aboutsummaryrefslogtreecommitdiff
path: root/lib/Sema/SemaDeclCXX.cpp
blob: e6a131a0761c868648f961f5df1e673d452c8009 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis for C++ declarations.
//
//===----------------------------------------------------------------------===//

#include "clang/Sema/SemaInternal.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeOrdering.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/CXXFieldCollector.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include <map>
#include <set>

using namespace clang;

//===----------------------------------------------------------------------===//
// CheckDefaultArgumentVisitor
//===----------------------------------------------------------------------===//

namespace {
  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
  /// the default argument of a parameter to determine whether it
  /// contains any ill-formed subexpressions. For example, this will
  /// diagnose the use of local variables or parameters within the
  /// default argument expression.
  class CheckDefaultArgumentVisitor
    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
    Expr *DefaultArg;
    Sema *S;

  public:
    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
      : DefaultArg(defarg), S(s) {}

    bool VisitExpr(Expr *Node);
    bool VisitDeclRefExpr(DeclRefExpr *DRE);
    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
    bool VisitLambdaExpr(LambdaExpr *Lambda);
    bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
  };

  /// VisitExpr - Visit all of the children of this expression.
  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
    bool IsInvalid = false;
    for (Stmt::child_range I = Node->children(); I; ++I)
      IsInvalid |= Visit(*I);
    return IsInvalid;
  }

  /// VisitDeclRefExpr - Visit a reference to a declaration, to
  /// determine whether this declaration can be used in the default
  /// argument expression.
  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
    NamedDecl *Decl = DRE->getDecl();
    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
      // C++ [dcl.fct.default]p9
      //   Default arguments are evaluated each time the function is
      //   called. The order of evaluation of function arguments is
      //   unspecified. Consequently, parameters of a function shall not
      //   be used in default argument expressions, even if they are not
      //   evaluated. Parameters of a function declared before a default
      //   argument expression are in scope and can hide namespace and
      //   class member names.
      return S->Diag(DRE->getLocStart(),
                     diag::err_param_default_argument_references_param)
         << Param->getDeclName() << DefaultArg->getSourceRange();
    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
      // C++ [dcl.fct.default]p7
      //   Local variables shall not be used in default argument
      //   expressions.
      if (VDecl->isLocalVarDecl())
        return S->Diag(DRE->getLocStart(),
                       diag::err_param_default_argument_references_local)
          << VDecl->getDeclName() << DefaultArg->getSourceRange();
    }

    return false;
  }

  /// VisitCXXThisExpr - Visit a C++ "this" expression.
  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
    // C++ [dcl.fct.default]p8:
    //   The keyword this shall not be used in a default argument of a
    //   member function.
    return S->Diag(ThisE->getLocStart(),
                   diag::err_param_default_argument_references_this)
               << ThisE->getSourceRange();
  }

  bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
    bool Invalid = false;
    for (PseudoObjectExpr::semantics_iterator
           i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
      Expr *E = *i;

      // Look through bindings.
      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
        E = OVE->getSourceExpr();
        assert(E && "pseudo-object binding without source expression?");
      }

      Invalid |= Visit(E);
    }
    return Invalid;
  }

  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
    // C++11 [expr.lambda.prim]p13:
    //   A lambda-expression appearing in a default argument shall not
    //   implicitly or explicitly capture any entity.
    if (Lambda->capture_begin() == Lambda->capture_end())
      return false;

    return S->Diag(Lambda->getLocStart(), 
                   diag::err_lambda_capture_default_arg);
  }
}

void
Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
                                                 const CXXMethodDecl *Method) {
  // If we have an MSAny spec already, don't bother.
  if (!Method || ComputedEST == EST_MSAny)
    return;

  const FunctionProtoType *Proto
    = Method->getType()->getAs<FunctionProtoType>();
  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
  if (!Proto)
    return;

  ExceptionSpecificationType EST = Proto->getExceptionSpecType();

  // If this function can throw any exceptions, make a note of that.
  if (EST == EST_MSAny || EST == EST_None) {
    ClearExceptions();
    ComputedEST = EST;
    return;
  }

  // FIXME: If the call to this decl is using any of its default arguments, we
  // need to search them for potentially-throwing calls.

  // If this function has a basic noexcept, it doesn't affect the outcome.
  if (EST == EST_BasicNoexcept)
    return;

  // If we have a throw-all spec at this point, ignore the function.
  if (ComputedEST == EST_None)
    return;

  // If we're still at noexcept(true) and there's a nothrow() callee,
  // change to that specification.
  if (EST == EST_DynamicNone) {
    if (ComputedEST == EST_BasicNoexcept)
      ComputedEST = EST_DynamicNone;
    return;
  }

  // Check out noexcept specs.
  if (EST == EST_ComputedNoexcept) {
    FunctionProtoType::NoexceptResult NR =
        Proto->getNoexceptSpec(Self->Context);
    assert(NR != FunctionProtoType::NR_NoNoexcept &&
           "Must have noexcept result for EST_ComputedNoexcept.");
    assert(NR != FunctionProtoType::NR_Dependent &&
           "Should not generate implicit declarations for dependent cases, "
           "and don't know how to handle them anyway.");

    // noexcept(false) -> no spec on the new function
    if (NR == FunctionProtoType::NR_Throw) {
      ClearExceptions();
      ComputedEST = EST_None;
    }
    // noexcept(true) won't change anything either.
    return;
  }

  assert(EST == EST_Dynamic && "EST case not considered earlier.");
  assert(ComputedEST != EST_None &&
         "Shouldn't collect exceptions when throw-all is guaranteed.");
  ComputedEST = EST_Dynamic;
  // Record the exceptions in this function's exception specification.
  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
                                          EEnd = Proto->exception_end();
       E != EEnd; ++E)
    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
      Exceptions.push_back(*E);
}

void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
  if (!E || ComputedEST == EST_MSAny)
    return;

  // FIXME:
  //
  // C++0x [except.spec]p14:
  //   [An] implicit exception-specification specifies the type-id T if and
  // only if T is allowed by the exception-specification of a function directly
  // invoked by f's implicit definition; f shall allow all exceptions if any
  // function it directly invokes allows all exceptions, and f shall allow no
  // exceptions if every function it directly invokes allows no exceptions.
  //
  // Note in particular that if an implicit exception-specification is generated
  // for a function containing a throw-expression, that specification can still
  // be noexcept(true).
  //
  // Note also that 'directly invoked' is not defined in the standard, and there
  // is no indication that we should only consider potentially-evaluated calls.
  //
  // Ultimately we should implement the intent of the standard: the exception
  // specification should be the set of exceptions which can be thrown by the
  // implicit definition. For now, we assume that any non-nothrow expression can
  // throw any exception.

  if (Self->canThrow(E))
    ComputedEST = EST_None;
}

bool
Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
                              SourceLocation EqualLoc) {
  if (RequireCompleteType(Param->getLocation(), Param->getType(),
                          diag::err_typecheck_decl_incomplete_type)) {
    Param->setInvalidDecl();
    return true;
  }

  // C++ [dcl.fct.default]p5
  //   A default argument expression is implicitly converted (clause
  //   4) to the parameter type. The default argument expression has
  //   the same semantic constraints as the initializer expression in
  //   a declaration of a variable of the parameter type, using the
  //   copy-initialization semantics (8.5).
  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
                                                                    Param);
  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
                                                           EqualLoc);
  InitializationSequence InitSeq(*this, Entity, Kind, Arg);
  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
  if (Result.isInvalid())
    return true;
  Arg = Result.takeAs<Expr>();

  CheckCompletedExpr(Arg, EqualLoc);
  Arg = MaybeCreateExprWithCleanups(Arg);

  // Okay: add the default argument to the parameter
  Param->setDefaultArg(Arg);

  // We have already instantiated this parameter; provide each of the 
  // instantiations with the uninstantiated default argument.
  UnparsedDefaultArgInstantiationsMap::iterator InstPos
    = UnparsedDefaultArgInstantiations.find(Param);
  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
    
    // We're done tracking this parameter's instantiations.
    UnparsedDefaultArgInstantiations.erase(InstPos);
  }
  
  return false;
}

/// ActOnParamDefaultArgument - Check whether the default argument
/// provided for a function parameter is well-formed. If so, attach it
/// to the parameter declaration.
void
Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
                                Expr *DefaultArg) {
  if (!param || !DefaultArg)
    return;

  ParmVarDecl *Param = cast<ParmVarDecl>(param);
  UnparsedDefaultArgLocs.erase(Param);

  // Default arguments are only permitted in C++
  if (!getLangOpts().CPlusPlus) {
    Diag(EqualLoc, diag::err_param_default_argument)
      << DefaultArg->getSourceRange();
    Param->setInvalidDecl();
    return;
  }

  // Check for unexpanded parameter packs.
  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
    Param->setInvalidDecl();
    return;
  }    
      
  // Check that the default argument is well-formed
  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
  if (DefaultArgChecker.Visit(DefaultArg)) {
    Param->setInvalidDecl();
    return;
  }

  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
}

/// ActOnParamUnparsedDefaultArgument - We've seen a default
/// argument for a function parameter, but we can't parse it yet
/// because we're inside a class definition. Note that this default
/// argument will be parsed later.
void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
                                             SourceLocation EqualLoc,
                                             SourceLocation ArgLoc) {
  if (!param)
    return;

  ParmVarDecl *Param = cast<ParmVarDecl>(param);
  if (Param)
    Param->setUnparsedDefaultArg();

  UnparsedDefaultArgLocs[Param] = ArgLoc;
}

/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
/// the default argument for the parameter param failed.
void Sema::ActOnParamDefaultArgumentError(Decl *param) {
  if (!param)
    return;

  ParmVarDecl *Param = cast<ParmVarDecl>(param);

  Param->setInvalidDecl();

  UnparsedDefaultArgLocs.erase(Param);
}

/// CheckExtraCXXDefaultArguments - Check for any extra default
/// arguments in the declarator, which is not a function declaration
/// or definition and therefore is not permitted to have default
/// arguments. This routine should be invoked for every declarator
/// that is not a function declaration or definition.
void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
  // C++ [dcl.fct.default]p3
  //   A default argument expression shall be specified only in the
  //   parameter-declaration-clause of a function declaration or in a
  //   template-parameter (14.1). It shall not be specified for a
  //   parameter pack. If it is specified in a
  //   parameter-declaration-clause, it shall not occur within a
  //   declarator or abstract-declarator of a parameter-declaration.
  bool MightBeFunction = D.isFunctionDeclarationContext();
  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
    DeclaratorChunk &chunk = D.getTypeObject(i);
    if (chunk.Kind == DeclaratorChunk::Function) {
      if (MightBeFunction) {
        // This is a function declaration. It can have default arguments, but
        // keep looking in case its return type is a function type with default
        // arguments.
        MightBeFunction = false;
        continue;
      }
      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
        ParmVarDecl *Param =
          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
        if (Param->hasUnparsedDefaultArg()) {
          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
            << SourceRange((*Toks)[1].getLocation(),
                           Toks->back().getLocation());
          delete Toks;
          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
        } else if (Param->getDefaultArg()) {
          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
            << Param->getDefaultArg()->getSourceRange();
          Param->setDefaultArg(0);
        }
      }
    } else if (chunk.Kind != DeclaratorChunk::Paren) {
      MightBeFunction = false;
    }
  }
}

/// MergeCXXFunctionDecl - Merge two declarations of the same C++
/// function, once we already know that they have the same
/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
/// error, false otherwise.
bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
                                Scope *S) {
  bool Invalid = false;

  // C++ [dcl.fct.default]p4:
  //   For non-template functions, default arguments can be added in
  //   later declarations of a function in the same
  //   scope. Declarations in different scopes have completely
  //   distinct sets of default arguments. That is, declarations in
  //   inner scopes do not acquire default arguments from
  //   declarations in outer scopes, and vice versa. In a given
  //   function declaration, all parameters subsequent to a
  //   parameter with a default argument shall have default
  //   arguments supplied in this or previous declarations. A
  //   default argument shall not be redefined by a later
  //   declaration (not even to the same value).
  //
  // C++ [dcl.fct.default]p6:
  //   Except for member functions of class templates, the default arguments 
  //   in a member function definition that appears outside of the class 
  //   definition are added to the set of default arguments provided by the 
  //   member function declaration in the class definition.
  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
    ParmVarDecl *OldParam = Old->getParamDecl(p);
    ParmVarDecl *NewParam = New->getParamDecl(p);

    bool OldParamHasDfl = OldParam->hasDefaultArg();
    bool NewParamHasDfl = NewParam->hasDefaultArg();

    NamedDecl *ND = Old;
    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
      // Ignore default parameters of old decl if they are not in
      // the same scope.
      OldParamHasDfl = false;

    if (OldParamHasDfl && NewParamHasDfl) {

      unsigned DiagDefaultParamID =
        diag::err_param_default_argument_redefinition;

      // MSVC accepts that default parameters be redefined for member functions
      // of template class. The new default parameter's value is ignored.
      Invalid = true;
      if (getLangOpts().MicrosoftExt) {
        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
        if (MD && MD->getParent()->getDescribedClassTemplate()) {
          // Merge the old default argument into the new parameter.
          NewParam->setHasInheritedDefaultArg();
          if (OldParam->hasUninstantiatedDefaultArg())
            NewParam->setUninstantiatedDefaultArg(
                                      OldParam->getUninstantiatedDefaultArg());
          else
            NewParam->setDefaultArg(OldParam->getInit());
          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
          Invalid = false;
        }
      }
      
      // FIXME: If we knew where the '=' was, we could easily provide a fix-it 
      // hint here. Alternatively, we could walk the type-source information
      // for NewParam to find the last source location in the type... but it
      // isn't worth the effort right now. This is the kind of test case that
      // is hard to get right:
      //   int f(int);
      //   void g(int (*fp)(int) = f);
      //   void g(int (*fp)(int) = &f);
      Diag(NewParam->getLocation(), DiagDefaultParamID)
        << NewParam->getDefaultArgRange();
      
      // Look for the function declaration where the default argument was
      // actually written, which may be a declaration prior to Old.
      for (FunctionDecl *Older = Old->getPreviousDecl();
           Older; Older = Older->getPreviousDecl()) {
        if (!Older->getParamDecl(p)->hasDefaultArg())
          break;
        
        OldParam = Older->getParamDecl(p);
      }        
      
      Diag(OldParam->getLocation(), diag::note_previous_definition)
        << OldParam->getDefaultArgRange();
    } else if (OldParamHasDfl) {
      // Merge the old default argument into the new parameter.
      // It's important to use getInit() here;  getDefaultArg()
      // strips off any top-level ExprWithCleanups.
      NewParam->setHasInheritedDefaultArg();
      if (OldParam->hasUninstantiatedDefaultArg())
        NewParam->setUninstantiatedDefaultArg(
                                      OldParam->getUninstantiatedDefaultArg());
      else
        NewParam->setDefaultArg(OldParam->getInit());
    } else if (NewParamHasDfl) {
      if (New->getDescribedFunctionTemplate()) {
        // Paragraph 4, quoted above, only applies to non-template functions.
        Diag(NewParam->getLocation(),
             diag::err_param_default_argument_template_redecl)
          << NewParam->getDefaultArgRange();
        Diag(Old->getLocation(), diag::note_template_prev_declaration)
          << false;
      } else if (New->getTemplateSpecializationKind()
                   != TSK_ImplicitInstantiation &&
                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
        // C++ [temp.expr.spec]p21:
        //   Default function arguments shall not be specified in a declaration
        //   or a definition for one of the following explicit specializations:
        //     - the explicit specialization of a function template;
        //     - the explicit specialization of a member function template;
        //     - the explicit specialization of a member function of a class 
        //       template where the class template specialization to which the
        //       member function specialization belongs is implicitly 
        //       instantiated.
        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
          << New->getDeclName()
          << NewParam->getDefaultArgRange();
      } else if (New->getDeclContext()->isDependentContext()) {
        // C++ [dcl.fct.default]p6 (DR217):
        //   Default arguments for a member function of a class template shall 
        //   be specified on the initial declaration of the member function 
        //   within the class template.
        //
        // Reading the tea leaves a bit in DR217 and its reference to DR205 
        // leads me to the conclusion that one cannot add default function 
        // arguments for an out-of-line definition of a member function of a 
        // dependent type.
        int WhichKind = 2;
        if (CXXRecordDecl *Record 
              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
          if (Record->getDescribedClassTemplate())
            WhichKind = 0;
          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
            WhichKind = 1;
          else
            WhichKind = 2;
        }
        
        Diag(NewParam->getLocation(), 
             diag::err_param_default_argument_member_template_redecl)
          << WhichKind
          << NewParam->getDefaultArgRange();
      }
    }
  }

  // DR1344: If a default argument is added outside a class definition and that
  // default argument makes the function a special member function, the program
  // is ill-formed. This can only happen for constructors.
  if (isa<CXXConstructorDecl>(New) &&
      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
    if (NewSM != OldSM) {
      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
      assert(NewParam->hasDefaultArg());
      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
        << NewParam->getDefaultArgRange() << NewSM;
      Diag(Old->getLocation(), diag::note_previous_declaration);
    }
  }

  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
  // template has a constexpr specifier then all its declarations shall
  // contain the constexpr specifier.
  if (New->isConstexpr() != Old->isConstexpr()) {
    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
      << New << New->isConstexpr();
    Diag(Old->getLocation(), diag::note_previous_declaration);
    Invalid = true;
  }

  if (CheckEquivalentExceptionSpec(Old, New))
    Invalid = true;

  return Invalid;
}

/// \brief Merge the exception specifications of two variable declarations.
///
/// This is called when there's a redeclaration of a VarDecl. The function
/// checks if the redeclaration might have an exception specification and
/// validates compatibility and merges the specs if necessary.
void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
  // Shortcut if exceptions are disabled.
  if (!getLangOpts().CXXExceptions)
    return;

  assert(Context.hasSameType(New->getType(), Old->getType()) &&
         "Should only be called if types are otherwise the same.");

  QualType NewType = New->getType();
  QualType OldType = Old->getType();

  // We're only interested in pointers and references to functions, as well
  // as pointers to member functions.
  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
    NewType = R->getPointeeType();
    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
    NewType = P->getPointeeType();
    OldType = OldType->getAs<PointerType>()->getPointeeType();
  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
    NewType = M->getPointeeType();
    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
  }

  if (!NewType->isFunctionProtoType())
    return;

  // There's lots of special cases for functions. For function pointers, system
  // libraries are hopefully not as broken so that we don't need these
  // workarounds.
  if (CheckEquivalentExceptionSpec(
        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
    New->setInvalidDecl();
  }
}

/// CheckCXXDefaultArguments - Verify that the default arguments for a
/// function declaration are well-formed according to C++
/// [dcl.fct.default].
void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
  unsigned NumParams = FD->getNumParams();
  unsigned p;

  // Find first parameter with a default argument
  for (p = 0; p < NumParams; ++p) {
    ParmVarDecl *Param = FD->getParamDecl(p);
    if (Param->hasDefaultArg())
      break;
  }

  // C++ [dcl.fct.default]p4:
  //   In a given function declaration, all parameters
  //   subsequent to a parameter with a default argument shall
  //   have default arguments supplied in this or previous
  //   declarations. A default argument shall not be redefined
  //   by a later declaration (not even to the same value).
  unsigned LastMissingDefaultArg = 0;
  for (; p < NumParams; ++p) {
    ParmVarDecl *Param = FD->getParamDecl(p);
    if (!Param->hasDefaultArg()) {
      if (Param->isInvalidDecl())
        /* We already complained about this parameter. */;
      else if (Param->getIdentifier())
        Diag(Param->getLocation(),
             diag::err_param_default_argument_missing_name)
          << Param->getIdentifier();
      else
        Diag(Param->getLocation(),
             diag::err_param_default_argument_missing);

