted to unsigned int if
  // unsigned int can represent all the values of the bit-field. If
  // the bit-field is larger yet, no integral promotion applies to
  // it. If the bit-field has an enumerated type, it is treated as any
  // other value of that type for promotion purposes (C++ 4.5p3).
  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
    using llvm::APSInt;
    if (FieldDecl *MemberDecl = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) {
      APSInt BitWidth;
      if (MemberDecl->isBitField() &&
          FromType->isIntegralType() && !FromType->isEnumeralType() &&
          From->isIntegerConstantExpr(BitWidth, Context)) {
        APSInt ToSize(Context.getTypeSize(ToType));
        
        // Are we promoting to an int from a bitfield that fits in an int?
        if (BitWidth < ToSize ||
            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
          return To->getKind() == BuiltinType::Int;
        }
        
        // Are we promoting to an unsigned int from an unsigned bitfield
        // that fits into an unsigned int?
        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
          return To->getKind() == BuiltinType::UInt;
        }
        
        return false;
      }
    }
  }

  // An rvalue of type bool can be converted to an rvalue of type int,
  // with false becoming zero and true becoming one (C++ 4.5p4).
  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
    return true;
  }

  return false;
}

/// IsFloatingPointPromotion - Determines whether the conversion from
/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
/// returns true and sets PromotedType to the promoted type.
bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
{
  /// An rvalue of type float can be converted to an rvalue of type
  /// double. (C++ 4.6p1).
  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
      if (FromBuiltin->getKind() == BuiltinType::Float &&
          ToBuiltin->getKind() == BuiltinType::Double)
        return true;

  return false;
}

/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
/// the pointer type FromPtr to a pointer to type ToPointee, with the
/// same type qualifiers as FromPtr has on its pointee type. ToType,
/// if non-empty, will be a pointer to ToType that may or may not have
/// the right set of qualifiers on its pointee.
static QualType 
BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 
                                   QualType ToPointee, QualType ToType,
                                   ASTContext &Context) {
  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
  unsigned Quals = CanonFromPointee.getCVRQualifiers();
  
  // Exact qualifier match -> return the pointer type we're converting to.  
  if (CanonToPointee.getCVRQualifiers() == Quals) {
    // ToType is exactly what we need. Return it.
    if (ToType.getTypePtr())
      return ToType;

    // Build a pointer to ToPointee. It has the right qualifiers
    // already.
    return Context.getPointerType(ToPointee);
  }

  // Just build a canonical type that has the right qualifiers.
  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
}

/// IsPointerConversion - Determines whether the conversion of the
/// expression From, which has the (possibly adjusted) type FromType,
/// can be converted to the type ToType via a pointer conversion (C++
/// 4.10). If so, returns true and places the converted type (that
/// might differ from ToType in its cv-qualifiers at some level) into
/// ConvertedType.
///
/// This routine also supports conversions to and from block pointers
/// and conversions with Objective-C's 'id', 'id<protocols...>', and
/// pointers to interfaces. FIXME: Once we've determined the
/// appropriate overloading rules for Objective-C, we may want to
/// split the Objective-C checks into a different routine; however,
/// GCC seems to consider all of these conversions to be pointer
/// conversions, so for now they live here. IncompatibleObjC will be
/// set if the conversion is an allowed Objective-C conversion that
/// should result in a warning.
bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
                               QualType& ConvertedType,
                               bool &IncompatibleObjC)
{
  IncompatibleObjC = false;
  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
    return true;

  // Conversion from a null pointer constant to any Objective-C pointer type. 
  if (Context.isObjCObjectPointerType(ToType) && 
      From->isNullPointerConstant(Context)) {
    ConvertedType = ToType;
    return true;
  }

  // Blocks: Block pointers can be converted to void*.
  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
      ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
    ConvertedType = ToType;
    return true;
  }
  // Blocks: A null pointer constant can be converted to a block
  // pointer type.
  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
    ConvertedType = ToType;
    return true;
  }

  const PointerType* ToTypePtr = ToType->getAsPointerType();
  if (!ToTypePtr)
    return false;

  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
  if (From->isNullPointerConstant(Context)) {
    ConvertedType = ToType;
    return true;
  }

  // Beyond this point, both types need to be pointers.
  const PointerType *FromTypePtr = FromType->getAsPointerType();
  if (!FromTypePtr)
    return false;

  QualType FromPointeeType = FromTypePtr->getPointeeType();
  QualType ToPointeeType = ToTypePtr->getPointeeType();

  // An rvalue of type "pointer to cv T," where T is an object type,
  // can be converted to an rvalue of type "pointer to cv void" (C++
  // 4.10p2).
  if (FromPointeeType->isIncompleteOrObjectType() && 
      ToPointeeType->isVoidType()) {
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 
                                                       ToPointeeType,
                                                       ToType, Context);
    return true;
  }

  // C++ [conv.ptr]p3:
  // 
  //   An rvalue of type "pointer to cv D," where D is a class type,
  //   can be converted to an rvalue of type "pointer to cv B," where
  //   B is a base class (clause 10) of D. If B is an inaccessible
  //   (clause 11) or ambiguous (10.2) base class of D, a program that
  //   necessitates this conversion is ill-formed. The result of the
  //   conversion is a pointer to the base class sub-object of the
  //   derived class object. The null pointer value is converted to
  //   the null pointer value of the destination type.
  //
  // Note that we do not check for ambiguity or inaccessibility
  // here. That is handled by CheckPointerConversion.
  if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 
                                                       ToPointeeType,
                                                       ToType, Context);
    return true;
  }

  return false;
}

/// isObjCPointerConversion - Determines whether this is an
/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
/// with the same arguments and return values.
bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 
                                   QualType& ConvertedType,
                                   bool &IncompatibleObjC) {
  if (!getLangOptions().ObjC1)
    return false;

  // Conversions with Objective-C's id<...>.
  if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
      ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
    ConvertedType = ToType;
    return true;
  }

  // Beyond this point, both types need to be pointers or block pointers.
  QualType ToPointeeType;
  const PointerType* ToTypePtr = ToType->getAsPointerType();
  if (ToTypePtr)
    ToPointeeType = ToTypePtr->getPointeeType();
  else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
    ToPointeeType = ToBlockPtr->getPointeeType();
  else
    return false;

  QualType FromPointeeType;
  const PointerType *FromTypePtr = FromType->getAsPointerType();
  if (FromTypePtr)
    FromPointeeType = FromTypePtr->getPointeeType();
  else if (const BlockPointerType *FromBlockPtr 
             = FromType->getAsBlockPointerType())
    FromPointeeType = FromBlockPtr->getPointeeType();
  else
    return false;

  // Objective C++: We're able to convert from a pointer to an
  // interface to a pointer to a different interface.
  const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
  const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
  if (FromIface && ToIface && 
      Context.canAssignObjCInterfaces(ToIface, FromIface)) {
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
                                                       ToPointeeType,
                                                       ToType, Context);
    return true;
  }

  if (FromIface && ToIface && 
      Context.canAssignObjCInterfaces(FromIface, ToIface)) {
    // Okay: this is some kind of implicit downcast of Objective-C
    // interfaces, which is permitted. However, we're going to
    // complain about it.
    IncompatibleObjC = true;
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
                                                       ToPointeeType,
                                                       ToType, Context);
    return true;
  }

  // Objective C++: We're able to convert between "id" and a pointer
  // to any interface (in both directions).
  if ((FromIface && Context.isObjCIdType(ToPointeeType))
      || (ToIface && Context.isObjCIdType(FromPointeeType))) {
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 
                                                       ToPointeeType,
                                                       ToType, Context);
    return true;
  } 

  // Objective C++: Allow conversions between the Objective-C "id" and
  // "Class", in either direction.
  if ((Context.isObjCIdType(FromPointeeType) && 
       Context.isObjCClassType(ToPointeeType)) ||
      (Context.isObjCClassType(FromPointeeType) &&
       Context.isObjCIdType(ToPointeeType))) {
    ConvertedType = ToType;
    return true;
  }

  // If we have pointers to pointers, recursively check whether this
  // is an Objective-C conversion.
  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
                              IncompatibleObjC)) {
    // We always complain about this conversion.
    IncompatibleObjC = true;
    ConvertedType = ToType;
    return true;
  }

  // If we have pointers to functions or blocks, check whether the only
  // differences in the argument and result types are in Objective-C
  // pointer conversions. If so, we permit the conversion (but
  // complain about it).
  const FunctionTypeProto *FromFunctionType 
    = FromPointeeType->getAsFunctionTypeProto();
  const FunctionTypeProto *ToFunctionType
    = ToPointeeType->getAsFunctionTypeProto();
  if (FromFunctionType && ToFunctionType) {
    // If the function types are exactly the same, this isn't an
    // Objective-C pointer conversion.
    if (Context.getCanonicalType(FromPointeeType)
          == Context.getCanonicalType(ToPointeeType))
      return false;

    // Perform the quick checks that will tell us whether these
    // function types are obviously different.
    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
      return false;

    bool HasObjCConversion = false;
    if (Context.getCanonicalType(FromFunctionType->getResultType())
          == Context.getCanonicalType(ToFunctionType->getResultType())) {
      // Okay, the types match exactly. Nothing to do.
    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
                                       ToFunctionType->getResultType(),
                                       ConvertedType, IncompatibleObjC)) {
      // Okay, we have an Objective-C pointer conversion.
      HasObjCConversion = true;
    } else {
      // Function types are too different. Abort.
      return false;
    }
     
    // Check argument types.
    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
         ArgIdx != NumArgs; ++ArgIdx) {
      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
      if (Context.getCanonicalType(FromArgType)
            == Context.getCanonicalType(ToArgType)) {
        // Okay, the types match exactly. Nothing to do.
      } else if (isObjCPointerConversion(FromArgType, ToArgType,
                                         ConvertedType, IncompatibleObjC)) {
        // Okay, we have an Objective-C pointer conversion.
        HasObjCConversion = true;
      } else {
        // Argument types are too different. Abort.
        return false;
      }
    }

    if (HasObjCConversion) {
      // We had an Objective-C conversion. Allow this pointer
      // conversion, but complain about it.
      ConvertedType = ToType;
      IncompatibleObjC = true;
      return true;
    }
  }

  return false;  
}

/// CheckPointerConversion - Check the pointer conversion from the
/// expression From to the type ToType. This routine checks for
/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
/// conversions for which IsPointerConversion has already returned
/// true. It returns true and produces a diagnostic if there was an
/// error, or returns false otherwise.
bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
  QualType FromType = From->getType();

  if (const PointerType *FromPtrType = FromType->getAsPointerType())
    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
                      /*DetectVirtual=*/false);
      QualType FromPointeeType = FromPtrType->getPointeeType(),
               ToPointeeType   = ToPtrType->getPointeeType();

      // Objective-C++ conversions are always okay.
      // FIXME: We should have a different class of conversions for
      // the Objective-C++ implicit conversions.
      if (Context.isObjCIdType(FromPointeeType) || 
          Context.isObjCIdType(ToPointeeType) ||
          Context.isObjCClassType(FromPointeeType) ||
          Context.isObjCClassType(ToPointeeType))
        return false;

      if (FromPointeeType->isRecordType() &&
          ToPointeeType->isRecordType()) {
        // We must have a derived-to-base conversion. Check an
        // ambiguous or inaccessible conversion.
        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
                                            From->getExprLoc(),
                                            From->getSourceRange());
      }
    }

  return false;
}

/// IsQualificationConversion - Determines whether the conversion from
/// an rvalue of type FromType to ToType is a qualification conversion
/// (C++ 4.4).
bool 
Sema::IsQualificationConversion(QualType FromType, QualType ToType)
{
  FromType = Context.getCanonicalType(FromType);
  ToType = Context.getCanonicalType(ToType);

