aboutsummaryrefslogtreecommitdiff
path: root/lib/Sema/SemaLambda.cpp
blob: d16bb6a052c499d580aa45cd45727a11cf446fc9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
//===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis for C++ lambda expressions.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/DeclSpec.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
using namespace clang;
using namespace sema;

CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
                                             TypeSourceInfo *Info,
                                             bool KnownDependent) {
  DeclContext *DC = CurContext;
  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
    DC = DC->getParent();
  
  // Start constructing the lambda class.
  CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
                                                     IntroducerRange.getBegin(),
                                                     KnownDependent);
  DC->addDecl(Class);
  
  return Class;
}

/// \brief Determine whether the given context is or is enclosed in an inline
/// function.
static bool isInInlineFunction(const DeclContext *DC) {
  while (!DC->isFileContext()) {
    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
      if (FD->isInlined())
        return true;
    
    DC = DC->getLexicalParent();
  }
  
  return false;
}

CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
                 SourceRange IntroducerRange,
                 TypeSourceInfo *MethodType,
                 SourceLocation EndLoc,
                 ArrayRef<ParmVarDecl *> Params) {
  // C++11 [expr.prim.lambda]p5:
  //   The closure type for a lambda-expression has a public inline function 
  //   call operator (13.5.4) whose parameters and return type are described by
  //   the lambda-expression's parameter-declaration-clause and 
  //   trailing-return-type respectively.
  DeclarationName MethodName
    = Context.DeclarationNames.getCXXOperatorName(OO_Call);
  DeclarationNameLoc MethodNameLoc;
  MethodNameLoc.CXXOperatorName.BeginOpNameLoc
    = IntroducerRange.getBegin().getRawEncoding();
  MethodNameLoc.CXXOperatorName.EndOpNameLoc
    = IntroducerRange.getEnd().getRawEncoding();
  CXXMethodDecl *Method
    = CXXMethodDecl::Create(Context, Class, EndLoc,
                            DeclarationNameInfo(MethodName, 
                                                IntroducerRange.getBegin(),
                                                MethodNameLoc),
                            MethodType->getType(), MethodType,
                            SC_None,
                            /*isInline=*/true,
                            /*isConstExpr=*/false,
                            EndLoc);
  Method->setAccess(AS_public);
  
  // Temporarily set the lexical declaration context to the current
  // context, so that the Scope stack matches the lexical nesting.
  Method->setLexicalDeclContext(CurContext);  
  
  // Add parameters.
  if (!Params.empty()) {
    Method->setParams(Params);
    CheckParmsForFunctionDef(const_cast<ParmVarDecl **>(Params.begin()),
                             const_cast<ParmVarDecl **>(Params.end()),
                             /*CheckParameterNames=*/false);
    
    for (CXXMethodDecl::param_iterator P = Method->param_begin(), 
                                    PEnd = Method->param_end();
         P != PEnd; ++P)
      (*P)->setOwningFunction(Method);
  }

  // Allocate a mangling number for this lambda expression, if the ABI
  // requires one.
  Decl *ContextDecl = ExprEvalContexts.back().LambdaContextDecl;

  enum ContextKind {
    Normal,
    DefaultArgument,
    DataMember,
    StaticDataMember
  } Kind = Normal;

  // Default arguments of member function parameters that appear in a class
  // definition, as well as the initializers of data members, receive special
  // treatment. Identify them.
  if (ContextDecl) {
    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ContextDecl)) {
      if (const DeclContext *LexicalDC
          = Param->getDeclContext()->getLexicalParent())
        if (LexicalDC->isRecord())
          Kind = DefaultArgument;
    } else if (VarDecl *Var = dyn_cast<VarDecl>(ContextDecl)) {
      if (Var->getDeclContext()->isRecord())
        Kind = StaticDataMember;
    } else if (isa<FieldDecl>(ContextDecl)) {
      Kind = DataMember;
    }
  }

  // Itanium ABI [5.1.7]:
  //   In the following contexts [...] the one-definition rule requires closure
  //   types in different translation units to "correspond":
  bool IsInNonspecializedTemplate =
    !ActiveTemplateInstantiations.empty() || CurContext->isDependentContext();
  unsigned ManglingNumber;
  switch (Kind) {
  case Normal:
    //  -- the bodies of non-exported nonspecialized template functions
    //  -- the bodies of inline functions
    if ((IsInNonspecializedTemplate &&
         !(ContextDecl && isa<ParmVarDecl>(ContextDecl))) ||
        isInInlineFunction(CurContext))
      ManglingNumber = Context.getLambdaManglingNumber(Method);
    else
      ManglingNumber = 0;