      LastMissingDefaultArg = p;
    }
  }

  if (LastMissingDefaultArg > 0) {
    // Some default arguments were missing. Clear out all of the
    // default arguments up to (and including) the last missing
    // default argument, so that we leave the function parameters
    // in a semantically valid state.
    for (p = 0; p <= LastMissingDefaultArg; ++p) {
      ParmVarDecl *Param = FD->getParamDecl(p);
      if (Param->hasDefaultArg()) {
        Param->setDefaultArg(0);
      }
    }
  }
}

// CheckConstexprParameterTypes - Check whether a function's parameter types
// are all literal types. If so, return true. If not, produce a suitable
// diagnostic and return false.
static bool CheckConstexprParameterTypes(Sema &SemaRef,
                                         const FunctionDecl *FD) {
  unsigned ArgIndex = 0;
  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
    SourceLocation ParamLoc = PD->getLocation();
    if (!(*i)->isDependentType() &&
        SemaRef.RequireLiteralType(ParamLoc, *i,
                                   diag::err_constexpr_non_literal_param,
                                   ArgIndex+1, PD->getSourceRange(),
                                   isa<CXXConstructorDecl>(FD)))
      return false;
  }
  return true;
}

/// \brief Get diagnostic %select index for tag kind for
/// record diagnostic message.
/// WARNING: Indexes apply to particular diagnostics only!
///
/// \returns diagnostic %select index.
static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
  switch (Tag) {
  case TTK_Struct: return 0;
  case TTK_Interface: return 1;
  case TTK_Class:  return 2;
  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
  }
}

// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
// the requirements of a constexpr function definition or a constexpr
// constructor definition. If so, return true. If not, produce appropriate
// diagnostics and return false.
//
// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
  if (MD && MD->isInstance()) {
    // C++11 [dcl.constexpr]p4:
    //  The definition of a constexpr constructor shall satisfy the following
    //  constraints:
    //  - the class shall not have any virtual base classes;
    const CXXRecordDecl *RD = MD->getParent();
    if (RD->getNumVBases()) {
      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
        << isa<CXXConstructorDecl>(NewFD)
        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
             E = RD->vbases_end(); I != E; ++I)
        Diag(I->getLocStart(),
             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
      return false;
    }
  }

  if (!isa<CXXConstructorDecl>(NewFD)) {
    // C++11 [dcl.constexpr]p3:
    //  The definition of a constexpr function shall satisfy the following
    //  constraints:
    // - it shall not be virtual;
    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
    if (Method && Method->isVirtual()) {
      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);

      // If it's not obvious why this function is virtual, find an overridden
      // function which uses the 'virtual' keyword.
      const CXXMethodDecl *WrittenVirtual = Method;
      while (!WrittenVirtual->isVirtualAsWritten())
        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
      if (WrittenVirtual != Method)
        Diag(WrittenVirtual->getLocation(),
             diag::note_overridden_virtual_function);
      return false;
    }

    // - its return type shall be a literal type;
    QualType RT = NewFD->getResultType();
    if (!RT->isDependentType() &&
        RequireLiteralType(NewFD->getLocation(), RT,
                           diag::err_constexpr_non_literal_return))
      return false;
  }

  // - each of its parameter types shall be a literal type;
  if (!CheckConstexprParameterTypes(*this, NewFD))
    return false;

  return true;
}

/// Check the given declaration statement is legal within a constexpr function
/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
///
/// \return true if the body is OK (maybe only as an extension), false if we
///         have diagnosed a problem.
static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
                                   DeclStmt *DS, SourceLocation &Cxx1yLoc) {
  // C++11 [dcl.constexpr]p3 and p4:
  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
  //  contain only
  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
    switch ((*DclIt)->getKind()) {
    case Decl::StaticAssert:
    case Decl::Using:
    case Decl::UsingShadow:
    case Decl::UsingDirective:
    case Decl::UnresolvedUsingTypename:
    case Decl::UnresolvedUsingValue:
      //   - static_assert-declarations
      //   - using-declarations,
      //   - using-directives,
      continue;

    case Decl::Typedef:
    case Decl::TypeAlias: {
      //   - typedef declarations and alias-declarations that do not define
      //     classes or enumerations,
      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
        // Don't allow variably-modified types in constexpr functions.
        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
          << TL.getSourceRange() << TL.getType()
          << isa<CXXConstructorDecl>(Dcl);
        return false;
      }
      continue;
    }

    case Decl::Enum:
    case Decl::CXXRecord:
      // C++1y allows types to be defined, not just declared.
      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition())
        SemaRef.Diag(DS->getLocStart(),
                     SemaRef.getLangOpts().CPlusPlus1y
                       ? diag::warn_cxx11_compat_constexpr_type_definition
                       : diag::ext_constexpr_type_definition)
          << isa<CXXConstructorDecl>(Dcl);
      continue;

    case Decl::EnumConstant:
    case Decl::IndirectField:
    case Decl::ParmVar:
      // These can only appear with other declarations which are banned in
      // C++11 and permitted in C++1y, so ignore them.
      continue;

    case Decl::Var: {
      // C++1y [dcl.constexpr]p3 allows anything except:
      //   a definition of a variable of non-literal type or of static or
      //   thread storage duration or for which no initialization is performed.
      VarDecl *VD = cast<VarDecl>(*DclIt);
      if (VD->isThisDeclarationADefinition()) {
        if (VD->isStaticLocal()) {
          SemaRef.Diag(VD->getLocation(),
                       diag::err_constexpr_local_var_static)
            << isa<CXXConstructorDecl>(Dcl)
            << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
          return false;
        }
        if (!VD->getType()->isDependentType() &&
            SemaRef.RequireLiteralType(
              VD->getLocation(), VD->getType(),
              diag::err_constexpr_local_var_non_literal_type,
              isa<CXXConstructorDecl>(Dcl)))
          return false;
        if (!VD->hasInit()) {
          SemaRef.Diag(VD->getLocation(),
                       diag::err_constexpr_local_var_no_init)
            << isa<CXXConstructorDecl>(Dcl);
          return false;
        }
      }
      SemaRef.Diag(VD->getLocation(),
                   SemaRef.getLangOpts().CPlusPlus1y
                    ? diag::warn_cxx11_compat_constexpr_local_var
                    : diag::ext_constexpr_local_var)
        << isa<CXXConstructorDecl>(Dcl);
      continue;
    }

    case Decl::NamespaceAlias:
    case Decl::Function:
      // These are disallowed in C++11 and permitted in C++1y. Allow them
      // everywhere as an extension.
      if (!Cxx1yLoc.isValid())
        Cxx1yLoc = DS->getLocStart();
      continue;

    default:
      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
        << isa<CXXConstructorDecl>(Dcl);
      return false;
    }
  }

  return true;
}

/// Check that the given field is initialized within a constexpr constructor.
///
/// \param Dcl The constexpr constructor being checked.
/// \param Field The field being checked. This may be a member of an anonymous
///        struct or union nested within the class being checked.
/// \param Inits All declarations, including anonymous struct/union members and
///        indirect members, for which any initialization was provided.
/// \param Diagnosed Set to true if an error is produced.
static void CheckConstexprCtorInitializer(Sema &SemaRef,
                                          const FunctionDecl *Dcl,
                                          FieldDecl *Field,
                                          llvm::SmallSet<Decl*, 16> &Inits,
                                          bool &Diagnosed) {
  if (Field->isUnnamedBitfield())
    return;

  if (Field->isAnonymousStructOrUnion() &&
      Field->getType()->getAsCXXRecordDecl()->isEmpty())
    return;

  if (!Inits.count(Field)) {
    if (!Diagnosed) {
      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
      Diagnosed = true;
    }
    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
  } else if (Field->isAnonymousStructOrUnion()) {
    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
         I != E; ++I)
      // If an anonymous union contains an anonymous struct of which any member
      // is initialized, all members must be initialized.
      if (!RD->isUnion() || Inits.count(*I))
        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
  }
}

/// Check the provided statement is allowed in a constexpr function
/// definition.
static bool
CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
                           llvm::SmallVectorImpl<SourceLocation> &ReturnStmts,
                           SourceLocation &Cxx1yLoc) {
  // - its function-body shall be [...] a compound-statement that contains only
  switch (S->getStmtClass()) {
  case Stmt::NullStmtClass:
    //   - null statements,
    return true;

  case Stmt::DeclStmtClass:
    //   - static_assert-declarations
    //   - using-declarations,
    //   - using-directives,
    //   - typedef declarations and alias-declarations that do not define
    //     classes or enumerations,
    if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
      return false;
    return true;

  case Stmt::ReturnStmtClass:
    //   - and exactly one return statement;
    if (isa<CXXConstructorDecl>(Dcl)) {
      // C++1y allows return statements in constexpr constructors.
      if (!Cxx1yLoc.isValid())
        Cxx1yLoc = S->getLocStart();
      return true;
    }

    ReturnStmts.push_back(S->getLocStart());
    return true;

  case Stmt::CompoundStmtClass: {
    // C++1y allows compound-statements.
    if (!Cxx1yLoc.isValid())
      Cxx1yLoc = S->getLocStart();

    CompoundStmt *CompStmt = cast<CompoundStmt>(S);
    for (CompoundStmt::body_iterator BodyIt = CompStmt->body_begin(),
           BodyEnd = CompStmt->body_end(); BodyIt != BodyEnd; ++BodyIt) {
      if (!CheckConstexprFunctionStmt(SemaRef, Dcl, *BodyIt, ReturnStmts,
                                      Cxx1yLoc))
        return false;
    }
    return true;
  }

  case Stmt::AttributedStmtClass:
    if (!Cxx1yLoc.isValid())
      Cxx1yLoc = S->getLocStart();
    return true;

  case Stmt::IfStmtClass: {
    // C++1y allows if-statements.
    if (!Cxx1yLoc.isValid())
      Cxx1yLoc = S->getLocStart();

    IfStmt *If = cast<IfStmt>(S);
    if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
                                    Cxx1yLoc))
      return false;
    if (If->getElse() &&
        !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
                                    Cxx1yLoc))
      return false;
    return true;
  }

  case Stmt::WhileStmtClass:
  case Stmt::DoStmtClass:
  case Stmt::ForStmtClass:
  case Stmt::CXXForRangeStmtClass:
  case Stmt::ContinueStmtClass:
    // C++1y allows all of these. We don't allow them as extensions in C++11,
    // because they don't make sense without variable mutation.
    if (!SemaRef.getLangOpts().CPlusPlus1y)
      break;
    if (!Cxx1yLoc.isValid())
      Cxx1yLoc = S->getLocStart();
    for (Stmt::child_range Children = S->children(); Children; ++Children)
      if (*Children &&
          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
                                      Cxx1yLoc))
        return false;
    return true;

  case Stmt::SwitchStmtClass:
  case Stmt::CaseStmtClass:
  case Stmt::DefaultStmtClass:
  case Stmt::BreakStmtClass:
    // C++1y allows switch-statements, and since they don't need variable
    // mutation, we can reasonably allow them in C++11 as an extension.
    if (!Cxx1yLoc.isValid())
      Cxx1yLoc = S->getLocStart();
    for (Stmt::child_range Children = S->children(); Children; ++Children)
      if (*Children &&
          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
                                      Cxx1yLoc))
        return false;
    return true;

  default:
    if (!isa<Expr>(S))
      break;

    // C++1y allows expression-statements.
    if (!Cxx1yLoc.isValid())
      Cxx1yLoc = S->getLocStart();
    return true;
  }

  SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
    << isa<CXXConstructorDecl>(Dcl);
  return false;
}

/// Check the body for the given constexpr function declaration only contains
/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
///
/// \return true if the body is OK, false if we have diagnosed a problem.
bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
  if (isa<CXXTryStmt>(Body)) {
    // C++11 [dcl.constexpr]p3:
    //  The definition of a constexpr function shall satisfy the following
    //  constraints: [...]
    // - its function-body shall be = delete, = default, or a
    //   compound-statement
    //
    // C++11 [dcl.constexpr]p4:
    //  In the definition of a constexpr constructor, [...]
    // - its function-body shall not be a function-try-block;
    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
      << isa<CXXConstructorDecl>(Dcl);
    return false;
  }

  SmallVector<SourceLocation, 4> ReturnStmts;

  // - its function-body shall be [...] a compound-statement that contains only
  //   [... list of cases ...]
  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
  SourceLocation Cxx1yLoc;
  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
    if (!CheckConstexprFunctionStmt(*this, Dcl, *BodyIt, ReturnStmts, Cxx1yLoc))
      return false;
  }

  if (Cxx1yLoc.isValid())
    Diag(Cxx1yLoc,
         getLangOpts().CPlusPlus1y
           ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
           : diag::ext_constexpr_body_invalid_stmt)
      << isa<CXXConstructorDecl>(Dcl);

  if (const CXXConstructorDecl *Constructor
        = dyn_cast<CXXConstructorDecl>(Dcl)) {
    const CXXRecordDecl *RD = Constructor->getParent();
    // DR1359:
    // - every non-variant non-static data member and base class sub-object
    //   shall be initialized;
    // - if the class is a non-empty union, or for each non-empty anonymous
    //   union member of a non-union class, exactly one non-static data member
    //   shall be initialized;
    if (RD->isUnion()) {
      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
        return false;
      }
    } else if (!Constructor->isDependentContext() &&
               !Constructor->isDelegatingConstructor()) {
      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");

      // Skip detailed checking if we have enough initializers, and we would
      // allow at most one initializer per member.
      bool AnyAnonStructUnionMembers = false;
      unsigned Fields = 0;
      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
           E = RD->field_end(); I != E; ++I, ++Fields) {
        if (I->isAnonymousStructOrUnion()) {
          AnyAnonStructUnionMembers = true;
          break;
        }
      }
      if (AnyAnonStructUnionMembers ||
          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
        // Check initialization of non-static data members. Base classes are
        // always initialized so do not need to be checked. Dependent bases
        // might not have initializers in the member initializer list.
        llvm::SmallSet<Decl*, 16> Inits;
        for (CXXConstructorDecl::init_const_iterator
               I = Constructor->init_begin(), E = Constructor->init_end();
             I != E; ++I) {
          if (FieldDecl *FD = (*I)->getMember())
            Inits.insert(FD);
          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
            Inits.insert(ID->chain_begin(), ID->chain_end());
        }

        bool Diagnosed = false;
        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
             E = RD->field_end(); I != E; ++I)
          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
        if (Diagnosed)
          return false;
      }
    }
  } else {
    if (ReturnStmts.empty()) {
      // C++1y doesn't require constexpr functions to contain a 'return'
      // statement. We still do, unless the return type is void, because
      // otherwise if there's no return statement, the function cannot
      // be used in a core constant expression.
      bool OK = getLangOpts().CPlusPlus1y && Dcl->getResultType()->isVoidType();
      Diag(Dcl->getLocation(),
           OK ? diag::warn_cxx11_compat_constexpr_body_no_return
              : diag::err_constexpr_body_no_return);
      return OK;
    }
    if (ReturnStmts.size() > 1) {
      Diag(ReturnStmts.back(),
           getLangOpts().CPlusPlus1y
             ? diag::warn_cxx11_compat_constexpr_body_multiple_return
             : diag::ext_constexpr_body_multiple_return);
      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
    }
  }

  // C++11 [dcl.constexpr]p5:
  //   if no function argument values exist such that the function invocation
  //   substitution would produce a constant expression, the program is
  //   ill-formed; no diagnostic required.
  // C++11 [dcl.constexpr]p3:
  //   - every constructor call and implicit conversion used in initializing the
  //     return value shall be one of those allowed in a constant expression.
  // C++11 [dcl.constexpr]p4:
  //   - every constructor involved in initializing non-static data members and
  //     base class sub-objects shall be a constexpr constructor.
  SmallVector<PartialDiagnosticAt, 8> Diags;
  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
      << isa<CXXConstructorDecl>(Dcl);
    for (size_t I = 0, N = Diags.size(); I != N; ++I)
      Diag(Diags[I].first, Diags[I].second);
    // Don't return false here: we allow this for compatibility in
    // system headers.
  }

  return true;
}

/// isCurrentClassName - Determine whether the identifier II is the
/// name of the class type currently being defined. In the case of
/// nested classes, this will only return true if II is the name of
/// the innermost class.
bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
                              const CXXScopeSpec *SS) {
  assert(getLangOpts().CPlusPlus && "No class names in C!");

  CXXRecordDecl *CurDecl;
  if (SS && SS->isSet() && !SS->isInvalid()) {
    DeclContext *DC = computeDeclContext(*SS, true);
    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
  } else
    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);

  if (CurDecl && CurDecl->getIdentifier())
    return &II == CurDecl->getIdentifier();
  else
    return false;
}

/// \brief Determine whether the given class is a base class of the given
/// class, including looking at dependent bases.
static bool findCircularInheritance(const CXXRecordDecl *Class,
                                    const CXXRecordDecl *Current) {
  SmallVector<const CXXRecordDecl*, 8> Queue;

  Class = Class->getCanonicalDecl();
  while (true) {
    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
                                                  E = Current->bases_end();
         I != E; ++I) {
      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
      if (!Base)
        continue;

      Base = Base->getDefinition();
      if (!Base)
        continue;

      if (Base->getCanonicalDecl() == Class)
        return true;

      Queue.push_back(Base);
    }

    if (Queue.empty())
      return false;

    Current = Queue.back();
    Queue.pop_back();
  }

  return false;
}

/// \brief Check the validity of a C++ base class specifier.
///
/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
/// and returns NULL otherwise.
CXXBaseSpecifier *
Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
                         SourceRange SpecifierRange,
                         bool Virtual, AccessSpecifier Access,
                         TypeSourceInfo *TInfo,
                         SourceLocation EllipsisLoc) {
  QualType BaseType = TInfo->getType();

  // C++ [class.union]p1:
  //   A union shall not have base classes.
  if (Class->isUnion()) {
    Diag(Class->getLocation(), diag::err_base_clause_on_union)
      << SpecifierRange;
    return 0;
  }

  if (EllipsisLoc.isValid() && 
      !TInfo->getType()->containsUnexpandedParameterPack()) {
    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
      << TInfo->getTypeLoc().getSourceRange();
    EllipsisLoc = SourceLocation();
  }

  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();

  if (BaseType->isDependentType()) {
    // Make sure that we don't have circular inheritance among our dependent
    // bases. For non-dependent bases, the check for completeness below handles
    // this.
    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
          ((BaseDecl = BaseDecl->getDefinition()) &&
           findCircularInheritance(Class, BaseDecl))) {
        Diag(BaseLoc, diag::err_circular_inheritance)
          << BaseType << Context.getTypeDeclType(Class);

        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
            << BaseType;
            
        return 0;
      }
    }

    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
                                          Class->getTagKind() == TTK_Class,
                                          Access, TInfo, EllipsisLoc);
  }

  // Base specifiers must be record types.
  if (!BaseType->isRecordType()) {
    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
    return 0;
  }

  // C++ [class.union]p1:
  //   A union shall not be used as a base class.
  if (BaseType->isUnionType()) {
    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
    return 0;
  }

  // C++ [class.derived]p2:
  //   The class-name in a base-specifier shall not be an incompletely
  //   defined class.
  if (RequireCompleteType(BaseLoc, BaseType,
                          diag::err_incomplete_base_class, SpecifierRange)) {
    Class->setInvalidDecl();
    return 0;
  }