  // If FromType and ToType are the same type, this is not a
  // qualification conversion.
  if (FromType == ToType)
    return false;
    
  // (C++ 4.4p4):
  //   A conversion can add cv-qualifiers at levels other than the first
  //   in multi-level pointers, subject to the following rules: [...]
  bool PreviousToQualsIncludeConst = true;
  bool UnwrappedAnyPointer = false;
  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
    // Within each iteration of the loop, we check the qualifiers to
    // determine if this still looks like a qualification
    // conversion. Then, if all is well, we unwrap one more level of
    // pointers or pointers-to-members and do it all again
    // until there are no more pointers or pointers-to-members left to
    // unwrap.
    UnwrappedAnyPointer = true;

    //   -- for every j > 0, if const is in cv 1,j then const is in cv
    //      2,j, and similarly for volatile.
    if (!ToType.isAtLeastAsQualifiedAs(FromType))
      return false;
    
    //   -- if the cv 1,j and cv 2,j are different, then const is in
    //      every cv for 0 < k < j.
    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
        && !PreviousToQualsIncludeConst)
      return false;
    
    // Keep track of whether all prior cv-qualifiers in the "to" type
    // include const.
    PreviousToQualsIncludeConst 
      = PreviousToQualsIncludeConst && ToType.isConstQualified();
  }

  // We are left with FromType and ToType being the pointee types
  // after unwrapping the original FromType and ToType the same number
  // of types. If we unwrapped any pointers, and if FromType and
  // ToType have the same unqualified type (since we checked
  // qualifiers above), then this is a qualification conversion.
  return UnwrappedAnyPointer &&
    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
}

/// IsUserDefinedConversion - Determines whether there is a
/// user-defined conversion sequence (C++ [over.ics.user]) that
/// converts expression From to the type ToType. If such a conversion
/// exists, User will contain the user-defined conversion sequence
/// that performs such a conversion and this routine will return
/// true. Otherwise, this routine returns false and User is
/// unspecified.
bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType, 
                                   UserDefinedConversionSequence& User)
{
  OverloadCandidateSet CandidateSet;
  if (const CXXRecordType *ToRecordType 
        = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
    // C++ [over.match.ctor]p1:
    //   When objects of class type are direct-initialized (8.5), or
    //   copy-initialized from an expression of the same or a
    //   derived class type (8.5), overload resolution selects the
    //   constructor. [...] For copy-initialization, the candidate
    //   functions are all the converting constructors (12.3.1) of
    //   that class. The argument list is the expression-list within
    //   the parentheses of the initializer.
    CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
    DeclarationName ConstructorName 
      = Context.DeclarationNames.getCXXConstructorName(
                        Context.getCanonicalType(ToType).getUnqualifiedType());
    DeclContext::lookup_iterator Con, ConEnd;
    for (llvm::tie(Con, ConEnd) = ToRecordDecl->lookup(ConstructorName);
         Con != ConEnd; ++Con) {
      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
      if (Constructor->isConvertingConstructor())
        AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
                             /*SuppressUserConversions=*/true);
    }
  }

  if (const CXXRecordType *FromRecordType
        = dyn_cast_or_null<CXXRecordType>(From->getType()->getAsRecordType())) {
    // Add all of the conversion functions as candidates.
    // FIXME: Look for conversions in base classes!
    CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
    OverloadedFunctionDecl *Conversions 
      = FromRecordDecl->getConversionFunctions();
    for (OverloadedFunctionDecl::function_iterator Func 
           = Conversions->function_begin();
         Func != Conversions->function_end(); ++Func) {
      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
      AddConversionCandidate(Conv, From, ToType, CandidateSet);
    }
  }

  OverloadCandidateSet::iterator Best;
  switch (BestViableFunction(CandidateSet, Best)) {
    case OR_Success:
      // Record the standard conversion we used and the conversion function.
      if (CXXConstructorDecl *Constructor 
            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
        // C++ [over.ics.user]p1:
        //   If the user-defined conversion is specified by a
        //   constructor (12.3.1), the initial standard conversion
        //   sequence converts the source type to the type required by
        //   the argument of the constructor.
        //
        // FIXME: What about ellipsis conversions?
        QualType ThisType = Constructor->getThisType(Context);
        User.Before = Best->Conversions[0].Standard;
        User.ConversionFunction = Constructor;
        User.After.setAsIdentityConversion();
        User.After.FromTypePtr 
          = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
        User.After.ToTypePtr = ToType.getAsOpaquePtr();
        return true;
      } else if (CXXConversionDecl *Conversion
                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
        // C++ [over.ics.user]p1:
        //
        //   [...] If the user-defined conversion is specified by a
        //   conversion function (12.3.2), the initial standard
        //   conversion sequence converts the source type to the
        //   implicit object parameter of the conversion function.
        User.Before = Best->Conversions[0].Standard;
        User.ConversionFunction = Conversion;
        
        // C++ [over.ics.user]p2: 
        //   The second standard conversion sequence converts the
        //   result of the user-defined conversion to the target type
        //   for the sequence. Since an implicit conversion sequence
        //   is an initialization, the special rules for
        //   initialization by user-defined conversion apply when
        //   selecting the best user-defined conversion for a
        //   user-defined conversion sequence (see 13.3.3 and
        //   13.3.3.1).
        User.After = Best->FinalConversion;
        return true;
      } else {
        assert(false && "Not a constructor or conversion function?");
        return false;
      }
      
    case OR_No_Viable_Function:
      // No conversion here! We're done.
      return false;

    case OR_Ambiguous:
      // FIXME: See C++ [over.best.ics]p10 for the handling of
      // ambiguous conversion sequences.
      return false;
    }

  return false;
}

/// CompareImplicitConversionSequences - Compare two implicit
/// conversion sequences to determine whether one is better than the
/// other or if they are indistinguishable (C++ 13.3.3.2).
ImplicitConversionSequence::CompareKind 
Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
                                         const ImplicitConversionSequence& ICS2)
{
  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
  // conversion sequences (as defined in 13.3.3.1)
  //   -- a standard conversion sequence (13.3.3.1.1) is a better
  //      conversion sequence than a user-defined conversion sequence or
  //      an ellipsis conversion sequence, and
  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
  //      conversion sequence than an ellipsis conversion sequence
  //      (13.3.3.1.3).
  // 
  if (ICS1.ConversionKind < ICS2.ConversionKind)
    return ImplicitConversionSequence::Better;
  else if (ICS2.ConversionKind < ICS1.ConversionKind)
    return ImplicitConversionSequence::Worse;

  // Two implicit conversion sequences of the same form are
  // indistinguishable conversion sequences unless one of the
  // following rules apply: (C++ 13.3.3.2p3):
  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
  else if (ICS1.ConversionKind == 
             ImplicitConversionSequence::UserDefinedConversion) {
    // User-defined conversion sequence U1 is a better conversion
    // sequence than another user-defined conversion sequence U2 if
    // they contain the same user-defined conversion function or
    // constructor and if the second standard conversion sequence of
    // U1 is better than the second standard conversion sequence of
    // U2 (C++ 13.3.3.2p3).
    if (ICS1.UserDefined.ConversionFunction == 
          ICS2.UserDefined.ConversionFunction)
      return CompareStandardConversionSequences(ICS1.UserDefined.After,
                                                ICS2.UserDefined.After);
  }

  return ImplicitConversionSequence::Indistinguishable;
}

/// CompareStandardConversionSequences - Compare two standard
/// conversion sequences to determine whether one is better than the
/// other or if they are indistinguishable (C++ 13.3.3.2p3).
ImplicitConversionSequence::CompareKind 
Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
                                         const StandardConversionSequence& SCS2)
{
  // Standard conversion sequence S1 is a better conversion sequence
  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):

  //  -- S1 is a proper subsequence of S2 (comparing the conversion
  //     sequences in the canonical form defined by 13.3.3.1.1,
  //     excluding any Lvalue Transformation; the identity conversion
  //     sequence is considered to be a subsequence of any
  //     non-identity conversion sequence) or, if not that,
  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
    // Neither is a proper subsequence of the other. Do nothing.
    ;
  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
           (SCS1.Second == ICK_Identity && 
            SCS1.Third == ICK_Identity))
    // SCS1 is a proper subsequence of SCS2.
    return ImplicitConversionSequence::Better;
  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
           (SCS2.Second == ICK_Identity && 
            SCS2.Third == ICK_Identity))
    // SCS2 is a proper subsequence of SCS1.
    return ImplicitConversionSequence::Worse;

  //  -- the rank of S1 is better than the rank of S2 (by the rules
  //     defined below), or, if not that,
  ImplicitConversionRank Rank1 = SCS1.getRank();
  ImplicitConversionRank Rank2 = SCS2.getRank();
  if (Rank1 < Rank2)
    return ImplicitConversionSequence::Better;
  else if (Rank2 < Rank1)
    return ImplicitConversionSequence::Worse;

  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
  // are indistinguishable unless one of the following rules
  // applies:
  
  //   A conversion that is not a conversion of a pointer, or
  //   pointer to member, to bool is better than another conversion
  //   that is such a conversion.
  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
    return SCS2.isPointerConversionToBool()
             ? ImplicitConversionSequence::Better
             : ImplicitConversionSequence::Worse;

  // C++ [over.ics.rank]p4b2:
  //
  //   If class B is derived directly or indirectly from class A,
  //   conversion of B* to A* is better than conversion of B* to
  //   void*, and conversion of A* to void* is better than conversion
  //   of B* to void*.
  bool SCS1ConvertsToVoid 
    = SCS1.isPointerConversionToVoidPointer(Context);
  bool SCS2ConvertsToVoid 
    = SCS2.isPointerConversionToVoidPointer(Context);
  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
    // Exactly one of the conversion sequences is a conversion to
    // a void pointer; it's the worse conversion.
    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
                              : ImplicitConversionSequence::Worse;
  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
    // Neither conversion sequence converts to a void pointer; compare
    // their derived-to-base conversions.
    if (ImplicitConversionSequence::CompareKind DerivedCK
          = CompareDerivedToBaseConversions(SCS1, SCS2))
      return DerivedCK;
  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
    // Both conversion sequences are conversions to void
    // pointers. Compare the source types to determine if there's an
    // inheritance relationship in their sources.
    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);

    // Adjust the types we're converting from via the array-to-pointer
    // conversion, if we need to.
    if (SCS1.First == ICK_Array_To_Pointer)
      FromType1 = Context.getArrayDecayedType(FromType1);
    if (SCS2.First == ICK_Array_To_Pointer)
      FromType2 = Context.getArrayDecayedType(FromType2);

    QualType FromPointee1 
      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
    QualType FromPointee2
      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();

    if (IsDerivedFrom(FromPointee2, FromPointee1))
      return ImplicitConversionSequence::Better;
    else if (IsDerivedFrom(FromPointee1, FromPointee2))
      return ImplicitConversionSequence::Worse;

    // Objective-C++: If one interface is more specific than the
    // other, it is the better one.
    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
    if (FromIface1 && FromIface1) {
      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
        return ImplicitConversionSequence::Better;
      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
        return ImplicitConversionSequence::Worse;
    }
  }

  // Compare based on qualification conversions (C++ 13.3.3.2p3,
  // bullet 3).
  if (ImplicitConversionSequence::CompareKind QualCK 
        = CompareQualificationConversions(SCS1, SCS2))
    return QualCK;