    // There is no special context for this lambda.
    ContextDecl = 0;
    break;

  case StaticDataMember:
    //  -- the initializers of nonspecialized static members of template classes
    if (!IsInNonspecializedTemplate) {
      ManglingNumber = 0;
      ContextDecl = 0;
      break;
    }
    // Fall through to assign a mangling number.

  case DataMember:
    //  -- the in-class initializers of class members
  case DefaultArgument:
    //  -- default arguments appearing in class definitions
    ManglingNumber = ExprEvalContexts.back().getLambdaMangleContext()
                       .getManglingNumber(Method);
    break;
  }

  Class->setLambdaMangling(ManglingNumber, ContextDecl);

  return Method;
}

LambdaScopeInfo *Sema::enterLambdaScope(CXXMethodDecl *CallOperator,
                                        SourceRange IntroducerRange,
                                        LambdaCaptureDefault CaptureDefault,
                                        bool ExplicitParams,
                                        bool ExplicitResultType,
                                        bool Mutable) {
  PushLambdaScope(CallOperator->getParent(), CallOperator);
  LambdaScopeInfo *LSI = getCurLambda();
  if (CaptureDefault == LCD_ByCopy)
    LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
  else if (CaptureDefault == LCD_ByRef)
    LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
  LSI->IntroducerRange = IntroducerRange;
  LSI->ExplicitParams = ExplicitParams;
  LSI->Mutable = Mutable;

  if (ExplicitResultType) {
    LSI->ReturnType = CallOperator->getResultType();
    
    if (!LSI->ReturnType->isDependentType() &&
        !LSI->ReturnType->isVoidType()) {
      if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
                              diag::err_lambda_incomplete_result)) {
        // Do nothing.
      } else if (LSI->ReturnType->isObjCObjectOrInterfaceType()) {
        Diag(CallOperator->getLocStart(), diag::err_lambda_objc_object_result)
          << LSI->ReturnType;
      }
    }
  } else {
    LSI->HasImplicitReturnType = true;
  }

  return LSI;
}

void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
  LSI->finishedExplicitCaptures();
}

void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {  
  // Introduce our parameters into the function scope
  for (unsigned p = 0, NumParams = CallOperator->getNumParams(); 
       p < NumParams; ++p) {
    ParmVarDecl *Param = CallOperator->getParamDecl(p);
    
    // If this has an identifier, add it to the scope stack.
    if (CurScope && Param->getIdentifier()) {
      CheckShadow(CurScope, Param);
      
      PushOnScopeChains(Param, CurScope);
    }
  }
}

/// If this expression is an enumerator-like expression of some type
/// T, return the type T; otherwise, return null.
///
/// Pointer comparisons on the result here should always work because
/// it's derived from either the parent of an EnumConstantDecl
/// (i.e. the definition) or the declaration returned by
/// EnumType::getDecl() (i.e. the definition).
static EnumDecl *findEnumForBlockReturn(Expr *E) {
  // An expression is an enumerator-like expression of type T if,
  // ignoring parens and parens-like expressions:
  E = E->IgnoreParens();

  //  - it is an enumerator whose enum type is T or
  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
    if (EnumConstantDecl *D
          = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
      return cast<EnumDecl>(D->getDeclContext());
    }
    return 0;
  }

  //  - it is a comma expression whose RHS is an enumerator-like
  //    expression of type T or
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
    if (BO->getOpcode() == BO_Comma)
      return findEnumForBlockReturn(BO->getRHS());
    return 0;
  }

  //  - it is a statement-expression whose value expression is an
  //    enumerator-like expression of type T or
  if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
    if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
      return findEnumForBlockReturn(last);
    return 0;
  }

  //   - it is a ternary conditional operator (not the GNU ?:
  //     extension) whose second and third operands are
  //     enumerator-like expressions of type T or
  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
    if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
      if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
        return ED;
    return 0;
  }

  // (implicitly:)
  //   - it is an implicit integral conversion applied to an
  //     enumerator-like expression of type T or
  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
    // We can only see integral conversions in valid enumerator-like
    // expressions.
    if (ICE->getCastKind() == CK_IntegralCast)
      return findEnumForBlockReturn(ICE->getSubExpr());
    return 0;
  }

  //   - it is an expression of that formal enum type.
  if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
    return ET->getDecl();
  }

  // Otherwise, nope.
  return 0;
}

/// Attempt to find a type T for which the returned expression of the
/// given statement is an enumerator-like expression of that type.
static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
  if (Expr *retValue = ret->getRetValue())
    return findEnumForBlockReturn(retValue);
  return 0;
}