  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
  assert(BaseDecl && "Record type has no declaration");
  BaseDecl = BaseDecl->getDefinition();
  assert(BaseDecl && "Base type is not incomplete, but has no definition");
  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
  assert(CXXBaseDecl && "Base type is not a C++ type");

  // C++ [class]p3:
  //   If a class is marked final and it appears as a base-type-specifier in 
  //   base-clause, the program is ill-formed.
  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
    Diag(BaseLoc, diag::err_class_marked_final_used_as_base) 
      << CXXBaseDecl->getDeclName();
    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
      << CXXBaseDecl->getDeclName();
    return 0;
  }

  if (BaseDecl->isInvalidDecl())
    Class->setInvalidDecl();
  
  // Create the base specifier.
  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
                                        Class->getTagKind() == TTK_Class,
                                        Access, TInfo, EllipsisLoc);
}

/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
/// one entry in the base class list of a class specifier, for
/// example:
///    class foo : public bar, virtual private baz {
/// 'public bar' and 'virtual private baz' are each base-specifiers.
BaseResult
Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
                         ParsedAttributes &Attributes,
                         bool Virtual, AccessSpecifier Access,
                         ParsedType basetype, SourceLocation BaseLoc,
                         SourceLocation EllipsisLoc) {
  if (!classdecl)
    return true;

  AdjustDeclIfTemplate(classdecl);
  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
  if (!Class)
    return true;

  // We do not support any C++11 attributes on base-specifiers yet.
  // Diagnose any attributes we see.
  if (!Attributes.empty()) {
    for (AttributeList *Attr = Attributes.getList(); Attr;
         Attr = Attr->getNext()) {
      if (Attr->isInvalid() ||
          Attr->getKind() == AttributeList::IgnoredAttribute)
        continue;
      Diag(Attr->getLoc(),
           Attr->getKind() == AttributeList::UnknownAttribute
             ? diag::warn_unknown_attribute_ignored
             : diag::err_base_specifier_attribute)
        << Attr->getName();
    }
  }

  TypeSourceInfo *TInfo = 0;
  GetTypeFromParser(basetype, &TInfo);

  if (EllipsisLoc.isInvalid() &&
      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, 
                                      UPPC_BaseType))
    return true;
  
  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
                                                      Virtual, Access, TInfo,
                                                      EllipsisLoc))
    return BaseSpec;
  else
    Class->setInvalidDecl();

  return true;
}

/// \brief Performs the actual work of attaching the given base class
/// specifiers to a C++ class.
bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
                                unsigned NumBases) {
 if (NumBases == 0)
    return false;

  // Used to keep track of which base types we have already seen, so
  // that we can properly diagnose redundant direct base types. Note
  // that the key is always the unqualified canonical type of the base
  // class.
  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;

  // Copy non-redundant base specifiers into permanent storage.
  unsigned NumGoodBases = 0;
  bool Invalid = false;
  for (unsigned idx = 0; idx < NumBases; ++idx) {
    QualType NewBaseType
      = Context.getCanonicalType(Bases[idx]->getType());
    NewBaseType = NewBaseType.getLocalUnqualifiedType();

    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
    if (KnownBase) {
      // C++ [class.mi]p3:
      //   A class shall not be specified as a direct base class of a
      //   derived class more than once.
      Diag(Bases[idx]->getLocStart(),
           diag::err_duplicate_base_class)
        << KnownBase->getType()
        << Bases[idx]->getSourceRange();

      // Delete the duplicate base class specifier; we're going to
      // overwrite its pointer later.
      Context.Deallocate(Bases[idx]);

      Invalid = true;
    } else {
      // Okay, add this new base class.
      KnownBase = Bases[idx];
      Bases[NumGoodBases++] = Bases[idx];
      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
        if (Class->isInterface() &&
              (!RD->isInterface() ||
               KnownBase->getAccessSpecifier() != AS_public)) {
          // The Microsoft extension __interface does not permit bases that
          // are not themselves public interfaces.
          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
            << RD->getSourceRange();
          Invalid = true;
        }
        if (RD->hasAttr<WeakAttr>())
          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
      }
    }
  }

  // Attach the remaining base class specifiers to the derived class.
  Class->setBases(Bases, NumGoodBases);

  // Delete the remaining (good) base class specifiers, since their
  // data has been copied into the CXXRecordDecl.
  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
    Context.Deallocate(Bases[idx]);

  return Invalid;
}

/// ActOnBaseSpecifiers - Attach the given base specifiers to the
/// class, after checking whether there are any duplicate base
/// classes.
void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
                               unsigned NumBases) {
  if (!ClassDecl || !Bases || !NumBases)
    return;

  AdjustDeclIfTemplate(ClassDecl);
  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
                       (CXXBaseSpecifier**)(Bases), NumBases);
}

/// \brief Determine whether the type \p Derived is a C++ class that is
/// derived from the type \p Base.
bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
  if (!getLangOpts().CPlusPlus)
    return false;
  
  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
  if (!DerivedRD)
    return false;
  
  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
  if (!BaseRD)
    return false;

  // If either the base or the derived type is invalid, don't try to
  // check whether one is derived from the other.
  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
    return false;

  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
}

/// \brief Determine whether the type \p Derived is a C++ class that is
/// derived from the type \p Base.
bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
  if (!getLangOpts().CPlusPlus)
    return false;
  
  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
  if (!DerivedRD)
    return false;
  
  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
  if (!BaseRD)
    return false;
  
  return DerivedRD->isDerivedFrom(BaseRD, Paths);
}

void Sema::BuildBasePathArray(const CXXBasePaths &Paths, 
                              CXXCastPath &BasePathArray) {
  assert(BasePathArray.empty() && "Base path array must be empty!");
  assert(Paths.isRecordingPaths() && "Must record paths!");
  
  const CXXBasePath &Path = Paths.front();
       
  // We first go backward and check if we have a virtual base.
  // FIXME: It would be better if CXXBasePath had the base specifier for
  // the nearest virtual base.
  unsigned Start = 0;
  for (unsigned I = Path.size(); I != 0; --I) {
    if (Path[I - 1].Base->isVirtual()) {
      Start = I - 1;
      break;
    }
  }

  // Now add all bases.
  for (unsigned I = Start, E = Path.size(); I != E; ++I)
    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
}

/// \brief Determine whether the given base path includes a virtual
/// base class.
bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
  for (CXXCastPath::const_iterator B = BasePath.begin(), 
                                BEnd = BasePath.end();
       B != BEnd; ++B)
    if ((*B)->isVirtual())
      return true;

  return false;
}

/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
/// conversion (where Derived and Base are class types) is
/// well-formed, meaning that the conversion is unambiguous (and
/// that all of the base classes are accessible). Returns true
/// and emits a diagnostic if the code is ill-formed, returns false
/// otherwise. Loc is the location where this routine should point to
/// if there is an error, and Range is the source range to highlight
/// if there is an error.
bool
Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
                                   unsigned InaccessibleBaseID,
                                   unsigned AmbigiousBaseConvID,
                                   SourceLocation Loc, SourceRange Range,
                                   DeclarationName Name,
                                   CXXCastPath *BasePath) {
  // First, determine whether the path from Derived to Base is
  // ambiguous. This is slightly more expensive than checking whether
  // the Derived to Base conversion exists, because here we need to
  // explore multiple paths to determine if there is an ambiguity.
  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
                     /*DetectVirtual=*/false);
  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
  assert(DerivationOkay &&
         "Can only be used with a derived-to-base conversion");
  (void)DerivationOkay;
  
  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
    if (InaccessibleBaseID) {
      // Check that the base class can be accessed.
      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
                                   InaccessibleBaseID)) {
        case AR_inaccessible: 
          return true;
        case AR_accessible: 
        case AR_dependent:
        case AR_delayed:
          break;
      }
    }
    
    // Build a base path if necessary.
    if (BasePath)
      BuildBasePathArray(Paths, *BasePath);
    return false;
  }
  
  // We know that the derived-to-base conversion is ambiguous, and
  // we're going to produce a diagnostic. Perform the derived-to-base
  // search just one more time to compute all of the possible paths so
  // that we can print them out. This is more expensive than any of
  // the previous derived-to-base checks we've done, but at this point
  // performance isn't as much of an issue.
  Paths.clear();
  Paths.setRecordingPaths(true);
  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
  assert(StillOkay && "Can only be used with a derived-to-base conversion");
  (void)StillOkay;
  
  // Build up a textual representation of the ambiguous paths, e.g.,
  // D -> B -> A, that will be used to illustrate the ambiguous
  // conversions in the diagnostic. We only print one of the paths
  // to each base class subobject.
  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
  
  Diag(Loc, AmbigiousBaseConvID)
  << Derived << Base << PathDisplayStr << Range << Name;
  return true;
}

bool
Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
                                   SourceLocation Loc, SourceRange Range,
                                   CXXCastPath *BasePath,
                                   bool IgnoreAccess) {
  return CheckDerivedToBaseConversion(Derived, Base,
                                      IgnoreAccess ? 0
                                       : diag::err_upcast_to_inaccessible_base,
                                      diag::err_ambiguous_derived_to_base_conv,
                                      Loc, Range, DeclarationName(), 
                                      BasePath);
}


/// @brief Builds a string representing ambiguous paths from a
/// specific derived class to different subobjects of the same base
/// class.
///
/// This function builds a string that can be used in error messages
/// to show the different paths that one can take through the
/// inheritance hierarchy to go from the derived class to different
/// subobjects of a base class. The result looks something like this:
/// @code
/// struct D -> struct B -> struct A
/// struct D -> struct C -> struct A
/// @endcode
std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
  std::string PathDisplayStr;
  std::set<unsigned> DisplayedPaths;
  for (CXXBasePaths::paths_iterator Path = Paths.begin();
       Path != Paths.end(); ++Path) {
    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
      // We haven't displayed a path to this particular base
      // class subobject yet.
      PathDisplayStr += "\n    ";
      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
      for (CXXBasePath::const_iterator Element = Path->begin();
           Element != Path->end(); ++Element)
        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
    }
  }
  
  return PathDisplayStr;
}

//===----------------------------------------------------------------------===//
// C++ class member Handling
//===----------------------------------------------------------------------===//

/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
                                SourceLocation ASLoc,
                                SourceLocation ColonLoc,
                                AttributeList *Attrs) {
  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
                                                  ASLoc, ColonLoc);
  CurContext->addHiddenDecl(ASDecl);
  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
}

/// CheckOverrideControl - Check C++11 override control semantics.
void Sema::CheckOverrideControl(Decl *D) {
  if (D->isInvalidDecl())
    return;

  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);

  // Do we know which functions this declaration might be overriding?
  bool OverridesAreKnown = !MD ||
      (!MD->getParent()->hasAnyDependentBases() &&
       !MD->getType()->isDependentType());

  if (!MD || !MD->isVirtual()) {
    if (OverridesAreKnown) {
      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
        Diag(OA->getLocation(),
             diag::override_keyword_only_allowed_on_virtual_member_functions)
          << "override" << FixItHint::CreateRemoval(OA->getLocation());
        D->dropAttr<OverrideAttr>();
      }
      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
        Diag(FA->getLocation(),
             diag::override_keyword_only_allowed_on_virtual_member_functions)
          << "final" << FixItHint::CreateRemoval(FA->getLocation());
        D->dropAttr<FinalAttr>();
      }
    }
    return;
  }

  if (!OverridesAreKnown)
    return;

  // C++11 [class.virtual]p5:
  //   If a virtual function is marked with the virt-specifier override and
  //   does not override a member function of a base class, the program is
  //   ill-formed.
  bool HasOverriddenMethods =
    MD->begin_overridden_methods() != MD->end_overridden_methods();
  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
      << MD->getDeclName();
}

/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
/// function overrides a virtual member function marked 'final', according to
/// C++11 [class.virtual]p4.
bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
                                                  const CXXMethodDecl *Old) {
  if (!Old->hasAttr<FinalAttr>())
    return false;

  Diag(New->getLocation(), diag::err_final_function_overridden)
    << New->getDeclName();
  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
  return true;
}

static bool InitializationHasSideEffects(const FieldDecl &FD) {
  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
  // FIXME: Destruction of ObjC lifetime types has side-effects.
  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
    return !RD->isCompleteDefinition() ||
           !RD->hasTrivialDefaultConstructor() ||
           !RD->hasTrivialDestructor();
  return false;
}

static AttributeList *getMSPropertyAttr(AttributeList *list) {
  for (AttributeList* it = list; it != 0; it = it->getNext())
    if (it->isDeclspecPropertyAttribute())
      return it;
  return 0;
}

/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
/// bitfield width if there is one, 'InitExpr' specifies the initializer if
/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
/// present (but parsing it has been deferred).
NamedDecl *
Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
                               MultiTemplateParamsArg TemplateParameterLists,
                               Expr *BW, const VirtSpecifiers &VS,
                               InClassInitStyle InitStyle) {
  const DeclSpec &DS = D.getDeclSpec();
  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
  DeclarationName Name = NameInfo.getName();
  SourceLocation Loc = NameInfo.getLoc();

  // For anonymous bitfields, the location should point to the type.
  if (Loc.isInvalid())
    Loc = D.getLocStart();

  Expr *BitWidth = static_cast<Expr*>(BW);

  assert(isa<CXXRecordDecl>(CurContext));
  assert(!DS.isFriendSpecified());

  bool isFunc = D.isDeclarationOfFunction();

  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
    // The Microsoft extension __interface only permits public member functions
    // and prohibits constructors, destructors, operators, non-public member
    // functions, static methods and data members.
    unsigned InvalidDecl;
    bool ShowDeclName = true;
    if (!isFunc)
      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
    else if (AS != AS_public)
      InvalidDecl = 2;
    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
      InvalidDecl = 3;
    else switch (Name.getNameKind()) {
      case DeclarationName::CXXConstructorName:
        InvalidDecl = 4;
        ShowDeclName = false;
        break;

      case DeclarationName::CXXDestructorName:
        InvalidDecl = 5;
        ShowDeclName = false;
        break;

      case DeclarationName::CXXOperatorName:
      case DeclarationName::CXXConversionFunctionName:
        InvalidDecl = 6;
        break;

      default:
        InvalidDecl = 0;
        break;
    }

    if (InvalidDecl) {
      if (ShowDeclName)
        Diag(Loc, diag::err_invalid_member_in_interface)
          << (InvalidDecl-1) << Name;
      else
        Diag(Loc, diag::err_invalid_member_in_interface)
          << (InvalidDecl-1) << "";
      return 0;
    }
  }

  // C++ 9.2p6: A member shall not be declared to have automatic storage
  // duration (auto, register) or with the extern storage-class-specifier.
  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
  // data members and cannot be applied to names declared const or static,
  // and cannot be applied to reference members.
  switch (DS.getStorageClassSpec()) {
  case DeclSpec::SCS_unspecified:
  case DeclSpec::SCS_typedef:
  case DeclSpec::SCS_static:
    break;
  case DeclSpec::SCS_mutable:
    if (isFunc) {
      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);

      // FIXME: It would be nicer if the keyword was ignored only for this
      // declarator. Otherwise we could get follow-up errors.
      D.getMutableDeclSpec().ClearStorageClassSpecs();
    }
    break;
  default:
    Diag(DS.getStorageClassSpecLoc(),
         diag::err_storageclass_invalid_for_member);
    D.getMutableDeclSpec().ClearStorageClassSpecs();
    break;
  }

  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
                      !isFunc);

  if (DS.isConstexprSpecified() && isInstField) {
    SemaDiagnosticBuilder B =
        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
    if (InitStyle == ICIS_NoInit) {
      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
      D.getMutableDeclSpec().ClearConstexprSpec();
      const char *PrevSpec;
      unsigned DiagID;
      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
                                         PrevSpec, DiagID, getLangOpts());
      (void)Failed;
      assert(!Failed && "Making a constexpr member const shouldn't fail");
    } else {
      B << 1;
      const char *PrevSpec;
      unsigned DiagID;
      if (D.getMutableDeclSpec().SetStorageClassSpec(
          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
               "This is the only DeclSpec that should fail to be applied");
        B << 1;
      } else {
        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
        isInstField = false;
      }
    }
  }

  NamedDecl *Member;
  if (isInstField) {
    CXXScopeSpec &SS = D.getCXXScopeSpec();

    // Data members must have identifiers for names.
    if (!Name.isIdentifier()) {
      Diag(Loc, diag::err_bad_variable_name)
        << Name;
      return 0;
    }

    IdentifierInfo *II = Name.getAsIdentifierInfo();

    // Member field could not be with "template" keyword.
    // So TemplateParameterLists should be empty in this case.
    if (TemplateParameterLists.size()) {
      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
      if (TemplateParams->size()) {
        // There is no such thing as a member field template.
        Diag(D.getIdentifierLoc(), diag::err_template_member)
            << II
            << SourceRange(TemplateParams->getTemplateLoc(),
                TemplateParams->getRAngleLoc());
      } else {
        // There is an extraneous 'template<>' for this member.
        Diag(TemplateParams->getTemplateLoc(),
            diag::err_template_member_noparams)
            << II
            << SourceRange(TemplateParams->getTemplateLoc(),
                TemplateParams->getRAngleLoc());
      }
      return 0;
    }

    if (SS.isSet() && !SS.isInvalid()) {
      // The user provided a superfluous scope specifier inside a class
      // definition:
      //
      // class X {
      //   int X::member;
      // };
      if (DeclContext *DC = computeDeclContext(SS, false))
        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
      else
        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
          << Name << SS.getRange();
      
      SS.clear();
    }

    AttributeList *MSPropertyAttr =
      getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
    if (MSPropertyAttr) {
      Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
                                BitWidth, InitStyle, AS, MSPropertyAttr);
      isInstField = false;
    } else {
      Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
                                BitWidth, InitStyle, AS);
    }
    assert(Member && "HandleField never returns null");
  } else {
    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);

    Member = HandleDeclarator(S, D, TemplateParameterLists);
    if (!Member) {
      return 0;
    }

    // Non-instance-fields can't have a bitfield.
    if (BitWidth) {
      if (Member->isInvalidDecl()) {
        // don't emit another diagnostic.
      } else if (isa<VarDecl>(Member)) {
        // C++ 9.6p3: A bit-field shall not be a static member.
        // "static member 'A' cannot be a bit-field"
        Diag(Loc, diag::err_static_not_bitfield)
          << Name << BitWidth->getSourceRange();
      } else if (isa<TypedefDecl>(Member)) {
        // "typedef member 'x' cannot be a bit-field"
        Diag(Loc, diag::err_typedef_not_bitfield)
          << Name << BitWidth->getSourceRange();
      } else {
        // A function typedef ("typedef int f(); f a;").
        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
        Diag(Loc, diag::err_not_integral_type_bitfield)
          << Name << cast<ValueDecl>(Member)->getType()
          << BitWidth->getSourceRange();
      }

      BitWidth = 0;
      Member->setInvalidDecl();
    }

    Member->setAccess(AS);

    // If we have declared a member function template, set the access of the
    // templated declaration as well.
    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
      FunTmpl->getTemplatedDecl()->setAccess(AS);
  }

  if (VS.isOverrideSpecified())
    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
  if (VS.isFinalSpecified())
    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));

  if (VS.getLastLocation().isValid()) {
    // Update the end location of a method that has a virt-specifiers.
    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
      MD->setRangeEnd(VS.getLastLocation());
  }