  // C++ [over.ics.rank]p3b4:
  //   -- S1 and S2 are reference bindings (8.5.3), and the types to
  //      which the references refer are the same type except for
  //      top-level cv-qualifiers, and the type to which the reference
  //      initialized by S2 refers is more cv-qualified than the type
  //      to which the reference initialized by S1 refers.
  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
    T1 = Context.getCanonicalType(T1);
    T2 = Context.getCanonicalType(T2);
    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
      if (T2.isMoreQualifiedThan(T1))
        return ImplicitConversionSequence::Better;
      else if (T1.isMoreQualifiedThan(T2))
        return ImplicitConversionSequence::Worse;
    }
  }

  return ImplicitConversionSequence::Indistinguishable;
}

/// CompareQualificationConversions - Compares two standard conversion
/// sequences to determine whether they can be ranked based on their
/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 
ImplicitConversionSequence::CompareKind 
Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
                                      const StandardConversionSequence& SCS2)
{
  // C++ 13.3.3.2p3:
  //  -- S1 and S2 differ only in their qualification conversion and
  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
  //     cv-qualification signature of type T1 is a proper subset of
  //     the cv-qualification signature of type T2, and S1 is not the
  //     deprecated string literal array-to-pointer conversion (4.2).
  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
    return ImplicitConversionSequence::Indistinguishable;

  // FIXME: the example in the standard doesn't use a qualification
  // conversion (!)
  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
  T1 = Context.getCanonicalType(T1);
  T2 = Context.getCanonicalType(T2);

  // If the types are the same, we won't learn anything by unwrapped
  // them.
  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
    return ImplicitConversionSequence::Indistinguishable;

  ImplicitConversionSequence::CompareKind Result 
    = ImplicitConversionSequence::Indistinguishable;
  while (UnwrapSimilarPointerTypes(T1, T2)) {
    // Within each iteration of the loop, we check the qualifiers to
    // determine if this still looks like a qualification
    // conversion. Then, if all is well, we unwrap one more level of
    // pointers or pointers-to-members and do it all again
    // until there are no more pointers or pointers-to-members left
    // to unwrap. This essentially mimics what
    // IsQualificationConversion does, but here we're checking for a
    // strict subset of qualifiers.
    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
      // The qualifiers are the same, so this doesn't tell us anything
      // about how the sequences rank.
      ;
    else if (T2.isMoreQualifiedThan(T1)) {
      // T1 has fewer qualifiers, so it could be the better sequence.
      if (Result == ImplicitConversionSequence::Worse)
        // Neither has qualifiers that are a subset of the other's
        // qualifiers.
        return ImplicitConversionSequence::Indistinguishable;
      
      Result = ImplicitConversionSequence::Better;
    } else if (T1.isMoreQualifiedThan(T2)) {
      // T2 has fewer qualifiers, so it could be the better sequence.
      if (Result == ImplicitConversionSequence::Better)
        // Neither has qualifiers that are a subset of the other's
        // qualifiers.
        return ImplicitConversionSequence::Indistinguishable;
      
      Result = ImplicitConversionSequence::Worse;
    } else {
      // Qualifiers are disjoint.
      return ImplicitConversionSequence::Indistinguishable;
    }

    // If the types after this point are equivalent, we're done.
    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
      break;
  }

  // Check that the winning standard conversion sequence isn't using
  // the deprecated string literal array to pointer conversion.
  switch (Result) {
  case ImplicitConversionSequence::Better:
    if (SCS1.Deprecated)
      Result = ImplicitConversionSequence::Indistinguishable;
    break;

  case ImplicitConversionSequence::Indistinguishable:
    break;

  case ImplicitConversionSequence::Worse:
    if (SCS2.Deprecated)
      Result = ImplicitConversionSequence::Indistinguishable;
    break;
  }

  return Result;
}

/// CompareDerivedToBaseConversions - Compares two standard conversion
/// sequences to determine whether they can be ranked based on their
/// various kinds of derived-to-base conversions (C++
/// [over.ics.rank]p4b3).  As part of these checks, we also look at
/// conversions between Objective-C interface types.
ImplicitConversionSequence::CompareKind
Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
                                      const StandardConversionSequence& SCS2) {
  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);

  // Adjust the types we're converting from via the array-to-pointer
  // conversion, if we need to.
  if (SCS1.First == ICK_Array_To_Pointer)
    FromType1 = Context.getArrayDecayedType(FromType1);
  if (SCS2.First == ICK_Array_To_Pointer)
    FromType2 = Context.getArrayDecayedType(FromType2);

  // Canonicalize all of the types.
  FromType1 = Context.getCanonicalType(FromType1);
  ToType1 = Context.getCanonicalType(ToType1);
  FromType2 = Context.getCanonicalType(FromType2);
  ToType2 = Context.getCanonicalType(ToType2);

  // C++ [over.ics.rank]p4b3:
  //
  //   If class B is derived directly or indirectly from class A and
  //   class C is derived directly or indirectly from B,
  //
  // For Objective-C, we let A, B, and C also be Objective-C
  // interfaces.

  // Compare based on pointer conversions.
  if (SCS1.Second == ICK_Pointer_Conversion && 
      SCS2.Second == ICK_Pointer_Conversion &&
      /*FIXME: Remove if Objective-C id conversions get their own rank*/
      FromType1->isPointerType() && FromType2->isPointerType() &&
      ToType1->isPointerType() && ToType2->isPointerType()) {
    QualType FromPointee1 
      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
    QualType ToPointee1 
      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
    QualType FromPointee2
      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
    QualType ToPointee2
      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();

    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();

    //   -- conversion of C* to B* is better than conversion of C* to A*,
    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
      if (IsDerivedFrom(ToPointee1, ToPointee2))
        return ImplicitConversionSequence::Better;
      else if (IsDerivedFrom(ToPointee2, ToPointee1))
        return ImplicitConversionSequence::Worse;

      if (ToIface1 && ToIface2) {
        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
          return ImplicitConversionSequence::Better;
        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
          return ImplicitConversionSequence::Worse;
      }
    }

    //   -- conversion of B* to A* is better than conversion of C* to A*,
    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
      if (IsDerivedFrom(FromPointee2, FromPointee1))
        return ImplicitConversionSequence::Better;
      else if (IsDerivedFrom(FromPointee1, FromPointee2))
        return ImplicitConversionSequence::Worse;
      
      if (FromIface1 && FromIface2) {
        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
          return ImplicitConversionSequence::Better;
        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
          return ImplicitConversionSequence::Worse;
      }
    }
  }

  // Compare based on reference bindings.
  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
      SCS1.Second == ICK_Derived_To_Base) {
    //   -- binding of an expression of type C to a reference of type
    //      B& is better than binding an expression of type C to a
    //      reference of type A&,
    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
      if (IsDerivedFrom(ToType1, ToType2))
        return ImplicitConversionSequence::Better;
      else if (IsDerivedFrom(ToType2, ToType1))
        return ImplicitConversionSequence::Worse;
    }

    //   -- binding of an expression of type B to a reference of type
    //      A& is better than binding an expression of type C to a
    //      reference of type A&,
    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
      if (IsDerivedFrom(FromType2, FromType1))
        return ImplicitConversionSequence::Better;
      else if (IsDerivedFrom(FromType1, FromType2))
        return ImplicitConversionSequence::Worse;
    }
  }


  // FIXME: conversion of A::* to B::* is better than conversion of
  // A::* to C::*,

  // FIXME: conversion of B::* to C::* is better than conversion of
  // A::* to C::*, and

  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
      SCS1.Second == ICK_Derived_To_Base) {
    //   -- conversion of C to B is better than conversion of C to A,
    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
      if (IsDerivedFrom(ToType1, ToType2))
        return ImplicitConversionSequence::Better;
      else if (IsDerivedFrom(ToType2, ToType1))
        return ImplicitConversionSequence::Worse;
    }

    //   -- conversion of B to A is better than conversion of C to A.
    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
      if (IsDerivedFrom(FromType2, FromType1))
        return ImplicitConversionSequence::Better;
      else if (IsDerivedFrom(FromType1, FromType2))
        return ImplicitConversionSequence::Worse;
    }
  }

  return ImplicitConversionSequence::Indistinguishable;
}

/// TryCopyInitialization - Try to copy-initialize a value of type
/// ToType from the expression From. Return the implicit conversion
/// sequence required to pass this argument, which may be a bad
/// conversion sequence (meaning that the argument cannot be passed to
/// a parameter of this type). If @p SuppressUserConversions, then we
/// do not permit any user-defined conversion sequences.
ImplicitConversionSequence 
Sema::TryCopyInitialization(Expr *From, QualType ToType, 
                            bool SuppressUserConversions) {
  if (!getLangOptions().CPlusPlus) {
    // In C, copy initialization is the same as performing an assignment.
    AssignConvertType ConvTy =
      CheckSingleAssignmentConstraints(ToType, From);
    ImplicitConversionSequence ICS;
    if (getLangOptions().NoExtensions? ConvTy != Compatible
                                     : ConvTy == Incompatible)
      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
    else
      ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
    return ICS;
  } else if (ToType->isReferenceType()) {
    ImplicitConversionSequence ICS;
    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
    return ICS;
  } else {
    return TryImplicitConversion(From, ToType, SuppressUserConversions);
  }
}

/// PerformArgumentPassing - Pass the argument Arg into a parameter of
/// type ToType. Returns true (and emits a diagnostic) if there was
/// an error, returns false if the initialization succeeded.
bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType, 
                                     const char* Flavor) {
  if (!getLangOptions().CPlusPlus) {
    // In C, argument passing is the same as performing an assignment.
    QualType FromType = From->getType();
    AssignConvertType ConvTy =
      CheckSingleAssignmentConstraints(ToType, From);

    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
                                    FromType, From, Flavor);
  }
  
  if (ToType->isReferenceType())
    return CheckReferenceInit(From, ToType);

  if (!PerformImplicitConversion(From, ToType, Flavor))
    return false;
  
  return Diag(From->getSourceRange().getBegin(),
              diag::err_typecheck_convert_incompatible)
    << ToType << From->getType() << Flavor << From->getSourceRange();
}

/// TryObjectArgumentInitialization - Try to initialize the object
/// parameter of the given member function (@c Method) from the
/// expression @p From.
ImplicitConversionSequence
Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
  QualType ClassType = Context.getTypeDeclType(Method->getParent());
  unsigned MethodQuals = Method->getTypeQualifiers();
  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);

  // Set up the conversion sequence as a "bad" conversion, to allow us
  // to exit early.
  ImplicitConversionSequence ICS;
  ICS.Standard.setAsIdentityConversion();
  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;

  // We need to have an object of class type.
  QualType FromType = From->getType();
  if (!FromType->isRecordType())
    return ICS;

  // The implicit object parmeter is has the type "reference to cv X",
  // where X is the class of which the function is a member
  // (C++ [over.match.funcs]p4). However, when finding an implicit
  // conversion sequence for the argument, we are not allowed to
  // create temporaries or perform user-defined conversions 
  // (C++ [over.match.funcs]p5). We perform a simplified version of
  // reference binding here, that allows class rvalues to bind to
  // non-constant references.