/// Attempt to find a common type T for which all of the returned
/// expressions in a block are enumerator-like expressions of that
/// type.
static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
  ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();

  // Try to find one for the first return.
  EnumDecl *ED = findEnumForBlockReturn(*i);
  if (!ED) return 0;

  // Check that the rest of the returns have the same enum.
  for (++i; i != e; ++i) {
    if (findEnumForBlockReturn(*i) != ED)
      return 0;
  }

  // Never infer an anonymous enum type.
  if (!ED->hasNameForLinkage()) return 0;

  return ED;
}

/// Adjust the given return statements so that they formally return
/// the given type.  It should require, at most, an IntegralCast.
static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
                                     QualType returnType) {
  for (ArrayRef<ReturnStmt*>::iterator
         i = returns.begin(), e = returns.end(); i != e; ++i) {
    ReturnStmt *ret = *i;
    Expr *retValue = ret->getRetValue();
    if (S.Context.hasSameType(retValue->getType(), returnType))
      continue;

    // Right now we only support integral fixup casts.
    assert(returnType->isIntegralOrUnscopedEnumerationType());
    assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());

    ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);

    Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
    E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
                                 E, /*base path*/ 0, VK_RValue);
    if (cleanups) {
      cleanups->setSubExpr(E);
    } else {
      ret->setRetValue(E);
    }
  }
}

void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
  assert(CSI.HasImplicitReturnType);

  // C++ Core Issue #975, proposed resolution:
  //   If a lambda-expression does not include a trailing-return-type,
  //   it is as if the trailing-return-type denotes the following type:
  //     - if there are no return statements in the compound-statement,
  //       or all return statements return either an expression of type
  //       void or no expression or braced-init-list, the type void;
  //     - otherwise, if all return statements return an expression
  //       and the types of the returned expressions after
  //       lvalue-to-rvalue conversion (4.1 [conv.lval]),
  //       array-to-pointer conversion (4.2 [conv.array]), and
  //       function-to-pointer conversion (4.3 [conv.func]) are the
  //       same, that common type;
  //     - otherwise, the program is ill-formed.
  //
  // In addition, in blocks in non-C++ modes, if all of the return
  // statements are enumerator-like expressions of some type T, where
  // T has a name for linkage, then we infer the return type of the
  // block to be that type.

  // First case: no return statements, implicit void return type.
  ASTContext &Ctx = getASTContext();
  if (CSI.Returns.empty()) {
    // It's possible there were simply no /valid/ return statements.
    // In this case, the first one we found may have at least given us a type.
    if (CSI.ReturnType.isNull())
      CSI.ReturnType = Ctx.VoidTy;
    return;
  }

  // Second case: at least one return statement has dependent type.
  // Delay type checking until instantiation.
  assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
  if (CSI.ReturnType->isDependentType())
    return;

  // Try to apply the enum-fuzz rule.
  if (!getLangOpts().CPlusPlus) {
    assert(isa<BlockScopeInfo>(CSI));
    const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
    if (ED) {
      CSI.ReturnType = Context.getTypeDeclType(ED);
      adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
      return;
    }
  }

  // Third case: only one return statement. Don't bother doing extra work!
  SmallVectorImpl<ReturnStmt*>::iterator I = CSI.Returns.begin(),
                                         E = CSI.Returns.end();
  if (I+1 == E)
    return;

  // General case: many return statements.
  // Check that they all have compatible return types.

  // We require the return types to strictly match here.
  // Note that we've already done the required promotions as part of
  // processing the return statement.
  for (; I != E; ++I) {
    const ReturnStmt *RS = *I;
    const Expr *RetE = RS->getRetValue();

    QualType ReturnType = (RetE ? RetE->getType() : Context.VoidTy);
    if (Context.hasSameType(ReturnType, CSI.ReturnType))
      continue;

    // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
    // TODO: It's possible that the *first* return is the divergent one.
    Diag(RS->getLocStart(),
         diag::err_typecheck_missing_return_type_incompatible)
      << ReturnType << CSI.ReturnType
      << isa<LambdaScopeInfo>(CSI);
    // Continue iterating so that we keep emitting diagnostics.
  }
}

void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
                                        Declarator &ParamInfo,
                                        Scope *CurScope) {
  // Determine if we're within a context where we know that the lambda will
  // be dependent, because there are template parameters in scope.
  bool KnownDependent = false;
  if (Scope *TmplScope = CurScope->getTemplateParamParent())
    if (!TmplScope->decl_empty())
      KnownDependent = true;
  