  CheckOverrideControl(Member);

  assert((Name || isInstField) && "No identifier for non-field ?");

  if (isInstField) {
    FieldDecl *FD = cast<FieldDecl>(Member);
    FieldCollector->Add(FD);

    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
                                 FD->getLocation())
          != DiagnosticsEngine::Ignored) {
      // Remember all explicit private FieldDecls that have a name, no side
      // effects and are not part of a dependent type declaration.
      if (!FD->isImplicit() && FD->getDeclName() &&
          FD->getAccess() == AS_private &&
          !FD->hasAttr<UnusedAttr>() &&
          !FD->getParent()->isDependentContext() &&
          !InitializationHasSideEffects(*FD))
        UnusedPrivateFields.insert(FD);
    }
  }

  return Member;
}

namespace {
  class UninitializedFieldVisitor
      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
    Sema &S;
    ValueDecl *VD;
  public:
    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
                                                        S(S) {
      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
        this->VD = IFD->getAnonField();
      else
        this->VD = VD;
    }

    void HandleExpr(Expr *E) {
      if (!E) return;

      // Expressions like x(x) sometimes lack the surrounding expressions
      // but need to be checked anyways.
      HandleValue(E);
      Visit(E);
    }

    void HandleValue(Expr *E) {
      E = E->IgnoreParens();

      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
          return;

        // FieldME is the inner-most MemberExpr that is not an anonymous struct
        // or union.
        MemberExpr *FieldME = ME;

        Expr *Base = E;
        while (isa<MemberExpr>(Base)) {
          ME = cast<MemberExpr>(Base);

          if (isa<VarDecl>(ME->getMemberDecl()))
            return;

          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
            if (!FD->isAnonymousStructOrUnion())
              FieldME = ME;

          Base = ME->getBase();
        }

        if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
          unsigned diag = VD->getType()->isReferenceType()
              ? diag::warn_reference_field_is_uninit
              : diag::warn_field_is_uninit;
          S.Diag(FieldME->getExprLoc(), diag) << VD;
        }
        return;
      }

      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
        HandleValue(CO->getTrueExpr());
        HandleValue(CO->getFalseExpr());
        return;
      }

      if (BinaryConditionalOperator *BCO =
              dyn_cast<BinaryConditionalOperator>(E)) {
        HandleValue(BCO->getCommon());
        HandleValue(BCO->getFalseExpr());
        return;
      }

      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
        switch (BO->getOpcode()) {
        default:
          return;
        case(BO_PtrMemD):
        case(BO_PtrMemI):
          HandleValue(BO->getLHS());
          return;
        case(BO_Comma):
          HandleValue(BO->getRHS());
          return;
        }
      }
    }

    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
      if (E->getCastKind() == CK_LValueToRValue)
        HandleValue(E->getSubExpr());

      Inherited::VisitImplicitCastExpr(E);
    }

    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
      Expr *Callee = E->getCallee();
      if (isa<MemberExpr>(Callee))
        HandleValue(Callee);

      Inherited::VisitCXXMemberCallExpr(E);
    }
  };
  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
                                                       ValueDecl *VD) {
    UninitializedFieldVisitor(S, VD).HandleExpr(E);
  }
} // namespace

/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
/// in-class initializer for a non-static C++ class member, and after
/// instantiating an in-class initializer in a class template. Such actions
/// are deferred until the class is complete.
void
Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
                                       Expr *InitExpr) {
  FieldDecl *FD = cast<FieldDecl>(D);
  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
         "must set init style when field is created");

  if (!InitExpr) {
    FD->setInvalidDecl();
    FD->removeInClassInitializer();
    return;
  }

  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
    FD->setInvalidDecl();
    FD->removeInClassInitializer();
    return;
  }

  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
      != DiagnosticsEngine::Ignored) {
    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
  }

  ExprResult Init = InitExpr;
  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
        << /*at end of ctor*/1 << InitExpr->getSourceRange();
    }
    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
    InitializationSequence Seq(*this, Entity, Kind, InitExpr);
    Init = Seq.Perform(*this, Entity, Kind, InitExpr);
    if (Init.isInvalid()) {
      FD->setInvalidDecl();
      return;
    }
  }

  // C++11 [class.base.init]p7:
  //   The initialization of each base and member constitutes a
  //   full-expression.
  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
  if (Init.isInvalid()) {
    FD->setInvalidDecl();
    return;
  }

  InitExpr = Init.release();

  FD->setInClassInitializer(InitExpr);
}

/// \brief Find the direct and/or virtual base specifiers that
/// correspond to the given base type, for use in base initialization
/// within a constructor.
static bool FindBaseInitializer(Sema &SemaRef, 
                                CXXRecordDecl *ClassDecl,
                                QualType BaseType,
                                const CXXBaseSpecifier *&DirectBaseSpec,
                                const CXXBaseSpecifier *&VirtualBaseSpec) {
  // First, check for a direct base class.
  DirectBaseSpec = 0;
  for (CXXRecordDecl::base_class_const_iterator Base
         = ClassDecl->bases_begin(); 
       Base != ClassDecl->bases_end(); ++Base) {
    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
      // We found a direct base of this type. That's what we're
      // initializing.
      DirectBaseSpec = &*Base;
      break;
    }
  }

  // Check for a virtual base class.
  // FIXME: We might be able to short-circuit this if we know in advance that
  // there are no virtual bases.
  VirtualBaseSpec = 0;
  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
    // We haven't found a base yet; search the class hierarchy for a
    // virtual base class.
    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
                       /*DetectVirtual=*/false);
    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl), 
                              BaseType, Paths)) {
      for (CXXBasePaths::paths_iterator Path = Paths.begin();
           Path != Paths.end(); ++Path) {
        if (Path->back().Base->isVirtual()) {
          VirtualBaseSpec = Path->back().Base;
          break;
        }
      }
    }
  }

  return DirectBaseSpec || VirtualBaseSpec;
}

/// \brief Handle a C++ member initializer using braced-init-list syntax.
MemInitResult
Sema::ActOnMemInitializer(Decl *ConstructorD,
                          Scope *S,
                          CXXScopeSpec &SS,
                          IdentifierInfo *MemberOrBase,
                          ParsedType TemplateTypeTy,
                          const DeclSpec &DS,
                          SourceLocation IdLoc,
                          Expr *InitList,
                          SourceLocation EllipsisLoc) {
  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
                             DS, IdLoc, InitList,
                             EllipsisLoc);
}

/// \brief Handle a C++ member initializer using parentheses syntax.
MemInitResult
Sema::ActOnMemInitializer(Decl *ConstructorD,
                          Scope *S,
                          CXXScopeSpec &SS,
                          IdentifierInfo *MemberOrBase,
                          ParsedType TemplateTypeTy,
                          const DeclSpec &DS,
                          SourceLocation IdLoc,
                          SourceLocation LParenLoc,
                          Expr **Args, unsigned NumArgs,
                          SourceLocation RParenLoc,
                          SourceLocation EllipsisLoc) {
  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
                                           llvm::makeArrayRef(Args, NumArgs),
                                           RParenLoc);
  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
                             DS, IdLoc, List, EllipsisLoc);
}

namespace {

// Callback to only accept typo corrections that can be a valid C++ member
// intializer: either a non-static field member or a base class.
class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
 public:
  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
      : ClassDecl(ClassDecl) {}

  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
      else
        return isa<TypeDecl>(ND);
    }
    return false;
  }

 private:
  CXXRecordDecl *ClassDecl;
};

}

/// \brief Handle a C++ member initializer.
MemInitResult
Sema::BuildMemInitializer(Decl *ConstructorD,
                          Scope *S,
                          CXXScopeSpec &SS,
                          IdentifierInfo *MemberOrBase,
                          ParsedType TemplateTypeTy,
                          const DeclSpec &DS,
                          SourceLocation IdLoc,
                          Expr *Init,
                          SourceLocation EllipsisLoc) {
  if (!ConstructorD)
    return true;

  AdjustDeclIfTemplate(ConstructorD);

  CXXConstructorDecl *Constructor
    = dyn_cast<CXXConstructorDecl>(ConstructorD);
  if (!Constructor) {
    // The user wrote a constructor initializer on a function that is
    // not a C++ constructor. Ignore the error for now, because we may
    // have more member initializers coming; we'll diagnose it just
    // once in ActOnMemInitializers.
    return true;
  }

  CXXRecordDecl *ClassDecl = Constructor->getParent();

  // C++ [class.base.init]p2:
  //   Names in a mem-initializer-id are looked up in the scope of the
  //   constructor's class and, if not found in that scope, are looked
  //   up in the scope containing the constructor's definition.
  //   [Note: if the constructor's class contains a member with the
  //   same name as a direct or virtual base class of the class, a
  //   mem-initializer-id naming the member or base class and composed
  //   of a single identifier refers to the class member. A
  //   mem-initializer-id for the hidden base class may be specified
  //   using a qualified name. ]
  if (!SS.getScopeRep() && !TemplateTypeTy) {
    // Look for a member, first.
    DeclContext::lookup_result Result
      = ClassDecl->lookup(MemberOrBase);
    if (!Result.empty()) {
      ValueDecl *Member;
      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
        if (EllipsisLoc.isValid())
          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
            << MemberOrBase
            << SourceRange(IdLoc, Init->getSourceRange().getEnd());

        return BuildMemberInitializer(Member, Init, IdLoc);
      }
    }
  }
  // It didn't name a member, so see if it names a class.
  QualType BaseType;
  TypeSourceInfo *TInfo = 0;

  if (TemplateTypeTy) {
    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
  } else if (DS.getTypeSpecType() == TST_decltype) {
    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
  } else {
    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
    LookupParsedName(R, S, &SS);

    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
    if (!TyD) {
      if (R.isAmbiguous()) return true;

      // We don't want access-control diagnostics here.
      R.suppressDiagnostics();

      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
        bool NotUnknownSpecialization = false;
        DeclContext *DC = computeDeclContext(SS, false);
        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) 
          NotUnknownSpecialization = !Record->hasAnyDependentBases();

        if (!NotUnknownSpecialization) {
          // When the scope specifier can refer to a member of an unknown
          // specialization, we take it as a type name.
          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
                                       SS.getWithLocInContext(Context),
                                       *MemberOrBase, IdLoc);
          if (BaseType.isNull())
            return true;

          R.clear();
          R.setLookupName(MemberOrBase);
        }
      }

      // If no results were found, try to correct typos.
      TypoCorrection Corr;
      MemInitializerValidatorCCC Validator(ClassDecl);
      if (R.empty() && BaseType.isNull() &&
          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
                              Validator, ClassDecl))) {
        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
          // We have found a non-static data member with a similar
          // name to what was typed; complain and initialize that
          // member.
          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
            << MemberOrBase << true << CorrectedQuotedStr
            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
          Diag(Member->getLocation(), diag::note_previous_decl)
            << CorrectedQuotedStr;

          return BuildMemberInitializer(Member, Init, IdLoc);
        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
          const CXXBaseSpecifier *DirectBaseSpec;
          const CXXBaseSpecifier *VirtualBaseSpec;
          if (FindBaseInitializer(*this, ClassDecl, 
                                  Context.getTypeDeclType(Type),
                                  DirectBaseSpec, VirtualBaseSpec)) {
            // We have found a direct or virtual base class with a
            // similar name to what was typed; complain and initialize
            // that base class.
            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
              << MemberOrBase << false << CorrectedQuotedStr
              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);

            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec 
                                                             : VirtualBaseSpec;
            Diag(BaseSpec->getLocStart(),
                 diag::note_base_class_specified_here)
              << BaseSpec->getType()
              << BaseSpec->getSourceRange();

            TyD = Type;
          }
        }
      }

      if (!TyD && BaseType.isNull()) {
        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
        return true;
      }
    }

    if (BaseType.isNull()) {
      BaseType = Context.getTypeDeclType(TyD);
      if (SS.isSet()) {
        NestedNameSpecifier *Qualifier =
          static_cast<NestedNameSpecifier*>(SS.getScopeRep());

        // FIXME: preserve source range information
        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
      }
    }
  }

  if (!TInfo)
    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);

  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
}

/// Checks a member initializer expression for cases where reference (or
/// pointer) members are bound to by-value parameters (or their addresses).
static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
                                               Expr *Init,
                                               SourceLocation IdLoc) {
  QualType MemberTy = Member->getType();

  // We only handle pointers and references currently.
  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
    return;

  const bool IsPointer = MemberTy->isPointerType();
  if (IsPointer) {
    if (const UnaryOperator *Op
          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
      // The only case we're worried about with pointers requires taking the
      // address.
      if (Op->getOpcode() != UO_AddrOf)
        return;

      Init = Op->getSubExpr();
    } else {
      // We only handle address-of expression initializers for pointers.
      return;
    }
  }

  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
    // Taking the address of a temporary will be diagnosed as a hard error.
    if (IsPointer)
      return;

    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
      << Member << Init->getSourceRange();
  } else if (const DeclRefExpr *DRE
               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
    // We only warn when referring to a non-reference parameter declaration.
    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
    if (!Parameter || Parameter->getType()->isReferenceType())
      return;

    S.Diag(Init->getExprLoc(),
           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
                     : diag::warn_bind_ref_member_to_parameter)
      << Member << Parameter << Init->getSourceRange();
  } else {
    // Other initializers are fine.
    return;
  }

  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
    << (unsigned)IsPointer;
}

MemInitResult
Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
                             SourceLocation IdLoc) {
  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
  assert((DirectMember || IndirectMember) &&
         "Member must be a FieldDecl or IndirectFieldDecl");

  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
    return true;

  if (Member->isInvalidDecl())
    return true;

  // Diagnose value-uses of fields to initialize themselves, e.g.
  //   foo(foo)
  // where foo is not also a parameter to the constructor.
  // TODO: implement -Wuninitialized and fold this into that framework.
  MultiExprArg Args;
  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
    Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
  } else {
    // Template instantiation doesn't reconstruct ParenListExprs for us.
    Args = Init;
  }

  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
        != DiagnosticsEngine::Ignored)
    for (unsigned i = 0, e = Args.size(); i != e; ++i)
      // FIXME: Warn about the case when other fields are used before being
      // initialized. For example, let this field be the i'th field. When
      // initializing the i'th field, throw a warning if any of the >= i'th
      // fields are used, as they are not yet initialized.
      // Right now we are only handling the case where the i'th field uses
      // itself in its initializer.
      // Also need to take into account that some fields may be initialized by
      // in-class initializers, see C++11 [class.base.init]p9.
      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);

  SourceRange InitRange = Init->getSourceRange();

  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
    // Can't check initialization for a member of dependent type or when
    // any of the arguments are type-dependent expressions.
    DiscardCleanupsInEvaluationContext();
  } else {
    bool InitList = false;
    if (isa<InitListExpr>(Init)) {
      InitList = true;
      Args = Init;

      if (isStdInitializerList(Member->getType(), 0)) {
        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
            << /*at end of ctor*/1 << InitRange;
      }
    }

    // Initialize the member.
    InitializedEntity MemberEntity =
      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
                   : InitializedEntity::InitializeMember(IndirectMember, 0);
    InitializationKind Kind =
      InitList ? InitializationKind::CreateDirectList(IdLoc)
               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
                                                  InitRange.getEnd());

    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 0);
    if (MemberInit.isInvalid())
      return true;

    // C++11 [class.base.init]p7:
    //   The initialization of each base and member constitutes a
    //   full-expression.
    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
    if (MemberInit.isInvalid())
      return true;

    Init = MemberInit.get();
    CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
  }

  if (DirectMember) {
    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
                                            InitRange.getBegin(), Init,
                                            InitRange.getEnd());
  } else {
    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
                                            InitRange.getBegin(), Init,
                                            InitRange.getEnd());
  }
}

MemInitResult
Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
                                 CXXRecordDecl *ClassDecl) {
  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
  if (!LangOpts.CPlusPlus11)
    return Diag(NameLoc, diag::err_delegating_ctor)
      << TInfo->getTypeLoc().getLocalSourceRange();
  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);

  bool InitList = true;
  MultiExprArg Args = Init;
  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
    InitList = false;
    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
  }

  SourceRange InitRange = Init->getSourceRange();
  // Initialize the object.
  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
                                     QualType(ClassDecl->getTypeForDecl(), 0));
  InitializationKind Kind =
    InitList ? InitializationKind::CreateDirectList(NameLoc)
             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
                                                InitRange.getEnd());
  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
                                              Args, 0);
  if (DelegationInit.isInvalid())
    return true;

  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
         "Delegating constructor with no target?");

  // C++11 [class.base.init]p7:
  //   The initialization of each base and member constitutes a
  //   full-expression.
  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
                                       InitRange.getBegin());
  if (DelegationInit.isInvalid())
    return true;

  // If we are in a dependent context, template instantiation will
  // perform this type-checking again. Just save the arguments that we
  // received in a ParenListExpr.
  // FIXME: This isn't quite ideal, since our ASTs don't capture all
  // of the information that we have about the base
  // initializer. However, deconstructing the ASTs is a dicey process,
  // and this approach is far more likely to get the corner cases right.
  if (CurContext->isDependentContext())
    DelegationInit = Owned(Init);

  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), 
                                          DelegationInit.takeAs<Expr>(),
                                          InitRange.getEnd());
}

MemInitResult
Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
                           Expr *Init, CXXRecordDecl *ClassDecl,
                           SourceLocation EllipsisLoc) {
  SourceLocation BaseLoc
    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();

  if (!BaseType->isDependentType() && !BaseType->isRecordType())
    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();

  // C++ [class.base.init]p2:
  //   [...] Unless the mem-initializer-id names a nonstatic data
  //   member of the constructor's class or a direct or virtual base
  //   of that class, the mem-initializer is ill-formed. A
  //   mem-initializer-list can initialize a base class using any
  //   name that denotes that base class type.
  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();

  SourceRange InitRange = Init->getSourceRange();
  if (EllipsisLoc.isValid()) {
    // This is a pack expansion.
    if (!BaseType->containsUnexpandedParameterPack())  {
      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
        << SourceRange(BaseLoc, InitRange.getEnd());

      EllipsisLoc = SourceLocation();
    }
  } else {
    // Check for any unexpanded parameter packs.
    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
      return true;

    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
      return true;
  }

  // Check for direct and virtual base classes.
  const CXXBaseSpecifier *DirectBaseSpec = 0;
  const CXXBaseSpecifier *VirtualBaseSpec = 0;
  if (!Dependent) { 
    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
                                       BaseType))
      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);

    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, 
                        VirtualBaseSpec);

    // C++ [base.class.init]p2:
    // Unless the mem-initializer-id names a nonstatic data member of the
    // constructor's class or a direct or virtual base of that class, the
    // mem-initializer is ill-formed.
    if (!DirectBaseSpec && !VirtualBaseSpec) {
      // If the class has any dependent bases, then it's possible that
      // one of those types will resolve to the same type as
      // BaseType. Therefore, just treat this as a dependent base
      // class initialization.  FIXME: Should we try to check the
      // initialization anyway? It seems odd.
      if (ClassDecl->hasAnyDependentBases())
        Dependent = true;
      else
        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
          << BaseType << Context.getTypeDeclType(ClassDecl)
          << BaseTInfo->getTypeLoc().getLocalSourceRange();
    }
  }

  if (Dependent) {
    DiscardCleanupsInEvaluationContext();

    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
                                            /*IsVirtual=*/false,
                                            InitRange.getBegin(), Init,
                                            InitRange.getEnd(), EllipsisLoc);
  }

  // C++ [base.class.init]p2:
  //   If a mem-initializer-id is ambiguous because it designates both
  //   a direct non-virtual base class and an inherited virtual base
  //   class, the mem-initializer is ill-formed.
  if (DirectBaseSpec && VirtualBaseSpec)
    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();