  // First check the qualifiers. We don't care about lvalue-vs-rvalue
  // with the implicit object parameter (C++ [over.match.funcs]p5).
  QualType FromTypeCanon = Context.getCanonicalType(FromType);
  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
    return ICS;

  // Check that we have either the same type or a derived type. It
  // affects the conversion rank.
  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
    ICS.Standard.Second = ICK_Identity;
  else if (IsDerivedFrom(FromType, ClassType))
    ICS.Standard.Second = ICK_Derived_To_Base;
  else
    return ICS;

  // Success. Mark this as a reference binding.
  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
  ICS.Standard.ReferenceBinding = true;
  ICS.Standard.DirectBinding = true;
  return ICS;
}

/// PerformObjectArgumentInitialization - Perform initialization of
/// the implicit object parameter for the given Method with the given
/// expression.
bool
Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
  QualType ImplicitParamType
    = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
  ImplicitConversionSequence ICS 
    = TryObjectArgumentInitialization(From, Method);
  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
    return Diag(From->getSourceRange().getBegin(),
                diag::err_implicit_object_parameter_init)
       << ImplicitParamType << From->getType() << From->getSourceRange();

  if (ICS.Standard.Second == ICK_Derived_To_Base &&
      CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
                                   From->getSourceRange().getBegin(),
                                   From->getSourceRange()))
    return true;

  ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
  return false;
}

/// AddOverloadCandidate - Adds the given function to the set of
/// candidate functions, using the given function call arguments.  If
/// @p SuppressUserConversions, then don't allow user-defined
/// conversions via constructors or conversion operators.
void 
Sema::AddOverloadCandidate(FunctionDecl *Function, 
                           Expr **Args, unsigned NumArgs,
                           OverloadCandidateSet& CandidateSet,
                           bool SuppressUserConversions)
{
  const FunctionTypeProto* Proto 
    = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
  assert(Proto && "Functions without a prototype cannot be overloaded");
  assert(!isa<CXXConversionDecl>(Function) && 
         "Use AddConversionCandidate for conversion functions");

  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
    // If we get here, it's because we're calling a member function
    // that is named without a member access expression (e.g.,
    // "this->f") that was either written explicitly or created
    // implicitly. This can happen with a qualified call to a member
    // function, e.g., X::f(). We use a NULL object as the implied
    // object argument (C++ [over.call.func]p3).
    AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet, 
                       SuppressUserConversions);
    return;
  }


  // Add this candidate
  CandidateSet.push_back(OverloadCandidate());
  OverloadCandidate& Candidate = CandidateSet.back();
  Candidate.Function = Function;
  Candidate.Viable = true;
  Candidate.IsSurrogate = false;
  Candidate.IgnoreObjectArgument = false;

  unsigned NumArgsInProto = Proto->getNumArgs();

  // (C++ 13.3.2p2): A candidate function having fewer than m
  // parameters is viable only if it has an ellipsis in its parameter
  // list (8.3.5).
  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
    Candidate.Viable = false;
    return;
  }

  // (C++ 13.3.2p2): A candidate function having more than m parameters
  // is viable only if the (m+1)st parameter has a default argument
  // (8.3.6). For the purposes of overload resolution, the
  // parameter list is truncated on the right, so that there are
  // exactly m parameters.
  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
  if (NumArgs < MinRequiredArgs) {
    // Not enough arguments.
    Candidate.Viable = false;
    return;
  }

  // Determine the implicit conversion sequences for each of the
  // arguments.
  Candidate.Conversions.resize(NumArgs);
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
    if (ArgIdx < NumArgsInProto) {
      // (C++ 13.3.2p3): for F to be a viable function, there shall
      // exist for each argument an implicit conversion sequence
      // (13.3.3.1) that converts that argument to the corresponding
      // parameter of F.
      QualType ParamType = Proto->getArgType(ArgIdx);
      Candidate.Conversions[ArgIdx] 
        = TryCopyInitialization(Args[ArgIdx], ParamType, 
                                SuppressUserConversions);
      if (Candidate.Conversions[ArgIdx].ConversionKind 
            == ImplicitConversionSequence::BadConversion) {
        Candidate.Viable = false;
        break;
      }
    } else {
      // (C++ 13.3.2p2): For the purposes of overload resolution, any
      // argument for which there is no corresponding parameter is
      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
      Candidate.Conversions[ArgIdx].ConversionKind 
        = ImplicitConversionSequence::EllipsisConversion;
    }
  }
}

/// AddMethodCandidate - Adds the given C++ member function to the set
/// of candidate functions, using the given function call arguments
/// and the object argument (@c Object). For example, in a call
/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
/// allow user-defined conversions via constructors or conversion
/// operators.
void 
Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
                         Expr **Args, unsigned NumArgs,
                         OverloadCandidateSet& CandidateSet,
                         bool SuppressUserConversions)
{
  const FunctionTypeProto* Proto 
    = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
  assert(Proto && "Methods without a prototype cannot be overloaded");
  assert(!isa<CXXConversionDecl>(Method) && 
         "Use AddConversionCandidate for conversion functions");

  // Add this candidate
  CandidateSet.push_back(OverloadCandidate());
  OverloadCandidate& Candidate = CandidateSet.back();
  Candidate.Function = Method;
  Candidate.IsSurrogate = false;
  Candidate.IgnoreObjectArgument = false;

  unsigned NumArgsInProto = Proto->getNumArgs();

  // (C++ 13.3.2p2): A candidate function having fewer than m
  // parameters is viable only if it has an ellipsis in its parameter
  // list (8.3.5).
  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
    Candidate.Viable = false;
    return;
  }

  // (C++ 13.3.2p2): A candidate function having more than m parameters
  // is viable only if the (m+1)st parameter has a default argument
  // (8.3.6). For the purposes of overload resolution, the
  // parameter list is truncated on the right, so that there are
  // exactly m parameters.
  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
  if (NumArgs < MinRequiredArgs) {
    // Not enough arguments.
    Candidate.Viable = false;
    return;
  }

  Candidate.Viable = true;
  Candidate.Conversions.resize(NumArgs + 1);

  if (Method->isStatic() || !Object)
    // The implicit object argument is ignored.
    Candidate.IgnoreObjectArgument = true;
  else {
    // Determine the implicit conversion sequence for the object
    // parameter.
    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
    if (Candidate.Conversions[0].ConversionKind 
          == ImplicitConversionSequence::BadConversion) {
      Candidate.Viable = false;
      return;
    }
  }

  // Determine the implicit conversion sequences for each of the
  // arguments.
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
    if (ArgIdx < NumArgsInProto) {
      // (C++ 13.3.2p3): for F to be a viable function, there shall
      // exist for each argument an implicit conversion sequence
      // (13.3.3.1) that converts that argument to the corresponding
      // parameter of F.
      QualType ParamType = Proto->getArgType(ArgIdx);
      Candidate.Conversions[ArgIdx + 1] 
        = TryCopyInitialization(Args[ArgIdx], ParamType, 
                                SuppressUserConversions);
      if (Candidate.Conversions[ArgIdx + 1].ConversionKind 
            == ImplicitConversionSequence::BadConversion) {
        Candidate.Viable = false;
        break;
      }
    } else {
      // (C++ 13.3.2p2): For the purposes of overload resolution, any
      // argument for which there is no corresponding parameter is
      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
      Candidate.Conversions[ArgIdx + 1].ConversionKind 
        = ImplicitConversionSequence::EllipsisConversion;
    }
  }
}

/// AddConversionCandidate - Add a C++ conversion function as a
/// candidate in the candidate set (C++ [over.match.conv], 
/// C++ [over.match.copy]). From is the expression we're converting from,
/// and ToType is the type that we're eventually trying to convert to 
/// (which may or may not be the same type as the type that the
/// conversion function produces).
void
Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
                             Expr *From, QualType ToType,
                             OverloadCandidateSet& CandidateSet) {
  // Add this candidate
  CandidateSet.push_back(OverloadCandidate());
  OverloadCandidate& Candidate = CandidateSet.back();
  Candidate.Function = Conversion;
  Candidate.IsSurrogate = false;
  Candidate.IgnoreObjectArgument = false;
  Candidate.FinalConversion.setAsIdentityConversion();
  Candidate.FinalConversion.FromTypePtr 
    = Conversion->getConversionType().getAsOpaquePtr();
  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();

  // Determine the implicit conversion sequence for the implicit
  // object parameter.
  Candidate.Viable = true;
  Candidate.Conversions.resize(1);
  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);

  if (Candidate.Conversions[0].ConversionKind 
      == ImplicitConversionSequence::BadConversion) {
    Candidate.Viable = false;
    return;
  }

  // To determine what the conversion from the result of calling the
  // conversion function to the type we're eventually trying to
  // convert to (ToType), we need to synthesize a call to the
  // conversion function and attempt copy initialization from it. This
  // makes sure that we get the right semantics with respect to
  // lvalues/rvalues and the type. Fortunately, we can allocate this
  // call on the stack and we don't need its arguments to be
  // well-formed.
  DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 
                            SourceLocation());
  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
                                &ConversionRef, false);
  CallExpr Call(&ConversionFn, 0, 0, 
                Conversion->getConversionType().getNonReferenceType(),
                SourceLocation());
  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
  switch (ICS.ConversionKind) {
  case ImplicitConversionSequence::StandardConversion:
    Candidate.FinalConversion = ICS.Standard;
    break;

  case ImplicitConversionSequence::BadConversion:
    Candidate.Viable = false;
    break;

  default:
    assert(false && 
           "Can only end up with a standard conversion sequence or failure");
  }
}

/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
/// converts the given @c Object to a function pointer via the
/// conversion function @c Conversion, and then attempts to call it
/// with the given arguments (C++ [over.call.object]p2-4). Proto is
/// the type of function that we'll eventually be calling.
void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
                                 const FunctionTypeProto *Proto,
                                 Expr *Object, Expr **Args, unsigned NumArgs,
                                 OverloadCandidateSet& CandidateSet) {
  CandidateSet.push_back(OverloadCandidate());
  OverloadCandidate& Candidate = CandidateSet.back();
  Candidate.Function = 0;
  Candidate.Surrogate = Conversion;
  Candidate.Viable = true;
  Candidate.IsSurrogate = true;
  Candidate.IgnoreObjectArgument = false;
  Candidate.Conversions.resize(NumArgs + 1);

  // Determine the implicit conversion sequence for the implicit
  // object parameter.
  ImplicitConversionSequence ObjectInit 
    = TryObjectArgumentInitialization(Object, Conversion);
  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
    Candidate.Viable = false;
    return;
  }

  // The first conversion is actually a user-defined conversion whose
  // first conversion is ObjectInit's standard conversion (which is
  // effectively a reference binding). Record it as such.
  Candidate.Conversions[0].ConversionKind 
    = ImplicitConversionSequence::UserDefinedConversion;
  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
  Candidate.Conversions[0].UserDefined.After 
    = Candidate.Conversions[0].UserDefined.Before;
  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();

  // Find the 
  unsigned NumArgsInProto = Proto->getNumArgs();

  // (C++ 13.3.2p2): A candidate function having fewer than m
  // parameters is viable only if it has an ellipsis in its parameter
  // list (8.3.5).
  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
    Candidate.Viable = false;
    return;
  }

  // Function types don't have any default arguments, so just check if
  // we have enough arguments.
  if (NumArgs < NumArgsInProto) {
    // Not enough arguments.
    Candidate.Viable = false;
    return;
  }

  // Determine the implicit conversion sequences for each of the
  // arguments.
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
    if (ArgIdx < NumArgsInProto) {
      // (C++ 13.3.2p3): for F to be a viable function, there shall
      // exist for each argument an implicit conversion sequence
      // (13.3.3.1) that converts that argument to the corresponding
      // parameter of F.
      QualType ParamType = Proto->getArgType(ArgIdx);
      Candidate.Conversions[ArgIdx + 1] 
        = TryCopyInitialization(Args[ArgIdx], ParamType, 
                                /*SuppressUserConversions=*/false);
      if (Candidate.Conversions[ArgIdx + 1].ConversionKind 
            == ImplicitConversionSequence::BadConversion) {
        Candidate.Viable = false;
        break;
      }
    } else {
      // (C++ 13.3.2p2): For the purposes of overload resolution, any
      // argument for which there is no corresponding parameter is
      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
      Candidate.Conversions[ArgIdx + 1].ConversionKind 
        = ImplicitConversionSequence::EllipsisConversion;
    }
  }
}