  // Determine the signature of the call operator.
  TypeSourceInfo *MethodTyInfo;
  bool ExplicitParams = true;
  bool ExplicitResultType = true;
  bool ContainsUnexpandedParameterPack = false;
  SourceLocation EndLoc;
  SmallVector<ParmVarDecl *, 8> Params;
  if (ParamInfo.getNumTypeObjects() == 0) {
    // C++11 [expr.prim.lambda]p4:
    //   If a lambda-expression does not include a lambda-declarator, it is as 
    //   if the lambda-declarator were ().
    FunctionProtoType::ExtProtoInfo EPI;
    EPI.HasTrailingReturn = true;
    EPI.TypeQuals |= DeclSpec::TQ_const;
    QualType MethodTy = Context.getFunctionType(Context.DependentTy,
                                                ArrayRef<QualType>(),
                                                EPI);
    MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
    ExplicitParams = false;
    ExplicitResultType = false;
    EndLoc = Intro.Range.getEnd();
  } else {
    assert(ParamInfo.isFunctionDeclarator() &&
           "lambda-declarator is a function");
    DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
    
    // C++11 [expr.prim.lambda]p5:
    //   This function call operator is declared const (9.3.1) if and only if 
    //   the lambda-expression's parameter-declaration-clause is not followed 
    //   by mutable. It is neither virtual nor declared volatile. [...]
    if (!FTI.hasMutableQualifier())
      FTI.TypeQuals |= DeclSpec::TQ_const;
    
    MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
    assert(MethodTyInfo && "no type from lambda-declarator");
    EndLoc = ParamInfo.getSourceRange().getEnd();
    
    ExplicitResultType
      = MethodTyInfo->getType()->getAs<FunctionType>()->getResultType() 
                                                        != Context.DependentTy;

    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
      // Empty arg list, don't push any params.
      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
    } else {
      Params.reserve(FTI.NumArgs);
      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
        Params.push_back(cast<ParmVarDecl>(FTI.ArgInfo[i].Param));
    }

    // Check for unexpanded parameter packs in the method type.
    if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
      ContainsUnexpandedParameterPack = true;
  }

  CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
                                                 KnownDependent);

  CXXMethodDecl *Method = startLambdaDefinition(Class, Intro.Range,
                                                MethodTyInfo, EndLoc, Params);
  
  if (ExplicitParams)
    CheckCXXDefaultArguments(Method);
  
  // Attributes on the lambda apply to the method.  
  ProcessDeclAttributes(CurScope, Method, ParamInfo);
  
  // Introduce the function call operator as the current declaration context.
  PushDeclContext(CurScope, Method);
    
  // Introduce the lambda scope.
  LambdaScopeInfo *LSI
    = enterLambdaScope(Method, Intro.Range, Intro.Default, ExplicitParams,
                       ExplicitResultType,
                       !Method->isConst());
 
  // Handle explicit captures.
  SourceLocation PrevCaptureLoc
    = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
  for (SmallVector<LambdaCapture, 4>::const_iterator
         C = Intro.Captures.begin(), 
         E = Intro.Captures.end(); 
       C != E; 
       PrevCaptureLoc = C->Loc, ++C) {
    if (C->Kind == LCK_This) {
      // C++11 [expr.prim.lambda]p8:
      //   An identifier or this shall not appear more than once in a 
      //   lambda-capture.
      if (LSI->isCXXThisCaptured()) {
        Diag(C->Loc, diag::err_capture_more_than_once) 
          << "'this'"
          << SourceRange(LSI->getCXXThisCapture().getLocation())
          << FixItHint::CreateRemoval(
               SourceRange(PP.getLocForEndOfToken(PrevCaptureLoc), C->Loc));
        continue;
      }

      // C++11 [expr.prim.lambda]p8:
      //   If a lambda-capture includes a capture-default that is =, the 
      //   lambda-capture shall not contain this [...].
      if (Intro.Default == LCD_ByCopy) {
        Diag(C->Loc, diag::err_this_capture_with_copy_default)
          << FixItHint::CreateRemoval(
               SourceRange(PP.getLocForEndOfToken(PrevCaptureLoc), C->Loc));
        continue;
      }

      // C++11 [expr.prim.lambda]p12:
      //   If this is captured by a local lambda expression, its nearest
      //   enclosing function shall be a non-static member function.
      QualType ThisCaptureType = getCurrentThisType();
      if (ThisCaptureType.isNull()) {
        Diag(C->Loc, diag::err_this_capture) << true;
        continue;
      }
      
      CheckCXXThisCapture(C->Loc, /*Explicit=*/true);
      continue;
    }

    assert(C->Id && "missing identifier for capture");