  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
  if (!BaseSpec)
    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);

  // Initialize the base.
  bool InitList = true;
  MultiExprArg Args = Init;
  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
    InitList = false;
    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
  }

  InitializedEntity BaseEntity =
    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
  InitializationKind Kind =
    InitList ? InitializationKind::CreateDirectList(BaseLoc)
             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
                                                InitRange.getEnd());
  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, 0);
  if (BaseInit.isInvalid())
    return true;

  // C++11 [class.base.init]p7:
  //   The initialization of each base and member constitutes a
  //   full-expression.
  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
  if (BaseInit.isInvalid())
    return true;

  // If we are in a dependent context, template instantiation will
  // perform this type-checking again. Just save the arguments that we
  // received in a ParenListExpr.
  // FIXME: This isn't quite ideal, since our ASTs don't capture all
  // of the information that we have about the base
  // initializer. However, deconstructing the ASTs is a dicey process,
  // and this approach is far more likely to get the corner cases right.
  if (CurContext->isDependentContext())
    BaseInit = Owned(Init);

  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
                                          BaseSpec->isVirtual(),
                                          InitRange.getBegin(),
                                          BaseInit.takeAs<Expr>(),
                                          InitRange.getEnd(), EllipsisLoc);
}

// Create a static_cast\<T&&>(expr).
static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
  if (T.isNull()) T = E->getType();
  QualType TargetType = SemaRef.BuildReferenceType(
      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
  SourceLocation ExprLoc = E->getLocStart();
  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
      TargetType, ExprLoc);

  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
                                   SourceRange(ExprLoc, ExprLoc),
                                   E->getSourceRange()).take();
}

/// ImplicitInitializerKind - How an implicit base or member initializer should
/// initialize its base or member.
enum ImplicitInitializerKind {
  IIK_Default,
  IIK_Copy,
  IIK_Move,
  IIK_Inherit
};

static bool
BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
                             ImplicitInitializerKind ImplicitInitKind,
                             CXXBaseSpecifier *BaseSpec,
                             bool IsInheritedVirtualBase,
                             CXXCtorInitializer *&CXXBaseInit) {
  InitializedEntity InitEntity
    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
                                        IsInheritedVirtualBase);

  ExprResult BaseInit;
  
  switch (ImplicitInitKind) {
  case IIK_Inherit: {
    const CXXRecordDecl *Inherited =
        Constructor->getInheritedConstructor()->getParent();
    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
      // C++11 [class.inhctor]p8:
      //   Each expression in the expression-list is of the form
      //   static_cast<T&&>(p), where p is the name of the corresponding
      //   constructor parameter and T is the declared type of p.
      SmallVector<Expr*, 16> Args;
      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
        ParmVarDecl *PD = Constructor->getParamDecl(I);
        ExprResult ArgExpr =
            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
                                     VK_LValue, SourceLocation());
        if (ArgExpr.isInvalid())
          return true;
        Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
      }

      InitializationKind InitKind = InitializationKind::CreateDirect(
          Constructor->getLocation(), SourceLocation(), SourceLocation());
      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
      break;
    }
  }
  // Fall through.
  case IIK_Default: {
    InitializationKind InitKind
      = InitializationKind::CreateDefault(Constructor->getLocation());
    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
    break;
  }

  case IIK_Move:
  case IIK_Copy: {
    bool Moving = ImplicitInitKind == IIK_Move;
    ParmVarDecl *Param = Constructor->getParamDecl(0);
    QualType ParamType = Param->getType().getNonReferenceType();

    Expr *CopyCtorArg = 
      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
                          SourceLocation(), Param, false,
                          Constructor->getLocation(), ParamType,
                          VK_LValue, 0);

    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));

    // Cast to the base class to avoid ambiguities.
    QualType ArgTy = 
      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), 
                                       ParamType.getQualifiers());

    if (Moving) {
      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
    }

    CXXCastPath BasePath;
    BasePath.push_back(BaseSpec);
    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
                                            CK_UncheckedDerivedToBase,
                                            Moving ? VK_XValue : VK_LValue,
                                            &BasePath).take();

    InitializationKind InitKind
      = InitializationKind::CreateDirect(Constructor->getLocation(),
                                         SourceLocation(), SourceLocation());
    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
    break;
  }
  }

  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
  if (BaseInit.isInvalid())
    return true;
        
  CXXBaseInit =
    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), 
                                                        SourceLocation()),
                                             BaseSpec->isVirtual(),
                                             SourceLocation(),
                                             BaseInit.takeAs<Expr>(),
                                             SourceLocation(),
                                             SourceLocation());

  return false;
}

static bool RefersToRValueRef(Expr *MemRef) {
  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
  return Referenced->getType()->isRValueReferenceType();
}

static bool
BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
                               ImplicitInitializerKind ImplicitInitKind,
                               FieldDecl *Field, IndirectFieldDecl *Indirect,
                               CXXCtorInitializer *&CXXMemberInit) {
  if (Field->isInvalidDecl())
    return true;

  SourceLocation Loc = Constructor->getLocation();

  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
    bool Moving = ImplicitInitKind == IIK_Move;
    ParmVarDecl *Param = Constructor->getParamDecl(0);
    QualType ParamType = Param->getType().getNonReferenceType();

    // Suppress copying zero-width bitfields.
    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
      return false;
        
    Expr *MemberExprBase = 
      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
                          SourceLocation(), Param, false,
                          Loc, ParamType, VK_LValue, 0);

    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));

    if (Moving) {
      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
    }

    // Build a reference to this field within the parameter.
    CXXScopeSpec SS;
    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
                              Sema::LookupMemberName);
    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
                                  : cast<ValueDecl>(Field), AS_public);
    MemberLookup.resolveKind();
    ExprResult CtorArg 
      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
                                         ParamType, Loc,
                                         /*IsArrow=*/false,
                                         SS,
                                         /*TemplateKWLoc=*/SourceLocation(),
                                         /*FirstQualifierInScope=*/0,
                                         MemberLookup,
                                         /*TemplateArgs=*/0);    
    if (CtorArg.isInvalid())
      return true;

    // C++11 [class.copy]p15:
    //   - if a member m has rvalue reference type T&&, it is direct-initialized
    //     with static_cast<T&&>(x.m);
    if (RefersToRValueRef(CtorArg.get())) {
      CtorArg = CastForMoving(SemaRef, CtorArg.take());
    }

    // When the field we are copying is an array, create index variables for 
    // each dimension of the array. We use these index variables to subscript
    // the source array, and other clients (e.g., CodeGen) will perform the
    // necessary iteration with these index variables.
    SmallVector<VarDecl *, 4> IndexVariables;
    QualType BaseType = Field->getType();
    QualType SizeType = SemaRef.Context.getSizeType();
    bool InitializingArray = false;
    while (const ConstantArrayType *Array
                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
      InitializingArray = true;
      // Create the iteration variable for this array index.
      IdentifierInfo *IterationVarName = 0;
      {
        SmallString<8> Str;
        llvm::raw_svector_ostream OS(Str);
        OS << "__i" << IndexVariables.size();
        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
      }
      VarDecl *IterationVar
        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
                          IterationVarName, SizeType,
                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
                          SC_None);
      IndexVariables.push_back(IterationVar);
      
      // Create a reference to the iteration variable.
      ExprResult IterationVarRef
        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
      assert(!IterationVarRef.isInvalid() &&
             "Reference to invented variable cannot fail!");
      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
      assert(!IterationVarRef.isInvalid() &&
             "Conversion of invented variable cannot fail!");

      // Subscript the array with this iteration variable.
      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
                                                        IterationVarRef.take(),
                                                        Loc);
      if (CtorArg.isInvalid())
        return true;

      BaseType = Array->getElementType();
    }

    // The array subscript expression is an lvalue, which is wrong for moving.
    if (Moving && InitializingArray)
      CtorArg = CastForMoving(SemaRef, CtorArg.take());

    // Construct the entity that we will be initializing. For an array, this
    // will be first element in the array, which may require several levels
    // of array-subscript entities. 
    SmallVector<InitializedEntity, 4> Entities;
    Entities.reserve(1 + IndexVariables.size());
    if (Indirect)
      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
    else
      Entities.push_back(InitializedEntity::InitializeMember(Field));
    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
                                                              0,
                                                              Entities.back()));
    
    // Direct-initialize to use the copy constructor.
    InitializationKind InitKind =
      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
    
    Expr *CtorArgE = CtorArg.takeAs<Expr>();
    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, CtorArgE);
    
    ExprResult MemberInit
      = InitSeq.Perform(SemaRef, Entities.back(), InitKind, 
                        MultiExprArg(&CtorArgE, 1));
    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
    if (MemberInit.isInvalid())
      return true;

    if (Indirect) {
      assert(IndexVariables.size() == 0 && 
             "Indirect field improperly initialized");
      CXXMemberInit
        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect, 
                                                   Loc, Loc, 
                                                   MemberInit.takeAs<Expr>(), 
                                                   Loc);
    } else
      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, 
                                                 Loc, MemberInit.takeAs<Expr>(), 
                                                 Loc,
                                                 IndexVariables.data(),
                                                 IndexVariables.size());
    return false;
  }

  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
         "Unhandled implicit init kind!");

  QualType FieldBaseElementType = 
    SemaRef.Context.getBaseElementType(Field->getType());
  
  if (FieldBaseElementType->isRecordType()) {
    InitializedEntity InitEntity 
      = Indirect? InitializedEntity::InitializeMember(Indirect)
                : InitializedEntity::InitializeMember(Field);
    InitializationKind InitKind = 
      InitializationKind::CreateDefault(Loc);

    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
    ExprResult MemberInit =
      InitSeq.Perform(SemaRef, InitEntity, InitKind, None);

    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
    if (MemberInit.isInvalid())
      return true;
    
    if (Indirect)
      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
                                                               Indirect, Loc, 
                                                               Loc,
                                                               MemberInit.get(),
                                                               Loc);
    else
      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
                                                               Field, Loc, Loc,
                                                               MemberInit.get(),
                                                               Loc);
    return false;
  }

  if (!Field->getParent()->isUnion()) {
    if (FieldBaseElementType->isReferenceType()) {
      SemaRef.Diag(Constructor->getLocation(), 
                   diag::err_uninitialized_member_in_ctor)
      << (int)Constructor->isImplicit() 
      << SemaRef.Context.getTagDeclType(Constructor->getParent())
      << 0 << Field->getDeclName();
      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
      return true;
    }

    if (FieldBaseElementType.isConstQualified()) {
      SemaRef.Diag(Constructor->getLocation(), 
                   diag::err_uninitialized_member_in_ctor)
      << (int)Constructor->isImplicit() 
      << SemaRef.Context.getTagDeclType(Constructor->getParent())
      << 1 << Field->getDeclName();
      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
      return true;
    }
  }
  
  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
      FieldBaseElementType->isObjCRetainableType() &&
      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
    // ARC:
    //   Default-initialize Objective-C pointers to NULL.
    CXXMemberInit
      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, 
                                                 Loc, Loc, 
                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), 
                                                 Loc);
    return false;
  }
      
  // Nothing to initialize.
  CXXMemberInit = 0;
  return false;
}

namespace {
struct BaseAndFieldInfo {
  Sema &S;
  CXXConstructorDecl *Ctor;
  bool AnyErrorsInInits;
  ImplicitInitializerKind IIK;
  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
  SmallVector<CXXCtorInitializer*, 8> AllToInit;

  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
    if (Generated && Ctor->isCopyConstructor())
      IIK = IIK_Copy;
    else if (Generated && Ctor->isMoveConstructor())
      IIK = IIK_Move;
    else if (Ctor->getInheritedConstructor())
      IIK = IIK_Inherit;
    else
      IIK = IIK_Default;
  }
  
  bool isImplicitCopyOrMove() const {
    switch (IIK) {
    case IIK_Copy:
    case IIK_Move:
      return true;
      
    case IIK_Default:
    case IIK_Inherit:
      return false;
    }

    llvm_unreachable("Invalid ImplicitInitializerKind!");
  }

  bool addFieldInitializer(CXXCtorInitializer *Init) {
    AllToInit.push_back(Init);

    // Check whether this initializer makes the field "used".
    if (Init->getInit()->HasSideEffects(S.Context))
      S.UnusedPrivateFields.remove(Init->getAnyMember());

    return false;
  }
};
}

/// \brief Determine whether the given indirect field declaration is somewhere
/// within an anonymous union.
static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(), 
                                      CEnd = F->chain_end();
       C != CEnd; ++C)
    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
      if (Record->isUnion())
        return true;
        
  return false;
}

/// \brief Determine whether the given type is an incomplete or zero-lenfgth
/// array type.
static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
  if (T->isIncompleteArrayType())
    return true;
  
  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
    if (!ArrayT->getSize())
      return true;
    
    T = ArrayT->getElementType();
  }
  
  return false;
}

static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
                                    FieldDecl *Field, 
                                    IndirectFieldDecl *Indirect = 0) {

  // Overwhelmingly common case: we have a direct initializer for this field.
  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
    return Info.addFieldInitializer(Init);

  // C++11 [class.base.init]p8: if the entity is a non-static data member that
  // has a brace-or-equal-initializer, the entity is initialized as specified
  // in [dcl.init].
  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
    Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
                                           Info.Ctor->getLocation(), Field);
    CXXCtorInitializer *Init;
    if (Indirect)
      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
                                                      SourceLocation(),
                                                      SourceLocation(), DIE,
                                                      SourceLocation());
    else
      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
                                                      SourceLocation(),
                                                      SourceLocation(), DIE,
                                                      SourceLocation());
    return Info.addFieldInitializer(Init);
  }

  // Don't build an implicit initializer for union members if none was
  // explicitly specified.
  if (Field->getParent()->isUnion() ||
      (Indirect && isWithinAnonymousUnion(Indirect)))
    return false;

  // Don't initialize incomplete or zero-length arrays.
  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
    return false;

  // Don't try to build an implicit initializer if there were semantic
  // errors in any of the initializers (and therefore we might be
  // missing some that the user actually wrote).
  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
    return false;

  CXXCtorInitializer *Init = 0;
  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
                                     Indirect, Init))
    return true;

  if (!Init)
    return false;

  return Info.addFieldInitializer(Init);
}

bool
Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
                               CXXCtorInitializer *Initializer) {
  assert(Initializer->isDelegatingInitializer());
  Constructor->setNumCtorInitializers(1);
  CXXCtorInitializer **initializer =
    new (Context) CXXCtorInitializer*[1];
  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
  Constructor->setCtorInitializers(initializer);

  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
  }

  DelegatingCtorDecls.push_back(Constructor);

  return false;
}

bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
                               ArrayRef<CXXCtorInitializer *> Initializers) {
  if (Constructor->isDependentContext()) {
    // Just store the initializers as written, they will be checked during
    // instantiation.
    if (!Initializers.empty()) {
      Constructor->setNumCtorInitializers(Initializers.size());
      CXXCtorInitializer **baseOrMemberInitializers =
        new (Context) CXXCtorInitializer*[Initializers.size()];
      memcpy(baseOrMemberInitializers, Initializers.data(),
             Initializers.size() * sizeof(CXXCtorInitializer*));
      Constructor->setCtorInitializers(baseOrMemberInitializers);
    }

    // Let template instantiation know whether we had errors.
    if (AnyErrors)
      Constructor->setInvalidDecl();

    return false;
  }

  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);

  // We need to build the initializer AST according to order of construction
  // and not what user specified in the Initializers list.
  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
  if (!ClassDecl)
    return true;
  
  bool HadError = false;

  for (unsigned i = 0; i < Initializers.size(); i++) {
    CXXCtorInitializer *Member = Initializers[i];
    
    if (Member->isBaseInitializer())
      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
    else
      Info.AllBaseFields[Member->getAnyMember()] = Member;
  }

  // Keep track of the direct virtual bases.
  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
       E = ClassDecl->bases_end(); I != E; ++I) {
    if (I->isVirtual())
      DirectVBases.insert(I);
  }

  // Push virtual bases before others.
  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {

    if (CXXCtorInitializer *Value
        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
      Info.AllToInit.push_back(Value);
    } else if (!AnyErrors) {
      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
      CXXCtorInitializer *CXXBaseInit;
      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
                                       VBase, IsInheritedVirtualBase, 
                                       CXXBaseInit)) {
        HadError = true;
        continue;
      }

      Info.AllToInit.push_back(CXXBaseInit);
    }
  }

  // Non-virtual bases.
  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
       E = ClassDecl->bases_end(); Base != E; ++Base) {
    // Virtuals are in the virtual base list and already constructed.
    if (Base->isVirtual())
      continue;

    if (CXXCtorInitializer *Value
          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
      Info.AllToInit.push_back(Value);
    } else if (!AnyErrors) {
      CXXCtorInitializer *CXXBaseInit;
      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
                                       Base, /*IsInheritedVirtualBase=*/false,
                                       CXXBaseInit)) {
        HadError = true;
        continue;
      }

      Info.AllToInit.push_back(CXXBaseInit);
    }
  }

  // Fields.
  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
                               MemEnd = ClassDecl->decls_end();
       Mem != MemEnd; ++Mem) {
    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
      // C++ [class.bit]p2:
      //   A declaration for a bit-field that omits the identifier declares an
      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
      //   initialized.
      if (F->isUnnamedBitfield())
        continue;
            
      // If we're not generating the implicit copy/move constructor, then we'll
      // handle anonymous struct/union fields based on their individual
      // indirect fields.
      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
        continue;
          
      if (CollectFieldInitializer(*this, Info, F))
        HadError = true;
      continue;
    }
    
    // Beyond this point, we only consider default initialization.
    if (Info.isImplicitCopyOrMove())
      continue;
    
    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
      if (F->getType()->isIncompleteArrayType()) {
        assert(ClassDecl->hasFlexibleArrayMember() &&
               "Incomplete array type is not valid");
        continue;
      }
      
      // Initialize each field of an anonymous struct individually.
      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
        HadError = true;
      
      continue;        
    }
  }

  unsigned NumInitializers = Info.AllToInit.size();
  if (NumInitializers > 0) {
    Constructor->setNumCtorInitializers(NumInitializers);
    CXXCtorInitializer **baseOrMemberInitializers =
      new (Context) CXXCtorInitializer*[NumInitializers];
    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
           NumInitializers * sizeof(CXXCtorInitializer*));
    Constructor->setCtorInitializers(baseOrMemberInitializers);

    // Constructors implicitly reference the base and member
    // destructors.
    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
                                           Constructor->getParent());
  }

  return HadError;
}

static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
    const RecordDecl *RD = RT->getDecl();
    if (RD->isAnonymousStructOrUnion()) {
      for (RecordDecl::field_iterator Field = RD->field_begin(),
          E = RD->field_end(); Field != E; ++Field)
        PopulateKeysForFields(*Field, IdealInits);
      return;
    }
  }
  IdealInits.push_back(Field);
}

static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
}

static void *GetKeyForMember(ASTContext &Context,
                             CXXCtorInitializer *Member) {
  if (!Member->isAnyMemberInitializer())
    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
    
  return Member->getAnyMember();
}

static void DiagnoseBaseOrMemInitializerOrder(
    Sema &SemaRef, const CXXConstructorDecl *Constructor,
    ArrayRef<CXXCtorInitializer *> Inits) {
  if (Constructor->getDeclContext()->isDependentContext())
    return;