/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
/// an acceptable non-member overloaded operator for a call whose
/// arguments have types T1 (and, if non-empty, T2). This routine
/// implements the check in C++ [over.match.oper]p3b2 concerning
/// enumeration types.
static bool 
IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
                                       QualType T1, QualType T2,
                                       ASTContext &Context) {
  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
    return true;

  const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
  if (Proto->getNumArgs() < 1)
    return false;

  if (T1->isEnumeralType()) {
    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
    if (Context.getCanonicalType(T1).getUnqualifiedType()
          == Context.getCanonicalType(ArgType).getUnqualifiedType())
      return true;
  }

  if (Proto->getNumArgs() < 2)
    return false;

  if (!T2.isNull() && T2->isEnumeralType()) {
    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
    if (Context.getCanonicalType(T2).getUnqualifiedType()
          == Context.getCanonicalType(ArgType).getUnqualifiedType())
      return true;
  }

  return false;
}

/// AddOperatorCandidates - Add the overloaded operator candidates for
/// the operator Op that was used in an operator expression such as "x
/// Op y". S is the scope in which the expression occurred (used for
/// name lookup of the operator), Args/NumArgs provides the operator
/// arguments, and CandidateSet will store the added overload
/// candidates. (C++ [over.match.oper]).
void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
                                 Expr **Args, unsigned NumArgs,
                                 OverloadCandidateSet& CandidateSet) {
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);

  // C++ [over.match.oper]p3:
  //   For a unary operator @ with an operand of a type whose
  //   cv-unqualified version is T1, and for a binary operator @ with
  //   a left operand of a type whose cv-unqualified version is T1 and
  //   a right operand of a type whose cv-unqualified version is T2,
  //   three sets of candidate functions, designated member
  //   candidates, non-member candidates and built-in candidates, are
  //   constructed as follows:
  QualType T1 = Args[0]->getType();
  QualType T2;
  if (NumArgs > 1)
    T2 = Args[1]->getType();

  //     -- If T1 is a class type, the set of member candidates is the
  //        result of the qualified lookup of T1::operator@
  //        (13.3.1.1.1); otherwise, the set of member candidates is
  //        empty.
  if (const RecordType *T1Rec = T1->getAsRecordType()) {
    DeclContext::lookup_const_iterator Oper, OperEnd;
    for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
         Oper != OperEnd; ++Oper)
      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0], 
                         Args+1, NumArgs - 1, CandidateSet,
                         /*SuppressUserConversions=*/false);
  }

  //     -- The set of non-member candidates is the result of the
  //        unqualified lookup of operator@ in the context of the
  //        expression according to the usual rules for name lookup in
  //        unqualified function calls (3.4.2) except that all member
  //        functions are ignored. However, if no operand has a class
  //        type, only those non-member functions in the lookup set
  //        that have a first parameter of type T1 or “reference to
  //        (possibly cv-qualified) T1”, when T1 is an enumeration
  //        type, or (if there is a right operand) a second parameter
  //        of type T2 or “reference to (possibly cv-qualified) T2”,
  //        when T2 is an enumeration type, are candidate functions.
  {
    IdentifierResolver::iterator
      I = IdResolver.begin(OpName, CurContext, true/*LookInParentCtx*/),
      IEnd = IdResolver.end();
    for (; I != IEnd; ++I) {
      // We don't need to check the identifier namespace, because
      // operator names can only be ordinary identifiers.

      // Ignore member functions. 
      if (ScopedDecl *SD = dyn_cast<ScopedDecl>(*I)) {
        if (SD->getDeclContext()->isRecord())
          continue;
      } 

      // We found something with this name. We're done.
      break;
    }

    if (I != IEnd && isa<ScopedDecl>(*I)) {
      ScopedDecl *FirstDecl = cast<ScopedDecl>(*I);
      for (; I != IEnd; ++I) {
        ScopedDecl *SD = cast<ScopedDecl>(*I);
        if (FirstDecl->getDeclContext() != SD->getDeclContext())
          break;

        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
          if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
            AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
                                 /*SuppressUserConversions=*/false);
      }
    }
  }

  // Add builtin overload candidates (C++ [over.built]).
  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
}

/// AddBuiltinCandidate - Add a candidate for a built-in
/// operator. ResultTy and ParamTys are the result and parameter types
/// of the built-in candidate, respectively. Args and NumArgs are the
/// arguments being passed to the candidate.
void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 
                               Expr **Args, unsigned NumArgs,
                               OverloadCandidateSet& CandidateSet) {
  // Add this candidate
  CandidateSet.push_back(OverloadCandidate());
  OverloadCandidate& Candidate = CandidateSet.back();
  Candidate.Function = 0;
  Candidate.IsSurrogate = false;
  Candidate.IgnoreObjectArgument = false;
  Candidate.BuiltinTypes.ResultTy = ResultTy;
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];

  // Determine the implicit conversion sequences for each of the
  // arguments.
  Candidate.Viable = true;
  Candidate.Conversions.resize(NumArgs);
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
    Candidate.Conversions[ArgIdx] 
      = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], false);
    if (Candidate.Conversions[ArgIdx].ConversionKind 
        == ImplicitConversionSequence::BadConversion) {
      Candidate.Viable = false;
      break;
    }
  }
}

/// BuiltinCandidateTypeSet - A set of types that will be used for the
/// candidate operator functions for built-in operators (C++
/// [over.built]). The types are separated into pointer types and
/// enumeration types.
class BuiltinCandidateTypeSet  {
  /// TypeSet - A set of types.
  typedef llvm::SmallPtrSet<void*, 8> TypeSet;

  /// PointerTypes - The set of pointer types that will be used in the
  /// built-in candidates.
  TypeSet PointerTypes;

  /// EnumerationTypes - The set of enumeration types that will be
  /// used in the built-in candidates.
  TypeSet EnumerationTypes;

  /// Context - The AST context in which we will build the type sets.
  ASTContext &Context;

  bool AddWithMoreQualifiedTypeVariants(QualType Ty);

public:
  /// iterator - Iterates through the types that are part of the set.
  class iterator {
    TypeSet::iterator Base;

  public:
    typedef QualType                 value_type;
    typedef QualType                 reference;
    typedef QualType                 pointer;
    typedef std::ptrdiff_t           difference_type;
    typedef std::input_iterator_tag  iterator_category;

    iterator(TypeSet::iterator B) : Base(B) { }

    iterator& operator++() {
      ++Base;
      return *this;
    }

    iterator operator++(int) {
      iterator tmp(*this);
      ++(*this);
      return tmp;
    }

    reference operator*() const {
      return QualType::getFromOpaquePtr(*Base);
    }

    pointer operator->() const {
      return **this;
    }

    friend bool operator==(iterator LHS, iterator RHS) {
      return LHS.Base == RHS.Base;
    }

    friend bool operator!=(iterator LHS, iterator RHS) {
      return LHS.Base != RHS.Base;
    }
  };

  BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }

  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions = true);

  /// pointer_begin - First pointer type found;
  iterator pointer_begin() { return PointerTypes.begin(); }

  /// pointer_end - Last pointer type found;
  iterator pointer_end() { return PointerTypes.end(); }

  /// enumeration_begin - First enumeration type found;
  iterator enumeration_begin() { return EnumerationTypes.begin(); }

  /// enumeration_end - Last enumeration type found;
  iterator enumeration_end() { return EnumerationTypes.end(); }
};

/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
/// the set of pointer types along with any more-qualified variants of
/// that type. For example, if @p Ty is "int const *", this routine
/// will add "int const *", "int const volatile *", "int const
/// restrict *", and "int const volatile restrict *" to the set of
/// pointer types. Returns true if the add of @p Ty itself succeeded,
/// false otherwise.
bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
  // Insert this type.
  if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
    return false;

  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
    QualType PointeeTy = PointerTy->getPointeeType();
    // FIXME: Optimize this so that we don't keep trying to add the same types.

    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
    // with all pointer conversions that don't cast away constness?
    if (!PointeeTy.isConstQualified())
      AddWithMoreQualifiedTypeVariants
        (Context.getPointerType(PointeeTy.withConst()));
    if (!PointeeTy.isVolatileQualified())
      AddWithMoreQualifiedTypeVariants
        (Context.getPointerType(PointeeTy.withVolatile()));
    if (!PointeeTy.isRestrictQualified())
      AddWithMoreQualifiedTypeVariants
        (Context.getPointerType(PointeeTy.withRestrict()));
  }

  return true;
}

/// AddTypesConvertedFrom - Add each of the types to which the type @p
/// Ty can be implicit converted to the given set of @p Types. We're
/// primarily interested in pointer types, enumeration types,
void BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
                                                    bool AllowUserConversions) {
  // Only deal with canonical types.
  Ty = Context.getCanonicalType(Ty);

  // Look through reference types; they aren't part of the type of an
  // expression for the purposes of conversions.
  if (const ReferenceType *RefTy = Ty->getAsReferenceType())
    Ty = RefTy->getPointeeType();

  // We don't care about qualifiers on the type.
  Ty = Ty.getUnqualifiedType();

  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
    QualType PointeeTy = PointerTy->getPointeeType();

    // Insert our type, and its more-qualified variants, into the set
    // of types.
    if (!AddWithMoreQualifiedTypeVariants(Ty))
      return;

    // Add 'cv void*' to our set of types.
    if (!Ty->isVoidType()) {
      QualType QualVoid 
        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
      AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
    }

    // If this is a pointer to a class type, add pointers to its bases
    // (with the same level of cv-qualification as the original
    // derived class, of course).
    if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
           Base != ClassDecl->bases_end(); ++Base) {
        QualType BaseTy = Context.getCanonicalType(Base->getType());
        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());

        // Add the pointer type, recursively, so that we get all of
        // the indirect base classes, too.
        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false);
      }
    }
  } else if (Ty->isEnumeralType()) {
    EnumerationTypes.insert(Ty.getAsOpaquePtr());
  } else if (AllowUserConversions) {
    if (const RecordType *TyRec = Ty->getAsRecordType()) {
      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
      // FIXME: Visit conversion functions in the base classes, too.
      OverloadedFunctionDecl *Conversions 
        = ClassDecl->getConversionFunctions();
      for (OverloadedFunctionDecl::function_iterator Func 
             = Conversions->function_begin();
           Func != Conversions->function_end(); ++Func) {
        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
        AddTypesConvertedFrom(Conv->getConversionType(), false);
      }
    }
  }
}

/// AddBuiltinOperatorCandidates - Add the appropriate built-in
/// operator overloads to the candidate set (C++ [over.built]), based
/// on the operator @p Op and the arguments given. For example, if the
/// operator is a binary '+', this routine might add "int
/// operator+(int, int)" to cover integer addition.
void
Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 
                                   Expr **Args, unsigned NumArgs,
                                   OverloadCandidateSet& CandidateSet) {
  // The set of "promoted arithmetic types", which are the arithmetic
  // types are that preserved by promotion (C++ [over.built]p2). Note
  // that the first few of these types are the promoted integral
  // types; these types need to be first.
  // FIXME: What about complex?
  const unsigned FirstIntegralType = 0;
  const unsigned LastIntegralType = 13;
  const unsigned FirstPromotedIntegralType = 7, 
                 LastPromotedIntegralType = 13;
  const unsigned FirstPromotedArithmeticType = 7,
                 LastPromotedArithmeticType = 16;
  const unsigned NumArithmeticTypes = 16;
  QualType ArithmeticTypes[NumArithmeticTypes] = {
    Context.BoolTy, Context.CharTy, Context.WCharTy,
    Context.SignedCharTy, Context.ShortTy,
    Context.UnsignedCharTy, Context.UnsignedShortTy,
    Context.IntTy, Context.LongTy, Context.LongLongTy,
    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
  };