    // C++11 [expr.prim.lambda]p8:
    //   If a lambda-capture includes a capture-default that is &, the 
    //   identifiers in the lambda-capture shall not be preceded by &.
    //   If a lambda-capture includes a capture-default that is =, [...]
    //   each identifier it contains shall be preceded by &.
    if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
      Diag(C->Loc, diag::err_reference_capture_with_reference_default)
        << FixItHint::CreateRemoval(
             SourceRange(PP.getLocForEndOfToken(PrevCaptureLoc), C->Loc));
      continue;
    } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
      Diag(C->Loc, diag::err_copy_capture_with_copy_default)
        << FixItHint::CreateRemoval(
             SourceRange(PP.getLocForEndOfToken(PrevCaptureLoc), C->Loc));
      continue;
    }

    DeclarationNameInfo Name(C->Id, C->Loc);
    LookupResult R(*this, Name, LookupOrdinaryName);
    LookupName(R, CurScope);
    if (R.isAmbiguous())
      continue;
    if (R.empty()) {
      // FIXME: Disable corrections that would add qualification?
      CXXScopeSpec ScopeSpec;
      DeclFilterCCC<VarDecl> Validator;
      if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
        continue;
    }

    // C++11 [expr.prim.lambda]p10:
    //   The identifiers in a capture-list are looked up using the usual rules
    //   for unqualified name lookup (3.4.1); each such lookup shall find a 
    //   variable with automatic storage duration declared in the reaching 
    //   scope of the local lambda expression.
    // 
    // Note that the 'reaching scope' check happens in tryCaptureVariable().
    VarDecl *Var = R.getAsSingle<VarDecl>();
    if (!Var) {
      Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
      continue;
    }

    // Ignore invalid decls; they'll just confuse the code later.
    if (Var->isInvalidDecl())
      continue;

    if (!Var->hasLocalStorage()) {
      Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
      Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
      continue;
    }

    // C++11 [expr.prim.lambda]p8:
    //   An identifier or this shall not appear more than once in a 
    //   lambda-capture.
    if (LSI->isCaptured(Var)) {
      Diag(C->Loc, diag::err_capture_more_than_once) 
        << C->Id
        << SourceRange(LSI->getCapture(Var).getLocation())
        << FixItHint::CreateRemoval(
             SourceRange(PP.getLocForEndOfToken(PrevCaptureLoc), C->Loc));
      continue;
    }

    // C++11 [expr.prim.lambda]p23:
    //   A capture followed by an ellipsis is a pack expansion (14.5.3).
    SourceLocation EllipsisLoc;
    if (C->EllipsisLoc.isValid()) {
      if (Var->isParameterPack()) {
        EllipsisLoc = C->EllipsisLoc;
      } else {
        Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
          << SourceRange(C->Loc);
        
        // Just ignore the ellipsis.
      }
    } else if (Var->isParameterPack()) {
      ContainsUnexpandedParameterPack = true;
    }
    
    TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
                                                 TryCapture_ExplicitByVal;
    tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
  }
  finishLambdaExplicitCaptures(LSI);

  LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;

  // Add lambda parameters into scope.
  addLambdaParameters(Method, CurScope);

  // Enter a new evaluation context to insulate the lambda from any
  // cleanups from the enclosing full-expression.
  PushExpressionEvaluationContext(PotentiallyEvaluated);  
}

void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
                            bool IsInstantiation) {
  // Leave the expression-evaluation context.
  DiscardCleanupsInEvaluationContext();
  PopExpressionEvaluationContext();

  // Leave the context of the lambda.
  if (!IsInstantiation)
    PopDeclContext();

  // Finalize the lambda.
  LambdaScopeInfo *LSI = getCurLambda();
  CXXRecordDecl *Class = LSI->Lambda;
  Class->setInvalidDecl();
  SmallVector<Decl*, 4> Fields;
  for (RecordDecl::field_iterator i = Class->field_begin(),
                                  e = Class->field_end(); i != e; ++i)
    Fields.push_back(*i);
  ActOnFields(0, Class->getLocation(), Class, Fields, 
              SourceLocation(), SourceLocation(), 0);
  CheckCompletedCXXClass(Class);