  // Don't check initializers order unless the warning is enabled at the
  // location of at least one initializer. 
  bool ShouldCheckOrder = false;
  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
    CXXCtorInitializer *Init = Inits[InitIndex];
    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
                                         Init->getSourceLocation())
          != DiagnosticsEngine::Ignored) {
      ShouldCheckOrder = true;
      break;
    }
  }
  if (!ShouldCheckOrder)
    return;
  
  // Build the list of bases and members in the order that they'll
  // actually be initialized.  The explicit initializers should be in
  // this same order but may be missing things.
  SmallVector<const void*, 32> IdealInitKeys;

  const CXXRecordDecl *ClassDecl = Constructor->getParent();

  // 1. Virtual bases.
  for (CXXRecordDecl::base_class_const_iterator VBase =
       ClassDecl->vbases_begin(),
       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));

  // 2. Non-virtual bases.
  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
       E = ClassDecl->bases_end(); Base != E; ++Base) {
    if (Base->isVirtual())
      continue;
    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
  }

  // 3. Direct fields.
  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
       E = ClassDecl->field_end(); Field != E; ++Field) {
    if (Field->isUnnamedBitfield())
      continue;
    
    PopulateKeysForFields(*Field, IdealInitKeys);
  }
  
  unsigned NumIdealInits = IdealInitKeys.size();
  unsigned IdealIndex = 0;

  CXXCtorInitializer *PrevInit = 0;
  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
    CXXCtorInitializer *Init = Inits[InitIndex];
    void *InitKey = GetKeyForMember(SemaRef.Context, Init);

    // Scan forward to try to find this initializer in the idealized
    // initializers list.
    for (; IdealIndex != NumIdealInits; ++IdealIndex)
      if (InitKey == IdealInitKeys[IdealIndex])
        break;

    // If we didn't find this initializer, it must be because we
    // scanned past it on a previous iteration.  That can only
    // happen if we're out of order;  emit a warning.
    if (IdealIndex == NumIdealInits && PrevInit) {
      Sema::SemaDiagnosticBuilder D =
        SemaRef.Diag(PrevInit->getSourceLocation(),
                     diag::warn_initializer_out_of_order);

      if (PrevInit->isAnyMemberInitializer())
        D << 0 << PrevInit->getAnyMember()->getDeclName();
      else
        D << 1 << PrevInit->getTypeSourceInfo()->getType();
      
      if (Init->isAnyMemberInitializer())
        D << 0 << Init->getAnyMember()->getDeclName();
      else
        D << 1 << Init->getTypeSourceInfo()->getType();

      // Move back to the initializer's location in the ideal list.
      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
        if (InitKey == IdealInitKeys[IdealIndex])
          break;

      assert(IdealIndex != NumIdealInits &&
             "initializer not found in initializer list");
    }

    PrevInit = Init;
  }
}

namespace {
bool CheckRedundantInit(Sema &S,
                        CXXCtorInitializer *Init,
                        CXXCtorInitializer *&PrevInit) {
  if (!PrevInit) {
    PrevInit = Init;
    return false;
  }

  if (FieldDecl *Field = Init->getAnyMember())
    S.Diag(Init->getSourceLocation(),
           diag::err_multiple_mem_initialization)
      << Field->getDeclName()
      << Init->getSourceRange();
  else {
    const Type *BaseClass = Init->getBaseClass();
    assert(BaseClass && "neither field nor base");
    S.Diag(Init->getSourceLocation(),
           diag::err_multiple_base_initialization)
      << QualType(BaseClass, 0)
      << Init->getSourceRange();
  }
  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
    << 0 << PrevInit->getSourceRange();

  return true;
}

typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;

bool CheckRedundantUnionInit(Sema &S,
                             CXXCtorInitializer *Init,
                             RedundantUnionMap &Unions) {
  FieldDecl *Field = Init->getAnyMember();
  RecordDecl *Parent = Field->getParent();
  NamedDecl *Child = Field;

  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
    if (Parent->isUnion()) {
      UnionEntry &En = Unions[Parent];
      if (En.first && En.first != Child) {
        S.Diag(Init->getSourceLocation(),
               diag::err_multiple_mem_union_initialization)
          << Field->getDeclName()
          << Init->getSourceRange();
        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
          << 0 << En.second->getSourceRange();
        return true;
      } 
      if (!En.first) {
        En.first = Child;
        En.second = Init;
      }
      if (!Parent->isAnonymousStructOrUnion())
        return false;
    }

    Child = Parent;
    Parent = cast<RecordDecl>(Parent->getDeclContext());
  }

  return false;
}
}

/// ActOnMemInitializers - Handle the member initializers for a constructor.
void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
                                SourceLocation ColonLoc,
                                ArrayRef<CXXCtorInitializer*> MemInits,
                                bool AnyErrors) {
  if (!ConstructorDecl)
    return;

  AdjustDeclIfTemplate(ConstructorDecl);

  CXXConstructorDecl *Constructor
    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);

  if (!Constructor) {
    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
    return;
  }
  
  // Mapping for the duplicate initializers check.
  // For member initializers, this is keyed with a FieldDecl*.
  // For base initializers, this is keyed with a Type*.
  llvm::DenseMap<void*, CXXCtorInitializer *> Members;

  // Mapping for the inconsistent anonymous-union initializers check.
  RedundantUnionMap MemberUnions;

  bool HadError = false;
  for (unsigned i = 0; i < MemInits.size(); i++) {
    CXXCtorInitializer *Init = MemInits[i];

    // Set the source order index.
    Init->setSourceOrder(i);

    if (Init->isAnyMemberInitializer()) {
      FieldDecl *Field = Init->getAnyMember();
      if (CheckRedundantInit(*this, Init, Members[Field]) ||
          CheckRedundantUnionInit(*this, Init, MemberUnions))
        HadError = true;
    } else if (Init->isBaseInitializer()) {
      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
      if (CheckRedundantInit(*this, Init, Members[Key]))
        HadError = true;
    } else {
      assert(Init->isDelegatingInitializer());
      // This must be the only initializer
      if (MemInits.size() != 1) {
        Diag(Init->getSourceLocation(),
             diag::err_delegating_initializer_alone)
          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
        // We will treat this as being the only initializer.
      }
      SetDelegatingInitializer(Constructor, MemInits[i]);
      // Return immediately as the initializer is set.
      return;
    }
  }

  if (HadError)
    return;

  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);

  SetCtorInitializers(Constructor, AnyErrors, MemInits);
}

void
Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
                                             CXXRecordDecl *ClassDecl) {
  // Ignore dependent contexts. Also ignore unions, since their members never
  // have destructors implicitly called.
  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
    return;

  // FIXME: all the access-control diagnostics are positioned on the
  // field/base declaration.  That's probably good; that said, the
  // user might reasonably want to know why the destructor is being
  // emitted, and we currently don't say.
  
  // Non-static data members.
  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
       E = ClassDecl->field_end(); I != E; ++I) {
    FieldDecl *Field = *I;
    if (Field->isInvalidDecl())
      continue;
    
    // Don't destroy incomplete or zero-length arrays.
    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
      continue;

    QualType FieldType = Context.getBaseElementType(Field->getType());
    
    const RecordType* RT = FieldType->getAs<RecordType>();
    if (!RT)
      continue;
    
    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
    if (FieldClassDecl->isInvalidDecl())
      continue;
    if (FieldClassDecl->hasIrrelevantDestructor())
      continue;
    // The destructor for an implicit anonymous union member is never invoked.
    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
      continue;

    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
    assert(Dtor && "No dtor found for FieldClassDecl!");
    CheckDestructorAccess(Field->getLocation(), Dtor,
                          PDiag(diag::err_access_dtor_field)
                            << Field->getDeclName()
                            << FieldType);

    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
    DiagnoseUseOfDecl(Dtor, Location);
  }

  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;

  // Bases.
  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
       E = ClassDecl->bases_end(); Base != E; ++Base) {
    // Bases are always records in a well-formed non-dependent class.
    const RecordType *RT = Base->getType()->getAs<RecordType>();

    // Remember direct virtual bases.
    if (Base->isVirtual())
      DirectVirtualBases.insert(RT);

    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
    // If our base class is invalid, we probably can't get its dtor anyway.
    if (BaseClassDecl->isInvalidDecl())
      continue;
    if (BaseClassDecl->hasIrrelevantDestructor())
      continue;

    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
    assert(Dtor && "No dtor found for BaseClassDecl!");

    // FIXME: caret should be on the start of the class name
    CheckDestructorAccess(Base->getLocStart(), Dtor,
                          PDiag(diag::err_access_dtor_base)
                            << Base->getType()
                            << Base->getSourceRange(),
                          Context.getTypeDeclType(ClassDecl));
    
    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
    DiagnoseUseOfDecl(Dtor, Location);
  }
  
  // Virtual bases.
  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {

    // Bases are always records in a well-formed non-dependent class.
    const RecordType *RT = VBase->getType()->castAs<RecordType>();

    // Ignore direct virtual bases.
    if (DirectVirtualBases.count(RT))
      continue;

    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
    // If our base class is invalid, we probably can't get its dtor anyway.
    if (BaseClassDecl->isInvalidDecl())
      continue;
    if (BaseClassDecl->hasIrrelevantDestructor())
      continue;

    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
    assert(Dtor && "No dtor found for BaseClassDecl!");
    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
                          PDiag(diag::err_access_dtor_vbase)
                            << VBase->getType(),
                          Context.getTypeDeclType(ClassDecl));

    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
    DiagnoseUseOfDecl(Dtor, Location);
  }
}

void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
  if (!CDtorDecl)
    return;

  if (CXXConstructorDecl *Constructor
      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
}

bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
                                  unsigned DiagID, AbstractDiagSelID SelID) {
  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
    unsigned DiagID;
    AbstractDiagSelID SelID;
    
  public:
    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
    
    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
      if (Suppressed) return;
      if (SelID == -1)
        S.Diag(Loc, DiagID) << T;
      else
        S.Diag(Loc, DiagID) << SelID << T;
    }
  } Diagnoser(DiagID, SelID);
  
  return RequireNonAbstractType(Loc, T, Diagnoser);
}

bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
                                  TypeDiagnoser &Diagnoser) {
  if (!getLangOpts().CPlusPlus)
    return false;

  if (const ArrayType *AT = Context.getAsArrayType(T))
    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);

  if (const PointerType *PT = T->getAs<PointerType>()) {
    // Find the innermost pointer type.
    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
      PT = T;

    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
  }

  const RecordType *RT = T->getAs<RecordType>();
  if (!RT)
    return false;

  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());

  // We can't answer whether something is abstract until it has a
  // definition.  If it's currently being defined, we'll walk back
  // over all the declarations when we have a full definition.
  const CXXRecordDecl *Def = RD->getDefinition();
  if (!Def || Def->isBeingDefined())
    return false;

  if (!RD->isAbstract())
    return false;

  Diagnoser.diagnose(*this, Loc, T);
  DiagnoseAbstractType(RD);

  return true;
}

void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
  // Check if we've already emitted the list of pure virtual functions
  // for this class.
  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
    return;

  CXXFinalOverriderMap FinalOverriders;
  RD->getFinalOverriders(FinalOverriders);

  // Keep a set of seen pure methods so we won't diagnose the same method
  // more than once.
  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
  
  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 
                                   MEnd = FinalOverriders.end();
       M != MEnd; 
       ++M) {
    for (OverridingMethods::iterator SO = M->second.begin(), 
                                  SOEnd = M->second.end();
         SO != SOEnd; ++SO) {
      // C++ [class.abstract]p4:
      //   A class is abstract if it contains or inherits at least one
      //   pure virtual function for which the final overrider is pure
      //   virtual.

      // 
      if (SO->second.size() != 1)
        continue;

      if (!SO->second.front().Method->isPure())
        continue;

      if (!SeenPureMethods.insert(SO->second.front().Method))
        continue;

      Diag(SO->second.front().Method->getLocation(), 
           diag::note_pure_virtual_function) 
        << SO->second.front().Method->getDeclName() << RD->getDeclName();
    }
  }

  if (!PureVirtualClassDiagSet)
    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
  PureVirtualClassDiagSet->insert(RD);
}

namespace {
struct AbstractUsageInfo {
  Sema &S;
  CXXRecordDecl *Record;
  CanQualType AbstractType;
  bool Invalid;

  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
    : S(S), Record(Record),
      AbstractType(S.Context.getCanonicalType(
                   S.Context.getTypeDeclType(Record))),
      Invalid(false) {}

  void DiagnoseAbstractType() {
    if (Invalid) return;
    S.DiagnoseAbstractType(Record);
    Invalid = true;
  }

  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
};

struct CheckAbstractUsage {
  AbstractUsageInfo &Info;
  const NamedDecl *Ctx;

  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
    : Info(Info), Ctx(Ctx) {}

  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
    switch (TL.getTypeLocClass()) {
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
#include "clang/AST/TypeLocNodes.def"
    }
  }

  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
      if (!TL.getArg(I))
        continue;
      
      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
    }
  }

  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
  }

  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
    // Visit the type parameters from a permissive context.
    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
      TemplateArgumentLoc TAL = TL.getArgLoc(I);
      if (TAL.getArgument().getKind() == TemplateArgument::Type)
        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
      // TODO: other template argument types?
    }
  }

  // Visit pointee types from a permissive context.
#define CheckPolymorphic(Type) \
  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
  }
  CheckPolymorphic(PointerTypeLoc)
  CheckPolymorphic(ReferenceTypeLoc)
  CheckPolymorphic(MemberPointerTypeLoc)
  CheckPolymorphic(BlockPointerTypeLoc)
  CheckPolymorphic(AtomicTypeLoc)

  /// Handle all the types we haven't given a more specific
  /// implementation for above.
  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
    // Every other kind of type that we haven't called out already
    // that has an inner type is either (1) sugar or (2) contains that
    // inner type in some way as a subobject.
    if (TypeLoc Next = TL.getNextTypeLoc())
      return Visit(Next, Sel);

    // If there's no inner type and we're in a permissive context,
    // don't diagnose.
    if (Sel == Sema::AbstractNone) return;

    // Check whether the type matches the abstract type.
    QualType T = TL.getType();
    if (T->isArrayType()) {
      Sel = Sema::AbstractArrayType;
      T = Info.S.Context.getBaseElementType(T);
    }
    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
    if (CT != Info.AbstractType) return;

    // It matched; do some magic.
    if (Sel == Sema::AbstractArrayType) {
      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
        << T << TL.getSourceRange();
    } else {
      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
        << Sel << T << TL.getSourceRange();
    }
    Info.DiagnoseAbstractType();
  }
};

void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
                                  Sema::AbstractDiagSelID Sel) {
  CheckAbstractUsage(*this, D).Visit(TL, Sel);
}

}

/// Check for invalid uses of an abstract type in a method declaration.
static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
                                    CXXMethodDecl *MD) {
  // No need to do the check on definitions, which require that
  // the return/param types be complete.
  if (MD->doesThisDeclarationHaveABody())
    return;

  // For safety's sake, just ignore it if we don't have type source
  // information.  This should never happen for non-implicit methods,
  // but...
  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
}

/// Check for invalid uses of an abstract type within a class definition.
static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
                                    CXXRecordDecl *RD) {
  for (CXXRecordDecl::decl_iterator
         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
    Decl *D = *I;
    if (D->isImplicit()) continue;

    // Methods and method templates.
    if (isa<CXXMethodDecl>(D)) {
      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
    } else if (isa<FunctionTemplateDecl>(D)) {
      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));

    // Fields and static variables.
    } else if (isa<FieldDecl>(D)) {
      FieldDecl *FD = cast<FieldDecl>(D);
      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
    } else if (isa<VarDecl>(D)) {
      VarDecl *VD = cast<VarDecl>(D);
      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);

    // Nested classes and class templates.
    } else if (isa<CXXRecordDecl>(D)) {
      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
    } else if (isa<ClassTemplateDecl>(D)) {
      CheckAbstractClassUsage(Info,
                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
    }
  }
}

/// \brief Perform semantic checks on a class definition that has been
/// completing, introducing implicitly-declared members, checking for
/// abstract types, etc.
void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
  if (!Record)
    return;

  if (Record->isAbstract() && !Record->isInvalidDecl()) {
    AbstractUsageInfo Info(*this, Record);
    CheckAbstractClassUsage(Info, Record);
  }
  
  // If this is not an aggregate type and has no user-declared constructor,
  // complain about any non-static data members of reference or const scalar
  // type, since they will never get initializers.
  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
      !Record->isLambda()) {
    bool Complained = false;
    for (RecordDecl::field_iterator F = Record->field_begin(), 
                                 FEnd = Record->field_end();
         F != FEnd; ++F) {
      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
        continue;

      if (F->getType()->isReferenceType() ||
          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
        if (!Complained) {
          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
            << Record->getTagKind() << Record;
          Complained = true;
        }
        
        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
          << F->getType()->isReferenceType()
          << F->getDeclName();
      }
    }
  }

  if (Record->isDynamicClass() && !Record->isDependentType())
    DynamicClasses.push_back(Record);

  if (Record->getIdentifier()) {
    // C++ [class.mem]p13:
    //   If T is the name of a class, then each of the following shall have a 
    //   name different from T:
    //     - every member of every anonymous union that is a member of class T.
    //
    // C++ [class.mem]p14:
    //   In addition, if class T has a user-declared constructor (12.1), every 
    //   non-static data member of class T shall have a name different from T.
    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
         ++I) {
      NamedDecl *D = *I;
      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
          isa<IndirectFieldDecl>(D)) {
        Diag(D->getLocation(), diag::err_member_name_of_class)
          << D->getDeclName();
        break;
      }
    }
  }

  // Warn if the class has virtual methods but non-virtual public destructor.
  if (Record->isPolymorphic() && !Record->isDependentType()) {
    CXXDestructorDecl *dtor = Record->getDestructor();
    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
  }

  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
    Diag(Record->getLocation(), diag::warn_abstract_final_class);
    DiagnoseAbstractType(Record);
  }

  if (!Record->isDependentType()) {
    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
                                     MEnd = Record->method_end();
         M != MEnd; ++M) {
      // See if a method overloads virtual methods in a base
      // class without overriding any.
      if (!M->isStatic())
        DiagnoseHiddenVirtualMethods(Record, *M);

      // Check whether the explicitly-defaulted special members are valid.
      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
        CheckExplicitlyDefaultedSpecialMember(*M);

      // For an explicitly defaulted or deleted special member, we defer
      // determining triviality until the class is complete. That time is now!
      if (!M->isImplicit() && !M->isUserProvided()) {
        CXXSpecialMember CSM = getSpecialMember(*M);
        if (CSM != CXXInvalid) {
          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));

          // Inform the class that we've finished declaring this member.
          Record->finishedDefaultedOrDeletedMember(*M);
        }
      }
    }
  }

  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
  // function that is not a constructor declares that member function to be
  // const. [...] The class of which that function is a member shall be
  // a literal type.
  //
  // If the class has virtual bases, any constexpr members will already have
  // been diagnosed by the checks performed on the member declaration, so
  // suppress this (less useful) diagnostic.
  //
  // We delay this until we know whether an explicitly-defaulted (or deleted)
  // destructor for the class is trivial.
  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
      !Record->isLiteral() && !Record->getNumVBases()) {
    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
                                     MEnd = Record->method_end();
         M != MEnd; ++M) {
      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
        switch (Record->getTemplateSpecializationKind()) {
        case TSK_ImplicitInstantiation:
        case TSK_ExplicitInstantiationDeclaration:
        case TSK_ExplicitInstantiationDefinition:
          // If a template instantiates to a non-literal type, but its members
          // instantiate to constexpr functions, the template is technically
          // ill-formed, but we allow it for sanity.
          continue;

        case TSK_Undeclared:
        case TSK_ExplicitSpecialization:
          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
                             diag::err_constexpr_method_non_literal);
          break;
        }