  // Find all of the types that the arguments can convert to, but only
  // if the operator we're looking at has built-in operator candidates
  // that make use of these types.
  BuiltinCandidateTypeSet CandidateTypes(Context);
  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
      (Op == OO_Star && NumArgs == 1)) {
    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType());
  }

  bool isComparison = false;
  switch (Op) {
  case OO_None:
  case NUM_OVERLOADED_OPERATORS:
    assert(false && "Expected an overloaded operator");
    break;

  case OO_Star: // '*' is either unary or binary
    if (NumArgs == 1) 
      goto UnaryStar;
    else
      goto BinaryStar;
    break;

  case OO_Plus: // '+' is either unary or binary
    if (NumArgs == 1)
      goto UnaryPlus;
    else
      goto BinaryPlus;
    break;

  case OO_Minus: // '-' is either unary or binary
    if (NumArgs == 1)
      goto UnaryMinus;
    else
      goto BinaryMinus;
    break;

  case OO_Amp: // '&' is either unary or binary
    if (NumArgs == 1)
      goto UnaryAmp;
    else
      goto BinaryAmp;

  case OO_PlusPlus:
  case OO_MinusMinus:
    // C++ [over.built]p3:
    //
    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
    //   is either volatile or empty, there exist candidate operator
    //   functions of the form
    //
    //       VQ T&      operator++(VQ T&);
    //       T          operator++(VQ T&, int);
    //
    // C++ [over.built]p4:
    //
    //   For every pair (T, VQ), where T is an arithmetic type other
    //   than bool, and VQ is either volatile or empty, there exist
    //   candidate operator functions of the form
    //
    //       VQ T&      operator--(VQ T&);
    //       T          operator--(VQ T&, int);
    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 
         Arith < NumArithmeticTypes; ++Arith) {
      QualType ArithTy = ArithmeticTypes[Arith];
      QualType ParamTypes[2] 
        = { Context.getReferenceType(ArithTy), Context.IntTy };

      // Non-volatile version.
      if (NumArgs == 1)
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
      else
        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);

      // Volatile version
      ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
      if (NumArgs == 1)
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
      else
        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
    }

    // C++ [over.built]p5:
    //
    //   For every pair (T, VQ), where T is a cv-qualified or
    //   cv-unqualified object type, and VQ is either volatile or
    //   empty, there exist candidate operator functions of the form
    //
    //       T*VQ&      operator++(T*VQ&);
    //       T*VQ&      operator--(T*VQ&);
    //       T*         operator++(T*VQ&, int);
    //       T*         operator--(T*VQ&, int);
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
      // Skip pointer types that aren't pointers to object types.
      if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
        continue;

      QualType ParamTypes[2] = { 
        Context.getReferenceType(*Ptr), Context.IntTy 
      };
      
      // Without volatile
      if (NumArgs == 1)
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
      else
        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);

      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
        // With volatile
        ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
        if (NumArgs == 1)
          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
        else
          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
      }
    }
    break;

  UnaryStar:
    // C++ [over.built]p6:
    //   For every cv-qualified or cv-unqualified object type T, there
    //   exist candidate operator functions of the form
    //
    //       T&         operator*(T*);
    //
    // C++ [over.built]p7:
    //   For every function type T, there exist candidate operator
    //   functions of the form
    //       T&         operator*(T*);
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
      QualType ParamTy = *Ptr;
      QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
      AddBuiltinCandidate(Context.getReferenceType(PointeeTy), 
                          &ParamTy, Args, 1, CandidateSet);
    }
    break;

  UnaryPlus:
    // C++ [over.built]p8:
    //   For every type T, there exist candidate operator functions of
    //   the form
    //
    //       T*         operator+(T*);
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
      QualType ParamTy = *Ptr;
      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
    }
    
    // Fall through

  UnaryMinus:
    // C++ [over.built]p9:
    //  For every promoted arithmetic type T, there exist candidate
    //  operator functions of the form
    //
    //       T         operator+(T);
    //       T         operator-(T);
    for (unsigned Arith = FirstPromotedArithmeticType; 
         Arith < LastPromotedArithmeticType; ++Arith) {
      QualType ArithTy = ArithmeticTypes[Arith];
      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
    }
    break;

  case OO_Tilde:
    // C++ [over.built]p10:
    //   For every promoted integral type T, there exist candidate
    //   operator functions of the form
    //
    //        T         operator~(T);
    for (unsigned Int = FirstPromotedIntegralType; 
         Int < LastPromotedIntegralType; ++Int) {
      QualType IntTy = ArithmeticTypes[Int];
      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
    }
    break;

  case OO_New:
  case OO_Delete:
  case OO_Array_New:
  case OO_Array_Delete:
  case OO_Call:
    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
    break;

  case OO_Comma:
  UnaryAmp:
  case OO_Arrow:
    // C++ [over.match.oper]p3:
    //   -- For the operator ',', the unary operator '&', or the
    //      operator '->', the built-in candidates set is empty.
    break;

  case OO_Less:
  case OO_Greater:
  case OO_LessEqual:
  case OO_GreaterEqual:
  case OO_EqualEqual:
  case OO_ExclaimEqual:
    // C++ [over.built]p15:
    //
    //   For every pointer or enumeration type T, there exist
    //   candidate operator functions of the form
    //     
    //        bool       operator<(T, T);
    //        bool       operator>(T, T);
    //        bool       operator<=(T, T);
    //        bool       operator>=(T, T);
    //        bool       operator==(T, T);
    //        bool       operator!=(T, T);
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
      QualType ParamTypes[2] = { *Ptr, *Ptr };
      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
    }
    for (BuiltinCandidateTypeSet::iterator Enum 
           = CandidateTypes.enumeration_begin();
         Enum != CandidateTypes.enumeration_end(); ++Enum) {
      QualType ParamTypes[2] = { *Enum, *Enum };
      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
    }

    // Fall through.
    isComparison = true;

  BinaryPlus:
  BinaryMinus:
    if (!isComparison) {
      // We didn't fall through, so we must have OO_Plus or OO_Minus.

      // C++ [over.built]p13:
      //
      //   For every cv-qualified or cv-unqualified object type T
      //   there exist candidate operator functions of the form
      //    
      //      T*         operator+(T*, ptrdiff_t);
      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
      //      T*         operator-(T*, ptrdiff_t);
      //      T*         operator+(ptrdiff_t, T*);
      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
      //
      // C++ [over.built]p14:
      //
      //   For every T, where T is a pointer to object type, there
      //   exist candidate operator functions of the form
      //
      //      ptrdiff_t  operator-(T, T);
      for (BuiltinCandidateTypeSet::iterator Ptr 
             = CandidateTypes.pointer_begin();
           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };

        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);

        if (Op == OO_Plus) {
          // T* operator+(ptrdiff_t, T*);
          ParamTypes[0] = ParamTypes[1];
          ParamTypes[1] = *Ptr;
          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
        } else {
          // ptrdiff_t operator-(T, T);
          ParamTypes[1] = *Ptr;
          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
                              Args, 2, CandidateSet);
        }
      }
    }
    // Fall through

  case OO_Slash:
  BinaryStar:
    // C++ [over.built]p12:
    //
    //   For every pair of promoted arithmetic types L and R, there
    //   exist candidate operator functions of the form
    //
    //        LR         operator*(L, R);
    //        LR         operator/(L, R);
    //        LR         operator+(L, R);
    //        LR         operator-(L, R);
    //        bool       operator<(L, R);
    //        bool       operator>(L, R);
    //        bool       operator<=(L, R);
    //        bool       operator>=(L, R);
    //        bool       operator==(L, R);
    //        bool       operator!=(L, R);
    //
    //   where LR is the result of the usual arithmetic conversions
    //   between types L and R.
    for (unsigned Left = FirstPromotedArithmeticType; 
         Left < LastPromotedArithmeticType; ++Left) {
      for (unsigned Right = FirstPromotedArithmeticType; 
           Right < LastPromotedArithmeticType; ++Right) {
        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
        QualType Result 
          = isComparison? Context.BoolTy 
                        : UsualArithmeticConversionsType(LandR[0], LandR[1]);
        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
      }
    }
    break;

  case OO_Percent:
  BinaryAmp:
  case OO_Caret:
  case OO_Pipe:
  case OO_LessLess:
  case OO_GreaterGreater:
    // C++ [over.built]p17:
    //
    //   For every pair of promoted integral types L and R, there
    //   exist candidate operator functions of the form
    //
    //      LR         operator%(L, R);
    //      LR         operator&(L, R);
    //      LR         operator^(L, R);
    //      LR         operator|(L, R);
    //      L          operator<<(L, R);
    //      L          operator>>(L, R);
    //
    //   where LR is the result of the usual arithmetic conversions
    //   between types L and R.
    for (unsigned Left = FirstPromotedIntegralType; 
         Left < LastPromotedIntegralType; ++Left) {
      for (unsigned Right = FirstPromotedIntegralType; 
           Right < LastPromotedIntegralType; ++Right) {
        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
            ? LandR[0]
            : UsualArithmeticConversionsType(LandR[0], LandR[1]);
        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
      }
    }
    break;

  case OO_Equal:
    // C++ [over.built]p20:
    //
    //   For every pair (T, VQ), where T is an enumeration or
    //   (FIXME:) pointer to member type and VQ is either volatile or
    //   empty, there exist candidate operator functions of the form
    //
    //        VQ T&      operator=(VQ T&, T);
    for (BuiltinCandidateTypeSet::iterator Enum 
           = CandidateTypes.enumeration_begin();
         Enum != CandidateTypes.enumeration_end(); ++Enum) {
      QualType ParamTypes[2];

      // T& operator=(T&, T)
      ParamTypes[0] = Context.getReferenceType(*Enum);
      ParamTypes[1] = *Enum;
      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);

      if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
        // volatile T& operator=(volatile T&, T)
        ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
        ParamTypes[1] = *Enum;
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
      }
    }
    // Fall through.

  case OO_PlusEqual:
  case OO_MinusEqual:
    // C++ [over.built]p19:
    //
    //   For every pair (T, VQ), where T is any type and VQ is either
    //   volatile or empty, there exist candidate operator functions
    //   of the form
    //
    //        T*VQ&      operator=(T*VQ&, T*);
    //
    // C++ [over.built]p21:
    //
    //   For every pair (T, VQ), where T is a cv-qualified or
    //   cv-unqualified object type and VQ is either volatile or
    //   empty, there exist candidate operator functions of the form
    //
    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
      QualType ParamTypes[2];
      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();

      // non-volatile version
      ParamTypes[0] = Context.getReferenceType(*Ptr);
      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);

      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
        // volatile version
        ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
      }
    }
    // Fall through.

  case OO_StarEqual:
  case OO_SlashEqual:
    // C++ [over.built]p18:
    //
    //   For every triple (L, VQ, R), where L is an arithmetic type,
    //   VQ is either volatile or empty, and R is a promoted
    //   arithmetic type, there exist candidate operator functions of
    //   the form
    //
    //        VQ L&      operator=(VQ L&, R);
    //        VQ L&      operator*=(VQ L&, R);
    //        VQ L&      operator/=(VQ L&, R);
    //        VQ L&      operator+=(VQ L&, R);
    //        VQ L&      operator-=(VQ L&, R);
    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
      for (unsigned Right = FirstPromotedArithmeticType; 
           Right < LastPromotedArithmeticType; ++Right) {
        QualType ParamTypes[2];
        ParamTypes[1] = ArithmeticTypes[Right];

        // Add this built-in operator as a candidate (VQ is empty).
        ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);

        // Add this built-in operator as a candidate (VQ is 'volatile').
        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
        ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
      }
    }
    break;

  case OO_PercentEqual:
  case OO_LessLessEqual:
  case OO_GreaterGreaterEqual:
  case OO_AmpEqual:
  case OO_CaretEqual:
  case OO_PipeEqual:
    // C++ [over.built]p22:
    //
    //   For every triple (L, VQ, R), where L is an integral type, VQ
    //   is either volatile or empty, and R is a promoted integral
    //   type, there exist candidate operator functions of the form
    //
    //        VQ L&       operator%=(VQ L&, R);
    //        VQ L&       operator<<=(VQ L&, R);
    //        VQ L&       operator>>=(VQ L&, R);
    //        VQ L&       operator&=(VQ L&, R);
    //        VQ L&       operator^=(VQ L&, R);
    //        VQ L&       operator|=(VQ L&, R);
    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
      for (unsigned Right = FirstPromotedIntegralType; 
           Right < LastPromotedIntegralType; ++Right) {
        QualType ParamTypes[2];
        ParamTypes[1] = ArithmeticTypes[Right];