  PopFunctionScopeInfo();
}

/// \brief Add a lambda's conversion to function pointer, as described in
/// C++11 [expr.prim.lambda]p6.
static void addFunctionPointerConversion(Sema &S, 
                                         SourceRange IntroducerRange,
                                         CXXRecordDecl *Class,
                                         CXXMethodDecl *CallOperator) {
  // Add the conversion to function pointer.
  const FunctionProtoType *Proto
    = CallOperator->getType()->getAs<FunctionProtoType>(); 
  QualType FunctionPtrTy;
  QualType FunctionTy;
  {
    FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo();
    ExtInfo.TypeQuals = 0;
    FunctionTy =
      S.Context.getFunctionType(Proto->getResultType(),
                                ArrayRef<QualType>(Proto->arg_type_begin(),
                                                   Proto->getNumArgs()),
                                ExtInfo);
    FunctionPtrTy = S.Context.getPointerType(FunctionTy);
  }
  
  FunctionProtoType::ExtProtoInfo ExtInfo;
  ExtInfo.TypeQuals = Qualifiers::Const;
  QualType ConvTy =
    S.Context.getFunctionType(FunctionPtrTy, ArrayRef<QualType>(), ExtInfo);
  
  SourceLocation Loc = IntroducerRange.getBegin();
  DeclarationName Name
    = S.Context.DeclarationNames.getCXXConversionFunctionName(
        S.Context.getCanonicalType(FunctionPtrTy));
  DeclarationNameLoc NameLoc;
  NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(FunctionPtrTy,
                                                               Loc);
  CXXConversionDecl *Conversion 
    = CXXConversionDecl::Create(S.Context, Class, Loc, 
                                DeclarationNameInfo(Name, Loc, NameLoc),
                                ConvTy, 
                                S.Context.getTrivialTypeSourceInfo(ConvTy, 
                                                                   Loc),
                                /*isInline=*/false, /*isExplicit=*/false,
                                /*isConstexpr=*/false, 
                                CallOperator->getBody()->getLocEnd());
  Conversion->setAccess(AS_public);
  Conversion->setImplicit(true);
  Class->addDecl(Conversion);
  
  // Add a non-static member function "__invoke" that will be the result of
  // the conversion.
  Name = &S.Context.Idents.get("__invoke");
  CXXMethodDecl *Invoke
    = CXXMethodDecl::Create(S.Context, Class, Loc, 
                            DeclarationNameInfo(Name, Loc), FunctionTy, 
                            CallOperator->getTypeSourceInfo(),
                            SC_Static, /*IsInline=*/true,
                            /*IsConstexpr=*/false, 
                            CallOperator->getBody()->getLocEnd());
  SmallVector<ParmVarDecl *, 4> InvokeParams;
  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
    ParmVarDecl *From = CallOperator->getParamDecl(I);
    InvokeParams.push_back(ParmVarDecl::Create(S.Context, Invoke,
                                               From->getLocStart(),
                                               From->getLocation(),
                                               From->getIdentifier(),
                                               From->getType(),
                                               From->getTypeSourceInfo(),
                                               From->getStorageClass(),
                                               /*DefaultArg=*/0));
  }
  Invoke->setParams(InvokeParams);
  Invoke->setAccess(AS_private);
  Invoke->setImplicit(true);
  Class->addDecl(Invoke);
}

/// \brief Add a lambda's conversion to block pointer.
static void addBlockPointerConversion(Sema &S, 
                                      SourceRange IntroducerRange,
                                      CXXRecordDecl *Class,
                                      CXXMethodDecl *CallOperator) {
  const FunctionProtoType *Proto
    = CallOperator->getType()->getAs<FunctionProtoType>(); 
  QualType BlockPtrTy;
  {
    FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo();
    ExtInfo.TypeQuals = 0;
    QualType FunctionTy
      = S.Context.getFunctionType(Proto->getResultType(),
                                  ArrayRef<QualType>(Proto->arg_type_begin(),
                                                     Proto->getNumArgs()),
                                  ExtInfo);
    BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
  }
  
  FunctionProtoType::ExtProtoInfo ExtInfo;
  ExtInfo.TypeQuals = Qualifiers::Const;
  QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, ArrayRef<QualType>(),
                                              ExtInfo);
  
  SourceLocation Loc = IntroducerRange.getBegin();
  DeclarationName Name
    = S.Context.DeclarationNames.getCXXConversionFunctionName(
        S.Context.getCanonicalType(BlockPtrTy));
  DeclarationNameLoc NameLoc;
  NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
  CXXConversionDecl *Conversion 
    = CXXConversionDecl::Create(S.Context, Class, Loc, 
                                DeclarationNameInfo(Name, Loc, NameLoc),
                                ConvTy, 
                                S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
                                /*isInline=*/false, /*isExplicit=*/false,
                                /*isConstexpr=*/false, 
                                CallOperator->getBody()->getLocEnd());
  Conversion->setAccess(AS_public);
  Conversion->setImplicit(true);
  Class->addDecl(Conversion);
}
         
ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, 
                                 Scope *CurScope, 
                                 bool IsInstantiation) {
  // Collect information from the lambda scope.
  SmallVector<LambdaExpr::Capture, 4> Captures;
  SmallVector<Expr *, 4> CaptureInits;
  LambdaCaptureDefault CaptureDefault;
  CXXRecordDecl *Class;
  CXXMethodDecl *CallOperator;
  SourceRange IntroducerRange;
  bool ExplicitParams;
  bool ExplicitResultType;
  bool LambdaExprNeedsCleanups;
  bool ContainsUnexpandedParameterPack;
  SmallVector<VarDecl *, 4> ArrayIndexVars;
  SmallVector<unsigned, 4> ArrayIndexStarts;
  {
    LambdaScopeInfo *LSI = getCurLambda();
    CallOperator = LSI->CallOperator;
    Class = LSI->Lambda;
    IntroducerRange = LSI->IntroducerRange;
    ExplicitParams = LSI->ExplicitParams;
    ExplicitResultType = !LSI->HasImplicitReturnType;
    LambdaExprNeedsCleanups = LSI->ExprNeedsCleanups;
    ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
    ArrayIndexVars.swap(LSI->ArrayIndexVars);
    ArrayIndexStarts.swap(LSI->ArrayIndexStarts);
    
    // Translate captures.
    for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
      LambdaScopeInfo::Capture From = LSI->Captures[I];
      assert(!From.isBlockCapture() && "Cannot capture __block variables");
      bool IsImplicit = I >= LSI->NumExplicitCaptures;

      // Handle 'this' capture.
      if (From.isThisCapture()) {
        Captures.push_back(LambdaExpr::Capture(From.getLocation(),
                                               IsImplicit,
                                               LCK_This));
        CaptureInits.push_back(new (Context) CXXThisExpr(From.getLocation(),
                                                         getCurrentThisType(),
                                                         /*isImplicit=*/true));
        continue;
      }

      VarDecl *Var = From.getVariable();
      LambdaCaptureKind Kind = From.isCopyCapture()? LCK_ByCopy : LCK_ByRef;
      Captures.push_back(LambdaExpr::Capture(From.getLocation(), IsImplicit, 
                                             Kind, Var, From.getEllipsisLoc()));
      CaptureInits.push_back(From.getCopyExpr());
    }

    switch (LSI->ImpCaptureStyle) {
    case CapturingScopeInfo::ImpCap_None:
      CaptureDefault = LCD_None;
      break;

    case CapturingScopeInfo::ImpCap_LambdaByval:
      CaptureDefault = LCD_ByCopy;
      break;

    case CapturingScopeInfo::ImpCap_CapturedRegion:
    case CapturingScopeInfo::ImpCap_LambdaByref:
      CaptureDefault = LCD_ByRef;
      break;

    case CapturingScopeInfo::ImpCap_Block:
      llvm_unreachable("block capture in lambda");
      break;
    }

    // C++11 [expr.prim.lambda]p4:
    //   If a lambda-expression does not include a
    //   trailing-return-type, it is as if the trailing-return-type
    //   denotes the following type:
    // FIXME: Assumes current resolution to core issue 975.
    if (LSI->HasImplicitReturnType) {
      deduceClosureReturnType(*LSI);

      //   - if there are no return statements in the
      //     compound-statement, or all return statements return
      //     either an expression of type void or no expression or
      //     braced-init-list, the type void;
      if (LSI->ReturnType.isNull()) {
        LSI->ReturnType = Context.VoidTy;
      }

      // Create a function type with the inferred return type.
      const FunctionProtoType *Proto
        = CallOperator->getType()->getAs<FunctionProtoType>();
      QualType FunctionTy
        = Context.getFunctionType(LSI->ReturnType,
                                  ArrayRef<QualType>(Proto->arg_type_begin(),
                                                     Proto->getNumArgs()),
                                  Proto->getExtProtoInfo());
      CallOperator->setType(FunctionTy);
    }

    // C++ [expr.prim.lambda]p7:
    //   The lambda-expression's compound-statement yields the
    //   function-body (8.4) of the function call operator [...].
    ActOnFinishFunctionBody(CallOperator, Body, IsInstantiation);
    CallOperator->setLexicalDeclContext(Class);
    Class->addDecl(CallOperator);
    PopExpressionEvaluationContext();