        // Only produce one error per class.
        break;
      }
    }
  }

  // Declare inheriting constructors. We do this eagerly here because:
  // - The standard requires an eager diagnostic for conflicting inheriting
  //   constructors from different classes.
  // - The lazy declaration of the other implicit constructors is so as to not
  //   waste space and performance on classes that are not meant to be
  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
  //   have inheriting constructors.
  DeclareInheritingConstructors(Record);
}

/// Is the special member function which would be selected to perform the
/// specified operation on the specified class type a constexpr constructor?
static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
                                     Sema::CXXSpecialMember CSM,
                                     bool ConstArg) {
  Sema::SpecialMemberOverloadResult *SMOR =
      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
                            false, false, false, false);
  if (!SMOR || !SMOR->getMethod())
    // A constructor we wouldn't select can't be "involved in initializing"
    // anything.
    return true;
  return SMOR->getMethod()->isConstexpr();
}

/// Determine whether the specified special member function would be constexpr
/// if it were implicitly defined.
static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
                                              Sema::CXXSpecialMember CSM,
                                              bool ConstArg) {
  if (!S.getLangOpts().CPlusPlus11)
    return false;

  // C++11 [dcl.constexpr]p4:
  // In the definition of a constexpr constructor [...]
  switch (CSM) {
  case Sema::CXXDefaultConstructor:
    // Since default constructor lookup is essentially trivial (and cannot
    // involve, for instance, template instantiation), we compute whether a
    // defaulted default constructor is constexpr directly within CXXRecordDecl.
    //
    // This is important for performance; we need to know whether the default
    // constructor is constexpr to determine whether the type is a literal type.
    return ClassDecl->defaultedDefaultConstructorIsConstexpr();

  case Sema::CXXCopyConstructor:
  case Sema::CXXMoveConstructor:
    // For copy or move constructors, we need to perform overload resolution.
    break;

  case Sema::CXXCopyAssignment:
  case Sema::CXXMoveAssignment:
  case Sema::CXXDestructor:
  case Sema::CXXInvalid:
    return false;
  }

  //   -- if the class is a non-empty union, or for each non-empty anonymous
  //      union member of a non-union class, exactly one non-static data member
  //      shall be initialized; [DR1359]
  //
  // If we squint, this is guaranteed, since exactly one non-static data member
  // will be initialized (if the constructor isn't deleted), we just don't know
  // which one.
  if (ClassDecl->isUnion())
    return true;

  //   -- the class shall not have any virtual base classes;
  if (ClassDecl->getNumVBases())
    return false;

  //   -- every constructor involved in initializing [...] base class
  //      sub-objects shall be a constexpr constructor;
  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
                                       BEnd = ClassDecl->bases_end();
       B != BEnd; ++B) {
    const RecordType *BaseType = B->getType()->getAs<RecordType>();
    if (!BaseType) continue;

    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
      return false;
  }

  //   -- every constructor involved in initializing non-static data members
  //      [...] shall be a constexpr constructor;
  //   -- every non-static data member and base class sub-object shall be
  //      initialized
  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
                               FEnd = ClassDecl->field_end();
       F != FEnd; ++F) {
    if (F->isInvalidDecl())
      continue;
    if (const RecordType *RecordTy =
            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
        return false;
    }
  }

  // All OK, it's constexpr!
  return true;
}

static Sema::ImplicitExceptionSpecification
computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
  switch (S.getSpecialMember(MD)) {
  case Sema::CXXDefaultConstructor:
    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
  case Sema::CXXCopyConstructor:
    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
  case Sema::CXXCopyAssignment:
    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
  case Sema::CXXMoveConstructor:
    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
  case Sema::CXXMoveAssignment:
    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
  case Sema::CXXDestructor:
    return S.ComputeDefaultedDtorExceptionSpec(MD);
  case Sema::CXXInvalid:
    break;
  }
  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
         "only special members have implicit exception specs");
  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
}

static void
updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
  ExceptSpec.getEPI(EPI);
  FD->setType(S.Context.getFunctionType(FPT->getResultType(),
                                        FPT->getArgTypes(), EPI));
}

void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
  if (FPT->getExceptionSpecType() != EST_Unevaluated)
    return;

  // Evaluate the exception specification.
  ImplicitExceptionSpecification ExceptSpec =
      computeImplicitExceptionSpec(*this, Loc, MD);

  // Update the type of the special member to use it.
  updateExceptionSpec(*this, MD, FPT, ExceptSpec);

  // A user-provided destructor can be defined outside the class. When that
  // happens, be sure to update the exception specification on both
  // declarations.
  const FunctionProtoType *CanonicalFPT =
    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
    updateExceptionSpec(*this, MD->getCanonicalDecl(),
                        CanonicalFPT, ExceptSpec);
}

void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
  CXXRecordDecl *RD = MD->getParent();
  CXXSpecialMember CSM = getSpecialMember(MD);

  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
         "not an explicitly-defaulted special member");

  // Whether this was the first-declared instance of the constructor.
  // This affects whether we implicitly add an exception spec and constexpr.
  bool First = MD == MD->getCanonicalDecl();

  bool HadError = false;

  // C++11 [dcl.fct.def.default]p1:
  //   A function that is explicitly defaulted shall
  //     -- be a special member function (checked elsewhere),
  //     -- have the same type (except for ref-qualifiers, and except that a
  //        copy operation can take a non-const reference) as an implicit
  //        declaration, and
  //     -- not have default arguments.
  unsigned ExpectedParams = 1;
  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
    ExpectedParams = 0;
  if (MD->getNumParams() != ExpectedParams) {
    // This also checks for default arguments: a copy or move constructor with a
    // default argument is classified as a default constructor, and assignment
    // operations and destructors can't have default arguments.
    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
      << CSM << MD->getSourceRange();
    HadError = true;
  } else if (MD->isVariadic()) {
    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
      << CSM << MD->getSourceRange();
    HadError = true;
  }

  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();

  bool CanHaveConstParam = false;
  if (CSM == CXXCopyConstructor)
    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
  else if (CSM == CXXCopyAssignment)
    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();

  QualType ReturnType = Context.VoidTy;
  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
    // Check for return type matching.
    ReturnType = Type->getResultType();
    QualType ExpectedReturnType =
        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
      HadError = true;
    }

    // A defaulted special member cannot have cv-qualifiers.
    if (Type->getTypeQuals()) {
      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
        << (CSM == CXXMoveAssignment);
      HadError = true;
    }
  }

  // Check for parameter type matching.
  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
  bool HasConstParam = false;
  if (ExpectedParams && ArgType->isReferenceType()) {
    // Argument must be reference to possibly-const T.
    QualType ReferentType = ArgType->getPointeeType();
    HasConstParam = ReferentType.isConstQualified();

    if (ReferentType.isVolatileQualified()) {
      Diag(MD->getLocation(),
           diag::err_defaulted_special_member_volatile_param) << CSM;
      HadError = true;
    }

    if (HasConstParam && !CanHaveConstParam) {
      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
        Diag(MD->getLocation(),
             diag::err_defaulted_special_member_copy_const_param)
          << (CSM == CXXCopyAssignment);
        // FIXME: Explain why this special member can't be const.
      } else {
        Diag(MD->getLocation(),
             diag::err_defaulted_special_member_move_const_param)
          << (CSM == CXXMoveAssignment);
      }
      HadError = true;
    }
  } else if (ExpectedParams) {
    // A copy assignment operator can take its argument by value, but a
    // defaulted one cannot.
    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
    HadError = true;
  }

  // C++11 [dcl.fct.def.default]p2:
  //   An explicitly-defaulted function may be declared constexpr only if it
  //   would have been implicitly declared as constexpr,
  // Do not apply this rule to members of class templates, since core issue 1358
  // makes such functions always instantiate to constexpr functions. For
  // non-constructors, this is checked elsewhere.
  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
                                                     HasConstParam);
  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
    // FIXME: Explain why the constructor can't be constexpr.
    HadError = true;
  }

  //   and may have an explicit exception-specification only if it is compatible
  //   with the exception-specification on the implicit declaration.
  if (Type->hasExceptionSpec()) {
    // Delay the check if this is the first declaration of the special member,
    // since we may not have parsed some necessary in-class initializers yet.
    if (First) {
      // If the exception specification needs to be instantiated, do so now,
      // before we clobber it with an EST_Unevaluated specification below.
      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
        InstantiateExceptionSpec(MD->getLocStart(), MD);
        Type = MD->getType()->getAs<FunctionProtoType>();
      }
      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
    } else
      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
  }

  //   If a function is explicitly defaulted on its first declaration,
  if (First) {
    //  -- it is implicitly considered to be constexpr if the implicit
    //     definition would be,
    MD->setConstexpr(Constexpr);

    //  -- it is implicitly considered to have the same exception-specification
    //     as if it had been implicitly declared,
    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
    EPI.ExceptionSpecType = EST_Unevaluated;
    EPI.ExceptionSpecDecl = MD;
    MD->setType(Context.getFunctionType(ReturnType,
                                        ArrayRef<QualType>(&ArgType,
                                                           ExpectedParams),
                                        EPI));
  }

  if (ShouldDeleteSpecialMember(MD, CSM)) {
    if (First) {
      SetDeclDeleted(MD, MD->getLocation());
    } else {
      // C++11 [dcl.fct.def.default]p4:
      //   [For a] user-provided explicitly-defaulted function [...] if such a
      //   function is implicitly defined as deleted, the program is ill-formed.
      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
      HadError = true;
    }
  }

  if (HadError)
    MD->setInvalidDecl();
}

/// Check whether the exception specification provided for an
/// explicitly-defaulted special member matches the exception specification
/// that would have been generated for an implicit special member, per
/// C++11 [dcl.fct.def.default]p2.
void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
  // Compute the implicit exception specification.
  FunctionProtoType::ExtProtoInfo EPI;
  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
    Context.getFunctionType(Context.VoidTy, None, EPI));

  // Ensure that it matches.
  CheckEquivalentExceptionSpec(
    PDiag(diag::err_incorrect_defaulted_exception_spec)
      << getSpecialMember(MD), PDiag(),
    ImplicitType, SourceLocation(),
    SpecifiedType, MD->getLocation());
}

void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
  for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
       I != N; ++I)
    CheckExplicitlyDefaultedMemberExceptionSpec(
      DelayedDefaultedMemberExceptionSpecs[I].first,
      DelayedDefaultedMemberExceptionSpecs[I].second);

  DelayedDefaultedMemberExceptionSpecs.clear();
}

namespace {
struct SpecialMemberDeletionInfo {
  Sema &S;
  CXXMethodDecl *MD;
  Sema::CXXSpecialMember CSM;
  bool Diagnose;

  // Properties of the special member, computed for convenience.
  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
  SourceLocation Loc;

  bool AllFieldsAreConst;

  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
                            Sema::CXXSpecialMember CSM, bool Diagnose)
    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
      IsConstructor(false), IsAssignment(false), IsMove(false),
      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
      AllFieldsAreConst(true) {
    switch (CSM) {
      case Sema::CXXDefaultConstructor:
      case Sema::CXXCopyConstructor:
        IsConstructor = true;
        break;
      case Sema::CXXMoveConstructor:
        IsConstructor = true;
        IsMove = true;
        break;
      case Sema::CXXCopyAssignment:
        IsAssignment = true;
        break;
      case Sema::CXXMoveAssignment:
        IsAssignment = true;
        IsMove = true;
        break;
      case Sema::CXXDestructor:
        break;
      case Sema::CXXInvalid:
        llvm_unreachable("invalid special member kind");
    }

    if (MD->getNumParams()) {
      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
    }
  }

  bool inUnion() const { return MD->getParent()->isUnion(); }

  /// Look up the corresponding special member in the given class.
  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
                                              unsigned Quals) {
    unsigned TQ = MD->getTypeQualifiers();
    // cv-qualifiers on class members don't affect default ctor / dtor calls.
    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
      Quals = 0;
    return S.LookupSpecialMember(Class, CSM,
                                 ConstArg || (Quals & Qualifiers::Const),
                                 VolatileArg || (Quals & Qualifiers::Volatile),
                                 MD->getRefQualifier() == RQ_RValue,
                                 TQ & Qualifiers::Const,
                                 TQ & Qualifiers::Volatile);
  }

  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;

  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
  bool shouldDeleteForField(FieldDecl *FD);
  bool shouldDeleteForAllConstMembers();

  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
                                     unsigned Quals);
  bool shouldDeleteForSubobjectCall(Subobject Subobj,
                                    Sema::SpecialMemberOverloadResult *SMOR,
                                    bool IsDtorCallInCtor);

  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
};
}

/// Is the given special member inaccessible when used on the given
/// sub-object.
bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
                                             CXXMethodDecl *target) {
  /// If we're operating on a base class, the object type is the
  /// type of this special member.
  QualType objectTy;
  AccessSpecifier access = target->getAccess();
  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
    objectTy = S.Context.getTypeDeclType(MD->getParent());
    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);

  // If we're operating on a field, the object type is the type of the field.
  } else {
    objectTy = S.Context.getTypeDeclType(target->getParent());
  }

  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
}

/// Check whether we should delete a special member due to the implicit
/// definition containing a call to a special member of a subobject.
bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
    bool IsDtorCallInCtor) {
  CXXMethodDecl *Decl = SMOR->getMethod();
  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();

  int DiagKind = -1;

  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
    DiagKind = !Decl ? 0 : 1;
  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
    DiagKind = 2;
  else if (!isAccessible(Subobj, Decl))
    DiagKind = 3;
  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
           !Decl->isTrivial()) {
    // A member of a union must have a trivial corresponding special member.
    // As a weird special case, a destructor call from a union's constructor
    // must be accessible and non-deleted, but need not be trivial. Such a
    // destructor is never actually called, but is semantically checked as
    // if it were.
    DiagKind = 4;
  }

  if (DiagKind == -1)
    return false;

  if (Diagnose) {
    if (Field) {
      S.Diag(Field->getLocation(),
             diag::note_deleted_special_member_class_subobject)
        << CSM << MD->getParent() << /*IsField*/true
        << Field << DiagKind << IsDtorCallInCtor;
    } else {
      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
      S.Diag(Base->getLocStart(),
             diag::note_deleted_special_member_class_subobject)
        << CSM << MD->getParent() << /*IsField*/false
        << Base->getType() << DiagKind << IsDtorCallInCtor;
    }

    if (DiagKind == 1)
      S.NoteDeletedFunction(Decl);
    // FIXME: Explain inaccessibility if DiagKind == 3.
  }

  return true;
}

/// Check whether we should delete a special member function due to having a
/// direct or virtual base class or non-static data member of class type M.
bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();

  // C++11 [class.ctor]p5:
  // -- any direct or virtual base class, or non-static data member with no
  //    brace-or-equal-initializer, has class type M (or array thereof) and
  //    either M has no default constructor or overload resolution as applied
  //    to M's default constructor results in an ambiguity or in a function
  //    that is deleted or inaccessible
  // C++11 [class.copy]p11, C++11 [class.copy]p23:
  // -- a direct or virtual base class B that cannot be copied/moved because
  //    overload resolution, as applied to B's corresponding special member,
  //    results in an ambiguity or a function that is deleted or inaccessible
  //    from the defaulted special member
  // C++11 [class.dtor]p5:
  // -- any direct or virtual base class [...] has a type with a destructor
  //    that is deleted or inaccessible
  if (!(CSM == Sema::CXXDefaultConstructor &&
        Field && Field->hasInClassInitializer()) &&
      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
    return true;

  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
  // -- any direct or virtual base class or non-static data member has a
  //    type with a destructor that is deleted or inaccessible
  if (IsConstructor) {
    Sema::SpecialMemberOverloadResult *SMOR =
        S.LookupSpecialMember(Class, Sema::CXXDestructor,
                              false, false, false, false, false);
    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
      return true;
  }

  return false;
}

/// Check whether we should delete a special member function due to the class
/// having a particular direct or virtual base class.
bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
}

/// Check whether we should delete a special member function due to the class
/// having a particular non-static data member.
bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
  QualType FieldType = S.Context.getBaseElementType(FD->getType());
  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();

  if (CSM == Sema::CXXDefaultConstructor) {
    // For a default constructor, all references must be initialized in-class
    // and, if a union, it must have a non-const member.
    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
      if (Diagnose)
        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
          << MD->getParent() << FD << FieldType << /*Reference*/0;
      return true;
    }
    // C++11 [class.ctor]p5: any non-variant non-static data member of
    // const-qualified type (or array thereof) with no
    // brace-or-equal-initializer does not have a user-provided default
    // constructor.
    if (!inUnion() && FieldType.isConstQualified() &&
        !FD->hasInClassInitializer() &&
        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
      if (Diagnose)
        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
          << MD->getParent() << FD << FD->getType() << /*Const*/1;
      return true;
    }

    if (inUnion() && !FieldType.isConstQualified())
      AllFieldsAreConst = false;
  } else if (CSM == Sema::CXXCopyConstructor) {
    // For a copy constructor, data members must not be of rvalue reference
    // type.
    if (FieldType->isRValueReferenceType()) {
      if (Diagnose)
        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
          << MD->getParent() << FD << FieldType;
      return true;
    }
  } else if (IsAssignment) {
    // For an assignment operator, data members must not be of reference type.
    if (FieldType->isReferenceType()) {
      if (Diagnose)
        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
      return true;
    }
    if (!FieldRecord && FieldType.isConstQualified()) {
      // C++11 [class.copy]p23:
      // -- a non-static data member of const non-class type (or array thereof)
      if (Diagnose)
        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
      return true;
    }
  }

  if (FieldRecord) {
    // Some additional restrictions exist on the variant members.
    if (!inUnion() && FieldRecord->isUnion() &&
        FieldRecord->isAnonymousStructOrUnion()) {
      bool AllVariantFieldsAreConst = true;

      // FIXME: Handle anonymous unions declared within anonymous unions.
      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
                                         UE = FieldRecord->field_end();
           UI != UE; ++UI) {
        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());

        if (!UnionFieldType.isConstQualified())
          AllVariantFieldsAreConst = false;

        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
        if (UnionFieldRecord &&
            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
                                          UnionFieldType.getCVRQualifiers()))
          return true;
      }

      // At least one member in each anonymous union must be non-const
      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
          FieldRecord->field_begin() != FieldRecord->field_end()) {
        if (Diagnose)
          S.Diag(FieldRecord->getLocation(),
                 diag::note_deleted_default_ctor_all_const)
            << MD->getParent() << /*anonymous union*/1;
        return true;
      }

      // Don't check the implicit member of the anonymous union type.
      // This is technically non-conformant, but sanity demands it.
      return false;
    }

    if (shouldDeleteForClassSubobject(FieldRecord, FD,
                                      FieldType.getCVRQualifiers()))
      return true;
  }

  return false;
}

/// C++11 [class.ctor] p5:
///   A defaulted default constructor for a class X is defined as deleted if
/// X is a union and all of its variant members are of const-qualified type.
bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
  // This is a silly definition, because it gives an empty union a deleted
  // default constructor. Don't do that.
  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
    if (Diagnose)
      S.Diag(MD->getParent()->getLocation(),
             diag::note_deleted_default_ctor_all_const)
        << MD->getParent() << /*not anonymous union*/0;
    return true;
  }
  return false;
}