        // Add this built-in operator as a candidate (VQ is empty).
        // FIXME: We should be caching these declarations somewhere,
        // rather than re-building them every time.
        ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);

        // Add this built-in operator as a candidate (VQ is 'volatile').
        ParamTypes[0] = ArithmeticTypes[Left];
        ParamTypes[0].addVolatile();
        ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
      }
    }
    break;

  case OO_Exclaim: {
    // C++ [over.operator]p23:
    //
    //   There also exist candidate operator functions of the form
    //
    //        bool        operator!(bool);            
    //        bool        operator&&(bool, bool);     [BELOW]
    //        bool        operator||(bool, bool);     [BELOW]
    QualType ParamTy = Context.BoolTy;
    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
    break;
  }

  case OO_AmpAmp:
  case OO_PipePipe: {
    // C++ [over.operator]p23:
    //
    //   There also exist candidate operator functions of the form
    //
    //        bool        operator!(bool);            [ABOVE]
    //        bool        operator&&(bool, bool);
    //        bool        operator||(bool, bool);
    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
    break;
  }

  case OO_Subscript:
    // C++ [over.built]p13:
    //
    //   For every cv-qualified or cv-unqualified object type T there
    //   exist candidate operator functions of the form
    //    
    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
    //        T&         operator[](T*, ptrdiff_t);
    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
    //        T&         operator[](ptrdiff_t, T*);
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
      QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
      QualType ResultTy = Context.getReferenceType(PointeeType);

      // T& operator[](T*, ptrdiff_t)
      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);

      // T& operator[](ptrdiff_t, T*);
      ParamTypes[0] = ParamTypes[1];
      ParamTypes[1] = *Ptr;
      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
    }
    break;

  case OO_ArrowStar:
    // FIXME: No support for pointer-to-members yet.
    break;
  }
}

/// AddOverloadCandidates - Add all of the function overloads in Ovl
/// to the candidate set.
void 
Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl, 
                            Expr **Args, unsigned NumArgs,
                            OverloadCandidateSet& CandidateSet,
                            bool SuppressUserConversions)
{
  for (OverloadedFunctionDecl::function_const_iterator Func 
         = Ovl->function_begin();
       Func != Ovl->function_end(); ++Func)
    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
                         SuppressUserConversions);
}

/// isBetterOverloadCandidate - Determines whether the first overload
/// candidate is a better candidate than the second (C++ 13.3.3p1).
bool 
Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
                                const OverloadCandidate& Cand2)
{
  // Define viable functions to be better candidates than non-viable
  // functions.
  if (!Cand2.Viable)
    return Cand1.Viable;
  else if (!Cand1.Viable)
    return false;

  // C++ [over.match.best]p1:
  //
  //   -- if F is a static member function, ICS1(F) is defined such
  //      that ICS1(F) is neither better nor worse than ICS1(G) for
  //      any function G, and, symmetrically, ICS1(G) is neither
  //      better nor worse than ICS1(F).
  unsigned StartArg = 0;
  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
    StartArg = 1;

  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
  // function than another viable function F2 if for all arguments i,
  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
  // then...
  unsigned NumArgs = Cand1.Conversions.size();
  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
  bool HasBetterConversion = false;
  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
                                               Cand2.Conversions[ArgIdx])) {
    case ImplicitConversionSequence::Better:
      // Cand1 has a better conversion sequence.
      HasBetterConversion = true;
      break;

    case ImplicitConversionSequence::Worse:
      // Cand1 can't be better than Cand2.
      return false;

    case ImplicitConversionSequence::Indistinguishable:
      // Do nothing.
      break;
    }
  }

  if (HasBetterConversion)
    return true;

  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
  // implemented, but they require template support.

  // C++ [over.match.best]p1b4:
  //
  //   -- the context is an initialization by user-defined conversion
  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
  //      from the return type of F1 to the destination type (i.e.,
  //      the type of the entity being initialized) is a better
  //      conversion sequence than the standard conversion sequence
  //      from the return type of F2 to the destination type.
  if (Cand1.Function && Cand2.Function && 
      isa<CXXConversionDecl>(Cand1.Function) && 
      isa<CXXConversionDecl>(Cand2.Function)) {
    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
                                               Cand2.FinalConversion)) {
    case ImplicitConversionSequence::Better:
      // Cand1 has a better conversion sequence.
      return true;

    case ImplicitConversionSequence::Worse:
      // Cand1 can't be better than Cand2.
      return false;

    case ImplicitConversionSequence::Indistinguishable:
      // Do nothing
      break;
    }
  }

  return false;
}

/// BestViableFunction - Computes the best viable function (C++ 13.3.3) 
/// within an overload candidate set. If overloading is successful,
/// the result will be OR_Success and Best will be set to point to the
/// best viable function within the candidate set. Otherwise, one of
/// several kinds of errors will be returned; see
/// Sema::OverloadingResult.
Sema::OverloadingResult 
Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
                         OverloadCandidateSet::iterator& Best)
{
  // Find the best viable function.
  Best = CandidateSet.end();
  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
       Cand != CandidateSet.end(); ++Cand) {
    if (Cand->Viable) {
      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
        Best = Cand;
    }
  }

  // If we didn't find any viable functions, abort.
  if (Best == CandidateSet.end())
    return OR_No_Viable_Function;

  // Make sure that this function is better than every other viable
  // function. If not, we have an ambiguity.
  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
       Cand != CandidateSet.end(); ++Cand) {
    if (Cand->Viable && 
        Cand != Best &&
        !isBetterOverloadCandidate(*Best, *Cand)) {
      Best = CandidateSet.end();
      return OR_Ambiguous;
    }
  }
  
  // Best is the best viable function.
  return OR_Success;
}

/// PrintOverloadCandidates - When overload resolution fails, prints
/// diagnostic messages containing the candidates in the candidate
/// set. If OnlyViable is true, only viable candidates will be printed.
void 
Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
                              bool OnlyViable)
{
  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
                             LastCand = CandidateSet.end();
  for (; Cand != LastCand; ++Cand) {
    if (Cand->Viable || !OnlyViable) {
      if (Cand->Function) {
        // Normal function
        Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
      } else if (Cand->IsSurrogate) {
        // Desugar the type of the surrogate down to a function type,
        // retaining as many typedefs as possible while still showing
        // the function type (and, therefore, its parameter types).
        QualType FnType = Cand->Surrogate->getConversionType();
        bool isReference = false;
        bool isPointer = false;
        if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
          FnType = FnTypeRef->getPointeeType();
          isReference = true;
        }
        if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
          FnType = FnTypePtr->getPointeeType();
          isPointer = true;
        }
        // Desugar down to a function type.
        FnType = QualType(FnType->getAsFunctionType(), 0);
        // Reconstruct the pointer/reference as appropriate.
        if (isPointer) FnType = Context.getPointerType(FnType);
        if (isReference) FnType = Context.getReferenceType(FnType);

        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
          << FnType;
      } else {
        // FIXME: We need to get the identifier in here
        // FIXME: Do we want the error message to point at the 
        // operator? (built-ins won't have a location)
        QualType FnType 
          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
                                    Cand->BuiltinTypes.ParamTypes,
                                    Cand->Conversions.size(),
                                    false, 0);

        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
      }
    }
  }
}

/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
/// an overloaded function (C++ [over.over]), where @p From is an
/// expression with overloaded function type and @p ToType is the type
/// we're trying to resolve to. For example:
///
/// @code
/// int f(double);
/// int f(int);
///                          
/// int (*pfd)(double) = f; // selects f(double)
/// @endcode
///
/// This routine returns the resulting FunctionDecl if it could be
/// resolved, and NULL otherwise. When @p Complain is true, this
/// routine will emit diagnostics if there is an error.
FunctionDecl *
Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 
                                         bool Complain) {
  QualType FunctionType = ToType;
  if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
    FunctionType = ToTypePtr->getPointeeType();

  // We only look at pointers or references to functions.
  if (!FunctionType->isFunctionType()) 
    return 0;

  // Find the actual overloaded function declaration.
  OverloadedFunctionDecl *Ovl = 0;
  
  // C++ [over.over]p1:
  //   [...] [Note: any redundant set of parentheses surrounding the
  //   overloaded function name is ignored (5.1). ]
  Expr *OvlExpr = From->IgnoreParens();

  // C++ [over.over]p1:
  //   [...] The overloaded function name can be preceded by the &
  //   operator.
  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
  }

  // Try to dig out the overloaded function.
  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());

  // If there's no overloaded function declaration, we're done.
  if (!Ovl)
    return 0;
 
  // Look through all of the overloaded functions, searching for one
  // whose type matches exactly.
  // FIXME: When templates or using declarations come along, we'll actually
  // have to deal with duplicates, partial ordering, etc. For now, we 
  // can just do a simple search.
  FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
  for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
       Fun != Ovl->function_end(); ++Fun) {
    // C++ [over.over]p3:
    //   Non-member functions and static member functions match
    //   targets of type “pointer-to-function”or
    //   “reference-to-function.”
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun))
      if (!Method->isStatic())
        continue;

    if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
      return *Fun;
  }

  return 0;
}

/// ResolveOverloadedCallFn - Given the call expression that calls Fn
/// (which eventually refers to the set of overloaded functions in
/// Ovl) and the call arguments Args/NumArgs, attempt to resolve the
/// function call down to a specific function. If overload resolution
/// succeeds, returns the function declaration produced by overload
/// resolution. Otherwise, emits diagnostics, deletes all of the
/// arguments and Fn, and returns NULL.
FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, OverloadedFunctionDecl *Ovl,
                                            SourceLocation LParenLoc,
                                            Expr **Args, unsigned NumArgs,
                                            SourceLocation *CommaLocs, 
                                            SourceLocation RParenLoc) {
  OverloadCandidateSet CandidateSet;
  AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
  OverloadCandidateSet::iterator Best;
  switch (BestViableFunction(CandidateSet, Best)) {
  case OR_Success:
    return Best->Function;

  case OR_No_Viable_Function:
    Diag(Fn->getSourceRange().getBegin(), 
         diag::err_ovl_no_viable_function_in_call)
      << Ovl->getDeclName() << (unsigned)CandidateSet.size()
      << Fn->getSourceRange();
    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
    break;

  case OR_Ambiguous:
    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
      << Ovl->getDeclName() << Fn->getSourceRange();
    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
    break;
  }

  // Overload resolution failed. Destroy all of the subexpressions and
  // return NULL.
  Fn->Destroy(Context);
  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
    Args[Arg]->Destroy(Context);
  return 0;
}

/// BuildCallToMemberFunction - Build a call to a member
/// function. MemExpr is the expression that refers to the member
/// function (and includes the object parameter), Args/NumArgs are the
/// arguments to the function call (not including the object
/// parameter). The caller needs to validate that the member
/// expression refers to a member function or an overloaded member
/// function.
Sema::ExprResult
Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 
                                SourceLocation LParenLoc, Expr **Args, 
                                unsigned NumArgs, SourceLocation *CommaLocs,
                                SourceLocation RParenLoc) {
  // Dig out the member expression. This holds both the object
  // argument and the member function we're referring to.
  MemberExpr *MemExpr = 0;
  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
  else
    MemExpr = dyn_cast<MemberExpr>(MemExprE);
  assert(MemExpr && "Building member call without member expression");