    // C++11 [expr.prim.lambda]p6:
    //   The closure type for a lambda-expression with no lambda-capture
    //   has a public non-virtual non-explicit const conversion function
    //   to pointer to function having the same parameter and return
    //   types as the closure type's function call operator.
    if (Captures.empty() && CaptureDefault == LCD_None)
      addFunctionPointerConversion(*this, IntroducerRange, Class,
                                   CallOperator);

    // Objective-C++:
    //   The closure type for a lambda-expression has a public non-virtual
    //   non-explicit const conversion function to a block pointer having the
    //   same parameter and return types as the closure type's function call
    //   operator.
    if (getLangOpts().Blocks && getLangOpts().ObjC1)
      addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
    
    // Finalize the lambda class.
    SmallVector<Decl*, 4> Fields;
    for (RecordDecl::field_iterator i = Class->field_begin(),
                                    e = Class->field_end(); i != e; ++i)
      Fields.push_back(*i);
    ActOnFields(0, Class->getLocation(), Class, Fields, 
                SourceLocation(), SourceLocation(), 0);
    CheckCompletedCXXClass(Class);
  }

  if (LambdaExprNeedsCleanups)
    ExprNeedsCleanups = true;
  
  LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange, 
                                          CaptureDefault, Captures, 
                                          ExplicitParams, ExplicitResultType,
                                          CaptureInits, ArrayIndexVars, 
                                          ArrayIndexStarts, Body->getLocEnd(),
                                          ContainsUnexpandedParameterPack);

  // C++11 [expr.prim.lambda]p2:
  //   A lambda-expression shall not appear in an unevaluated operand
  //   (Clause 5).
  if (!CurContext->isDependentContext()) {
    switch (ExprEvalContexts.back().Context) {
    case Unevaluated:
    case UnevaluatedAbstract:
      // We don't actually diagnose this case immediately, because we
      // could be within a context where we might find out later that
      // the expression is potentially evaluated (e.g., for typeid).
      ExprEvalContexts.back().Lambdas.push_back(Lambda);
      break;

    case ConstantEvaluated:
    case PotentiallyEvaluated:
    case PotentiallyEvaluatedIfUsed:
      break;
    }
  }
  
  return MaybeBindToTemporary(Lambda);
}

ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
                                               SourceLocation ConvLocation,
                                               CXXConversionDecl *Conv,
                                               Expr *Src) {
  // Make sure that the lambda call operator is marked used.
  CXXRecordDecl *Lambda = Conv->getParent();
  CXXMethodDecl *CallOperator 
    = cast<CXXMethodDecl>(
        Lambda->lookup(
          Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
  CallOperator->setReferenced();
  CallOperator->setUsed();

  ExprResult Init = PerformCopyInitialization(
                      InitializedEntity::InitializeBlock(ConvLocation, 
                                                         Src->getType(), 
                                                         /*NRVO=*/false),
                      CurrentLocation, Src);
  if (!Init.isInvalid())
    Init = ActOnFinishFullExpr(Init.take());
  
  if (Init.isInvalid())
    return ExprError();
  
  // Create the new block to be returned.
  BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);

  // Set the type information.
  Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
  Block->setIsVariadic(CallOperator->isVariadic());
  Block->setBlockMissingReturnType(false);

  // Add parameters.
  SmallVector<ParmVarDecl *, 4> BlockParams;
  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
    ParmVarDecl *From = CallOperator->getParamDecl(I);
    BlockParams.push_back(ParmVarDecl::Create(Context, Block,
                                              From->getLocStart(),
                                              From->getLocation(),
                                              From->getIdentifier(),
                                              From->getType(),
                                              From->getTypeSourceInfo(),
                                              From->getStorageClass(),
                                              /*DefaultArg=*/0));
  }
  Block->setParams(BlockParams);

  Block->setIsConversionFromLambda(true);

  // Add capture. The capture uses a fake variable, which doesn't correspond
  // to any actual memory location. However, the initializer copy-initializes
  // the lambda object.
  TypeSourceInfo *CapVarTSI =
      Context.getTrivialTypeSourceInfo(Src->getType());
  VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
                                    ConvLocation, 0,
                                    Src->getType(), CapVarTSI,
                                    SC_None);
  BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
                             /*Nested=*/false, /*Copy=*/Init.take());
  Block->setCaptures(Context, &Capture, &Capture + 1, 
                     /*CapturesCXXThis=*/false);

  // Add a fake function body to the block. IR generation is responsible
  // for filling in the actual body, which cannot be expressed as an AST.
  Block->setBody(new (Context) CompoundStmt(ConvLocation));

  // Create the block literal expression.
  Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
  ExprCleanupObjects.push_back(Block);
  ExprNeedsCleanups = true;

  return BuildBlock;
}