  // Extract the object argument.
  Expr *ObjectArg = MemExpr->getBase();
  if (MemExpr->isArrow())
    ObjectArg = new UnaryOperator(ObjectArg, UnaryOperator::Deref,
                      ObjectArg->getType()->getAsPointerType()->getPointeeType(),
                      SourceLocation());
  CXXMethodDecl *Method = 0;
  if (OverloadedFunctionDecl *Ovl 
        = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
    // Add overload candidates
    OverloadCandidateSet CandidateSet;
    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
                                                FuncEnd = Ovl->function_end();
         Func != FuncEnd; ++Func) {
      assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
      Method = cast<CXXMethodDecl>(*Func);
      AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet, 
                         /*SuppressUserConversions=*/false);
    }

    OverloadCandidateSet::iterator Best;
    switch (BestViableFunction(CandidateSet, Best)) {
    case OR_Success:
      Method = cast<CXXMethodDecl>(Best->Function);
      break;

    case OR_No_Viable_Function:
      Diag(MemExpr->getSourceRange().getBegin(), 
           diag::err_ovl_no_viable_member_function_in_call)
        << Ovl->getDeclName() << (unsigned)CandidateSet.size()
        << MemExprE->getSourceRange();
      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
      // FIXME: Leaking incoming expressions!
      return true;

    case OR_Ambiguous:
      Diag(MemExpr->getSourceRange().getBegin(), 
           diag::err_ovl_ambiguous_member_call)
        << Ovl->getDeclName() << MemExprE->getSourceRange();
      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
      // FIXME: Leaking incoming expressions!
      return true;
    }

    FixOverloadedFunctionReference(MemExpr, Method);
  } else {
    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
  }

  assert(Method && "Member call to something that isn't a method?");
  llvm::OwningPtr<CXXMemberCallExpr> 
    TheCall(new CXXMemberCallExpr(MemExpr, Args, NumArgs, 
                                  Method->getResultType().getNonReferenceType(),
                                  RParenLoc));

  // Convert the object argument (for a non-static member function call).
  if (!Method->isStatic() && 
      PerformObjectArgumentInitialization(ObjectArg, Method))
    return true;
  MemExpr->setBase(ObjectArg);

  // Convert the rest of the arguments
  const FunctionTypeProto *Proto = cast<FunctionTypeProto>(Method->getType());
  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 
                              RParenLoc))
    return true;

  return CheckFunctionCall(Method, TheCall.take());
}

/// BuildCallToObjectOfClassType - Build a call to an object of class
/// type (C++ [over.call.object]), which can end up invoking an
/// overloaded function call operator (@c operator()) or performing a
/// user-defined conversion on the object argument.
Sema::ExprResult 
Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 
                                   SourceLocation LParenLoc,
                                   Expr **Args, unsigned NumArgs,
                                   SourceLocation *CommaLocs, 
                                   SourceLocation RParenLoc) {
  assert(Object->getType()->isRecordType() && "Requires object type argument");
  const RecordType *Record = Object->getType()->getAsRecordType();
  
  // C++ [over.call.object]p1:
  //  If the primary-expression E in the function call syntax
  //  evaluates to a class object of type “cv T”, then the set of
  //  candidate functions includes at least the function call
  //  operators of T. The function call operators of T are obtained by
  //  ordinary lookup of the name operator() in the context of
  //  (E).operator().
  OverloadCandidateSet CandidateSet;
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
  DeclContext::lookup_const_iterator Oper, OperEnd;
  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
       Oper != OperEnd; ++Oper)
    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs, 
                       CandidateSet, /*SuppressUserConversions=*/false);

  // C++ [over.call.object]p2:
  //   In addition, for each conversion function declared in T of the
  //   form
  //
  //        operator conversion-type-id () cv-qualifier;
  //
  //   where cv-qualifier is the same cv-qualification as, or a
  //   greater cv-qualification than, cv, and where conversion-type-id
  //   denotes the type "pointer to function of (P1,...,Pn) returning
  //   R", or the type "reference to pointer to function of
  //   (P1,...,Pn) returning R", or the type "reference to function
  //   of (P1,...,Pn) returning R", a surrogate call function [...]
  //   is also considered as a candidate function. Similarly,
  //   surrogate call functions are added to the set of candidate
  //   functions for each conversion function declared in an
  //   accessible base class provided the function is not hidden
  //   within T by another intervening declaration.
  //
  // FIXME: Look in base classes for more conversion operators!
  OverloadedFunctionDecl *Conversions 
    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
  for (OverloadedFunctionDecl::function_iterator 
         Func = Conversions->function_begin(),
         FuncEnd = Conversions->function_end();
       Func != FuncEnd; ++Func) {
    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);

    // Strip the reference type (if any) and then the pointer type (if
    // any) to get down to what might be a function type.
    QualType ConvType = Conv->getConversionType().getNonReferenceType();
    if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
      ConvType = ConvPtrType->getPointeeType();

    if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto())
      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
  }

  // Perform overload resolution.
  OverloadCandidateSet::iterator Best;
  switch (BestViableFunction(CandidateSet, Best)) {
  case OR_Success:
    // Overload resolution succeeded; we'll build the appropriate call
    // below.
    break;

  case OR_No_Viable_Function:
    Diag(Object->getSourceRange().getBegin(), 
         diag::err_ovl_no_viable_object_call)
      << Object->getType() << (unsigned)CandidateSet.size()
      << Object->getSourceRange();
    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
    break;

  case OR_Ambiguous:
    Diag(Object->getSourceRange().getBegin(),
         diag::err_ovl_ambiguous_object_call)
      << Object->getType() << Object->getSourceRange();
    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
    break;
  }    

  if (Best == CandidateSet.end()) {
    // We had an error; delete all of the subexpressions and return
    // the error.
    delete Object;
    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
      delete Args[ArgIdx];
    return true;
  }

  if (Best->Function == 0) {
    // Since there is no function declaration, this is one of the
    // surrogate candidates. Dig out the conversion function.
    CXXConversionDecl *Conv 
      = cast<CXXConversionDecl>(
                         Best->Conversions[0].UserDefined.ConversionFunction);

    // We selected one of the surrogate functions that converts the
    // object parameter to a function pointer. Perform the conversion
    // on the object argument, then let ActOnCallExpr finish the job.
    // FIXME: Represent the user-defined conversion in the AST!
    ImpCastExprToType(Object, 
                      Conv->getConversionType().getNonReferenceType(),
                      Conv->getConversionType()->isReferenceType());
    return ActOnCallExpr(S, (ExprTy*)Object, LParenLoc, (ExprTy**)Args, NumArgs,
                         CommaLocs, RParenLoc);
  }

  // We found an overloaded operator(). Build a CXXOperatorCallExpr
  // that calls this method, using Object for the implicit object
  // parameter and passing along the remaining arguments.
  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
  const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();

  unsigned NumArgsInProto = Proto->getNumArgs();
  unsigned NumArgsToCheck = NumArgs;

  // Build the full argument list for the method call (the
  // implicit object parameter is placed at the beginning of the
  // list).
  Expr **MethodArgs;
  if (NumArgs < NumArgsInProto) {
    NumArgsToCheck = NumArgsInProto;
    MethodArgs = new Expr*[NumArgsInProto + 1];
  } else {
    MethodArgs = new Expr*[NumArgs + 1];
  }
  MethodArgs[0] = Object;
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
      
  Expr *NewFn = new DeclRefExpr(Method, Method->getType(), 
                                SourceLocation());
  UsualUnaryConversions(NewFn);

  // Once we've built TheCall, all of the expressions are properly
  // owned.
  QualType ResultTy = Method->getResultType().getNonReferenceType();
  llvm::OwningPtr<CXXOperatorCallExpr> 
    TheCall(new CXXOperatorCallExpr(NewFn, MethodArgs, NumArgs + 1,
                                    ResultTy, RParenLoc));
  delete [] MethodArgs;

  // Initialize the implicit object parameter.
  if (!PerformObjectArgumentInitialization(Object, Method))
    return true;
  TheCall->setArg(0, Object);

  // Check the argument types.
  for (unsigned i = 0; i != NumArgsToCheck; i++) {
    QualType ProtoArgType = Proto->getArgType(i);

    Expr *Arg;
    if (i < NumArgs) 
      Arg = Args[i];
    else 
      Arg = new CXXDefaultArgExpr(Method->getParamDecl(i));
    QualType ArgType = Arg->getType();
        
    // Pass the argument.
    if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
      return true;

    TheCall->setArg(i + 1, Arg);
  }

  // If this is a variadic call, handle args passed through "...".
  if (Proto->isVariadic()) {
    // Promote the arguments (C99 6.5.2.2p7).
    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
      Expr *Arg = Args[i];
      DefaultArgumentPromotion(Arg);
      TheCall->setArg(i + 1, Arg);
    }
  }

  return CheckFunctionCall(Method, TheCall.take());
}

/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
///  (if one exists), where @c Base is an expression of class type and 
/// @c Member is the name of the member we're trying to find.
Action::ExprResult 
Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
                               SourceLocation MemberLoc,
                               IdentifierInfo &Member) {
  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
  
  // C++ [over.ref]p1:
  //
  //   [...] An expression x->m is interpreted as (x.operator->())->m
  //   for a class object x of type T if T::operator->() exists and if
  //   the operator is selected as the best match function by the
  //   overload resolution mechanism (13.3).
  // FIXME: look in base classes.
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
  OverloadCandidateSet CandidateSet;
  const RecordType *BaseRecord = Base->getType()->getAsRecordType();
  
  DeclContext::lookup_const_iterator Oper, OperEnd;
  for (llvm::tie(Oper, OperEnd) = BaseRecord->getDecl()->lookup(OpName);
       Oper != OperEnd; ++Oper)
    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
                       /*SuppressUserConversions=*/false);

  llvm::OwningPtr<Expr> BasePtr(Base);

  // Perform overload resolution.
  OverloadCandidateSet::iterator Best;
  switch (BestViableFunction(CandidateSet, Best)) {
  case OR_Success:
    // Overload resolution succeeded; we'll build the call below.
    break;

  case OR_No_Viable_Function:
    if (CandidateSet.empty())
      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
        << BasePtr->getType() << BasePtr->getSourceRange();
    else
      Diag(OpLoc, diag::err_ovl_no_viable_oper)
        << "operator->" << (unsigned)CandidateSet.size()
        << BasePtr->getSourceRange();
    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
    return true;

  case OR_Ambiguous:
    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
      << "operator->" << BasePtr->getSourceRange();
    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
    return true;
  }

  // Convert the object parameter.
  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
  if (PerformObjectArgumentInitialization(Base, Method))
    return true;

  // No concerns about early exits now.
  BasePtr.take();

  // Build the operator call.
  Expr *FnExpr = new DeclRefExpr(Method, Method->getType(), SourceLocation());
  UsualUnaryConversions(FnExpr);
  Base = new CXXOperatorCallExpr(FnExpr, &Base, 1, 
                                 Method->getResultType().getNonReferenceType(),
                                 OpLoc);
  return ActOnMemberReferenceExpr(S, Base, OpLoc, tok::arrow, MemberLoc, Member);
}

/// FixOverloadedFunctionReference - E is an expression that refers to
/// a C++ overloaded function (possibly with some parentheses and
/// perhaps a '&' around it). We have resolved the overloaded function
/// to the function declaration Fn, so patch up the expression E to
/// refer (possibly indirectly) to Fn.
void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
    E->setType(PE->getSubExpr()->getType());
  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
    assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 
           "Can only take the address of an overloaded function");
    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
    E->setType(Context.getPointerType(E->getType()));
  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
    assert(isa<OverloadedFunctionDecl>(DR->getDecl()) && 
           "Expected overloaded function");
    DR->setDecl(Fn);
    E->setType(Fn->getType());
  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
    MemExpr->setMemberDecl(Fn);
    E->setType(Fn->getType());
  } else {
    assert(false && "Invalid reference to overloaded function");
  }
}

} // end namespace clang