/// Determine whether a defaulted special member function should be defined as
/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
                                     bool Diagnose) {
  if (MD->isInvalidDecl())
    return false;
  CXXRecordDecl *RD = MD->getParent();
  assert(!RD->isDependentType() && "do deletion after instantiation");
  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
    return false;

  // C++11 [expr.lambda.prim]p19:
  //   The closure type associated with a lambda-expression has a
  //   deleted (8.4.3) default constructor and a deleted copy
  //   assignment operator.
  if (RD->isLambda() &&
      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
    if (Diagnose)
      Diag(RD->getLocation(), diag::note_lambda_decl);
    return true;
  }

  // For an anonymous struct or union, the copy and assignment special members
  // will never be used, so skip the check. For an anonymous union declared at
  // namespace scope, the constructor and destructor are used.
  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
      RD->isAnonymousStructOrUnion())
    return false;

  // C++11 [class.copy]p7, p18:
  //   If the class definition declares a move constructor or move assignment
  //   operator, an implicitly declared copy constructor or copy assignment
  //   operator is defined as deleted.
  if (MD->isImplicit() &&
      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
    CXXMethodDecl *UserDeclaredMove = 0;

    // In Microsoft mode, a user-declared move only causes the deletion of the
    // corresponding copy operation, not both copy operations.
    if (RD->hasUserDeclaredMoveConstructor() &&
        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
      if (!Diagnose) return true;

      // Find any user-declared move constructor.
      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
                                        E = RD->ctor_end(); I != E; ++I) {
        if (I->isMoveConstructor()) {
          UserDeclaredMove = *I;
          break;
        }
      }
      assert(UserDeclaredMove);
    } else if (RD->hasUserDeclaredMoveAssignment() &&
               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
      if (!Diagnose) return true;

      // Find any user-declared move assignment operator.
      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
                                          E = RD->method_end(); I != E; ++I) {
        if (I->isMoveAssignmentOperator()) {
          UserDeclaredMove = *I;
          break;
        }
      }
      assert(UserDeclaredMove);
    }

    if (UserDeclaredMove) {
      Diag(UserDeclaredMove->getLocation(),
           diag::note_deleted_copy_user_declared_move)
        << (CSM == CXXCopyAssignment) << RD
        << UserDeclaredMove->isMoveAssignmentOperator();
      return true;
    }
  }

  // Do access control from the special member function
  ContextRAII MethodContext(*this, MD);

  // C++11 [class.dtor]p5:
  // -- for a virtual destructor, lookup of the non-array deallocation function
  //    results in an ambiguity or in a function that is deleted or inaccessible
  if (CSM == CXXDestructor && MD->isVirtual()) {
    FunctionDecl *OperatorDelete = 0;
    DeclarationName Name =
      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
                                 OperatorDelete, false)) {
      if (Diagnose)
        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
      return true;
    }
  }

  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);

  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
                                          BE = RD->bases_end(); BI != BE; ++BI)
    if (!BI->isVirtual() &&
        SMI.shouldDeleteForBase(BI))
      return true;

  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
                                          BE = RD->vbases_end(); BI != BE; ++BI)
    if (SMI.shouldDeleteForBase(BI))
      return true;

  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
                                     FE = RD->field_end(); FI != FE; ++FI)
    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
        SMI.shouldDeleteForField(*FI))
      return true;

  if (SMI.shouldDeleteForAllConstMembers())
    return true;

  return false;
}

/// Perform lookup for a special member of the specified kind, and determine
/// whether it is trivial. If the triviality can be determined without the
/// lookup, skip it. This is intended for use when determining whether a
/// special member of a containing object is trivial, and thus does not ever
/// perform overload resolution for default constructors.
///
/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
/// member that was most likely to be intended to be trivial, if any.
static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
                                     Sema::CXXSpecialMember CSM, unsigned Quals,
                                     CXXMethodDecl **Selected) {
  if (Selected)
    *Selected = 0;

  switch (CSM) {
  case Sema::CXXInvalid:
    llvm_unreachable("not a special member");

  case Sema::CXXDefaultConstructor:
    // C++11 [class.ctor]p5:
    //   A default constructor is trivial if:
    //    - all the [direct subobjects] have trivial default constructors
    //
    // Note, no overload resolution is performed in this case.
    if (RD->hasTrivialDefaultConstructor())
      return true;

    if (Selected) {
      // If there's a default constructor which could have been trivial, dig it
      // out. Otherwise, if there's any user-provided default constructor, point
      // to that as an example of why there's not a trivial one.
      CXXConstructorDecl *DefCtor = 0;
      if (RD->needsImplicitDefaultConstructor())
        S.DeclareImplicitDefaultConstructor(RD);
      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
                                        CE = RD->ctor_end(); CI != CE; ++CI) {
        if (!CI->isDefaultConstructor())
          continue;
        DefCtor = *CI;
        if (!DefCtor->isUserProvided())
          break;
      }

      *Selected = DefCtor;
    }

    return false;

  case Sema::CXXDestructor:
    // C++11 [class.dtor]p5:
    //   A destructor is trivial if:
    //    - all the direct [subobjects] have trivial destructors
    if (RD->hasTrivialDestructor())
      return true;

    if (Selected) {
      if (RD->needsImplicitDestructor())
        S.DeclareImplicitDestructor(RD);
      *Selected = RD->getDestructor();
    }

    return false;

  case Sema::CXXCopyConstructor:
    // C++11 [class.copy]p12:
    //   A copy constructor is trivial if:
    //    - the constructor selected to copy each direct [subobject] is trivial
    if (RD->hasTrivialCopyConstructor()) {
      if (Quals == Qualifiers::Const)
        // We must either select the trivial copy constructor or reach an
        // ambiguity; no need to actually perform overload resolution.
        return true;
    } else if (!Selected) {
      return false;
    }
    // In C++98, we are not supposed to perform overload resolution here, but we
    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
    // cases like B as having a non-trivial copy constructor:
    //   struct A { template<typename T> A(T&); };
    //   struct B { mutable A a; };
    goto NeedOverloadResolution;

  case Sema::CXXCopyAssignment:
    // C++11 [class.copy]p25:
    //   A copy assignment operator is trivial if:
    //    - the assignment operator selected to copy each direct [subobject] is
    //      trivial
    if (RD->hasTrivialCopyAssignment()) {
      if (Quals == Qualifiers::Const)
        return true;
    } else if (!Selected) {
      return false;
    }
    // In C++98, we are not supposed to perform overload resolution here, but we
    // treat that as a language defect.
    goto NeedOverloadResolution;

  case Sema::CXXMoveConstructor:
  case Sema::CXXMoveAssignment:
  NeedOverloadResolution:
    Sema::SpecialMemberOverloadResult *SMOR =
      S.LookupSpecialMember(RD, CSM,
                            Quals & Qualifiers::Const,
                            Quals & Qualifiers::Volatile,
                            /*RValueThis*/false, /*ConstThis*/false,
                            /*VolatileThis*/false);

    // The standard doesn't describe how to behave if the lookup is ambiguous.
    // We treat it as not making the member non-trivial, just like the standard
    // mandates for the default constructor. This should rarely matter, because
    // the member will also be deleted.
    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
      return true;

    if (!SMOR->getMethod()) {
      assert(SMOR->getKind() ==
             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
      return false;
    }

    // We deliberately don't check if we found a deleted special member. We're
    // not supposed to!
    if (Selected)
      *Selected = SMOR->getMethod();
    return SMOR->getMethod()->isTrivial();
  }

  llvm_unreachable("unknown special method kind");
}

static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
       CI != CE; ++CI)
    if (!CI->isImplicit())
      return *CI;

  // Look for constructor templates.
  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
    if (CXXConstructorDecl *CD =
          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
      return CD;
  }

  return 0;
}

/// The kind of subobject we are checking for triviality. The values of this
/// enumeration are used in diagnostics.
enum TrivialSubobjectKind {
  /// The subobject is a base class.
  TSK_BaseClass,
  /// The subobject is a non-static data member.
  TSK_Field,
  /// The object is actually the complete object.
  TSK_CompleteObject
};

/// Check whether the special member selected for a given type would be trivial.
static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
                                      QualType SubType,
                                      Sema::CXXSpecialMember CSM,
                                      TrivialSubobjectKind Kind,
                                      bool Diagnose) {
  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
  if (!SubRD)
    return true;

  CXXMethodDecl *Selected;
  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
                               Diagnose ? &Selected : 0))
    return true;

  if (Diagnose) {
    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
        << Kind << SubType.getUnqualifiedType();
      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
    } else if (!Selected)
      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
    else if (Selected->isUserProvided()) {
      if (Kind == TSK_CompleteObject)
        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
          << Kind << SubType.getUnqualifiedType() << CSM;
      else {
        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
          << Kind << SubType.getUnqualifiedType() << CSM;
        S.Diag(Selected->getLocation(), diag::note_declared_at);
      }
    } else {
      if (Kind != TSK_CompleteObject)
        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
          << Kind << SubType.getUnqualifiedType() << CSM;

      // Explain why the defaulted or deleted special member isn't trivial.
      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
    }
  }

  return false;
}

/// Check whether the members of a class type allow a special member to be
/// trivial.
static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
                                     Sema::CXXSpecialMember CSM,
                                     bool ConstArg, bool Diagnose) {
  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
                                     FE = RD->field_end(); FI != FE; ++FI) {
    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
      continue;

    QualType FieldType = S.Context.getBaseElementType(FI->getType());

    // Pretend anonymous struct or union members are members of this class.
    if (FI->isAnonymousStructOrUnion()) {
      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
                                    CSM, ConstArg, Diagnose))
        return false;
      continue;
    }

    // C++11 [class.ctor]p5:
    //   A default constructor is trivial if [...]
    //    -- no non-static data member of its class has a
    //       brace-or-equal-initializer
    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
      if (Diagnose)
        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
      return false;
    }

    // Objective C ARC 4.3.5:
    //   [...] nontrivally ownership-qualified types are [...] not trivially
    //   default constructible, copy constructible, move constructible, copy
    //   assignable, move assignable, or destructible [...]
    if (S.getLangOpts().ObjCAutoRefCount &&
        FieldType.hasNonTrivialObjCLifetime()) {
      if (Diagnose)
        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
          << RD << FieldType.getObjCLifetime();
      return false;
    }

    if (ConstArg && !FI->isMutable())
      FieldType.addConst();
    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
                                   TSK_Field, Diagnose))
      return false;
  }

  return true;
}

/// Diagnose why the specified class does not have a trivial special member of
/// the given kind.
void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
  QualType Ty = Context.getRecordType(RD);
  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
    Ty.addConst();

  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
                            TSK_CompleteObject, /*Diagnose*/true);
}

/// Determine whether a defaulted or deleted special member function is trivial,
/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
                                  bool Diagnose) {
  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");

  CXXRecordDecl *RD = MD->getParent();

  bool ConstArg = false;

  // C++11 [class.copy]p12, p25:
  //   A [special member] is trivial if its declared parameter type is the same
  //   as if it had been implicitly declared [...]
  switch (CSM) {
  case CXXDefaultConstructor:
  case CXXDestructor:
    // Trivial default constructors and destructors cannot have parameters.
    break;

  case CXXCopyConstructor:
  case CXXCopyAssignment: {
    // Trivial copy operations always have const, non-volatile parameter types.
    ConstArg = true;
    const ParmVarDecl *Param0 = MD->getParamDecl(0);
    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
      if (Diagnose)
        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
          << Param0->getSourceRange() << Param0->getType()
          << Context.getLValueReferenceType(
               Context.getRecordType(RD).withConst());
      return false;
    }
    break;
  }

  case CXXMoveConstructor:
  case CXXMoveAssignment: {
    // Trivial move operations always have non-cv-qualified parameters.
    const ParmVarDecl *Param0 = MD->getParamDecl(0);
    const RValueReferenceType *RT =
      Param0->getType()->getAs<RValueReferenceType>();
    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
      if (Diagnose)
        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
          << Param0->getSourceRange() << Param0->getType()
          << Context.getRValueReferenceType(Context.getRecordType(RD));
      return false;
    }
    break;
  }

  case CXXInvalid:
    llvm_unreachable("not a special member");
  }

  // FIXME: We require that the parameter-declaration-clause is equivalent to
  // that of an implicit declaration, not just that the declared parameter type
  // matches, in order to prevent absuridities like a function simultaneously
  // being a trivial copy constructor and a non-trivial default constructor.
  // This issue has not yet been assigned a core issue number.
  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
    if (Diagnose)
      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
           diag::note_nontrivial_default_arg)
        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
    return false;
  }
  if (MD->isVariadic()) {
    if (Diagnose)
      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
    return false;
  }

  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
  //   A copy/move [constructor or assignment operator] is trivial if
  //    -- the [member] selected to copy/move each direct base class subobject
  //       is trivial
  //
  // C++11 [class.copy]p12, C++11 [class.copy]p25:
  //   A [default constructor or destructor] is trivial if
  //    -- all the direct base classes have trivial [default constructors or
  //       destructors]
  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
                                          BE = RD->bases_end(); BI != BE; ++BI)
    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
                                   ConstArg ? BI->getType().withConst()
                                            : BI->getType(),
                                   CSM, TSK_BaseClass, Diagnose))
      return false;

  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
  //   A copy/move [constructor or assignment operator] for a class X is
  //   trivial if
  //    -- for each non-static data member of X that is of class type (or array
  //       thereof), the constructor selected to copy/move that member is
  //       trivial
  //
  // C++11 [class.copy]p12, C++11 [class.copy]p25:
  //   A [default constructor or destructor] is trivial if
  //    -- for all of the non-static data members of its class that are of class
  //       type (or array thereof), each such class has a trivial [default
  //       constructor or destructor]
  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
    return false;

  // C++11 [class.dtor]p5:
  //   A destructor is trivial if [...]
  //    -- the destructor is not virtual
  if (CSM == CXXDestructor && MD->isVirtual()) {
    if (Diagnose)
      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
    return false;
  }

  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
  //   A [special member] for class X is trivial if [...]
  //    -- class X has no virtual functions and no virtual base classes
  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
    if (!Diagnose)
      return false;

    if (RD->getNumVBases()) {
      // Check for virtual bases. We already know that the corresponding
      // member in all bases is trivial, so vbases must all be direct.
      CXXBaseSpecifier &BS = *RD->vbases_begin();
      assert(BS.isVirtual());
      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
      return false;
    }

    // Must have a virtual method.
    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
                                        ME = RD->method_end(); MI != ME; ++MI) {
      if (MI->isVirtual()) {
        SourceLocation MLoc = MI->getLocStart();
        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
        return false;
      }
    }

    llvm_unreachable("dynamic class with no vbases and no virtual functions");
  }

  // Looks like it's trivial!
  return true;
}

/// \brief Data used with FindHiddenVirtualMethod
namespace {
  struct FindHiddenVirtualMethodData {
    Sema *S;
    CXXMethodDecl *Method;
    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
  };
}

/// \brief Check whether any most overriden method from MD in Methods
static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
  if (MD->size_overridden_methods() == 0)
    return Methods.count(MD->getCanonicalDecl());
  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
                                      E = MD->end_overridden_methods();
       I != E; ++I)
    if (CheckMostOverridenMethods(*I, Methods))
      return true;
  return false;
}

/// \brief Member lookup function that determines whether a given C++
/// method overloads virtual methods in a base class without overriding any,
/// to be used with CXXRecordDecl::lookupInBases().
static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
                                    CXXBasePath &Path,
                                    void *UserData) {
  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();

  FindHiddenVirtualMethodData &Data
    = *static_cast<FindHiddenVirtualMethodData*>(UserData);

  DeclarationName Name = Data.Method->getDeclName();
  assert(Name.getNameKind() == DeclarationName::Identifier);

  bool foundSameNameMethod = false;
  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
  for (Path.Decls = BaseRecord->lookup(Name);
       !Path.Decls.empty();
       Path.Decls = Path.Decls.slice(1)) {
    NamedDecl *D = Path.Decls.front();
    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
      MD = MD->getCanonicalDecl();
      foundSameNameMethod = true;
      // Interested only in hidden virtual methods.
      if (!MD->isVirtual())
        continue;
      // If the method we are checking overrides a method from its base
      // don't warn about the other overloaded methods.
      if (!Data.S->IsOverload(Data.Method, MD, false))
        return true;
      // Collect the overload only if its hidden.
      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
        overloadedMethods.push_back(MD);
    }
  }

  if (foundSameNameMethod)
    Data.OverloadedMethods.append(overloadedMethods.begin(),
                                   overloadedMethods.end());
  return foundSameNameMethod;
}

/// \brief Add the most overriden methods from MD to Methods
static void AddMostOverridenMethods(const CXXMethodDecl *MD,
                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
  if (MD->size_overridden_methods() == 0)
    Methods.insert(MD->getCanonicalDecl());
  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
                                      E = MD->end_overridden_methods();
       I != E; ++I)
    AddMostOverridenMethods(*I, Methods);
}

/// \brief See if a method overloads virtual methods in a base class without
/// overriding any.
void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
                               MD->getLocation()) == DiagnosticsEngine::Ignored)
    return;
  if (!MD->getDeclName().isIdentifier())
    return;

  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
                     /*bool RecordPaths=*/false,
                     /*bool DetectVirtual=*/false);
  FindHiddenVirtualMethodData Data;
  Data.Method = MD;
  Data.S = this;

  // Keep the base methods that were overriden or introduced in the subclass
  // by 'using' in a set. A base method not in this set is hidden.
  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
    NamedDecl *ND = *I;
    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
      ND = shad->getTargetDecl();
    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
  }

  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
      !Data.OverloadedMethods.empty()) {
    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
      << MD << (Data.OverloadedMethods.size() > 1);

    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
      PartialDiagnostic PD = PDiag(
           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
      HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
      Diag(overloadedMD->getLocation(), PD);
    }
  }
}

void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
                                             Decl *TagDecl,
                                             SourceLocation LBrac,
                                             SourceLocation RBrac,
                                             AttributeList *AttrList) {
  if (!TagDecl)
    return;

  AdjustDeclIfTemplate(TagDecl);

  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
    if (l->getKind() != AttributeList::AT_Visibility)
      continue;
    l->setInvalid();
    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
      l->getName();
  }

  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
              // strict aliasing violation!
              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);

  CheckCompletedCXXClass(
                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
}

/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
/// special functions, such as the default constructor, copy
/// constructor, or destructor, to the given C++ class (C++
/// [special]p1).  This routine can only be executed just before the
/// definition of the class is complete.
void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
  if (!ClassDecl->hasUserDeclaredConstructor())
    ++ASTContext::NumImplicitDefaultConstructors;

  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
    ++ASTContext::NumImplicitCopyConstructors;

    // If the properties or semantics of the copy constructor couldn't be
    // determined while the class was being declared, force a declaration
    // of it now.
    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
      DeclareImplicitCopyConstructor(ClassDecl);
  }

  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
    ++ASTContext::NumImplicitMoveConstructors;

    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
      DeclareImplicitMoveConstructor(ClassDecl);
  }

  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
    ++ASTContext::NumImplicitCopyAssignmentOperators;

    // If we have a dynamic class, then the copy assignment operator may be
    // virtual, so we have to declare it immediately. This ensures that, e.g.,
    // it shows up in the right place in the vtable and that we diagnose
    // problems with the implicit exception specification.
    if (ClassDecl->isDynamicClass() ||
        ClassDecl->needsOverloadResolutionForCopyAssignment())
      DeclareImplicitCopyAssignment(ClassDecl);
  }

  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
    ++ASTContext::NumImplicitMoveAssignmentOperators;

    // Likewise for the move assignment operator.
    if (ClassDecl->isDynamicClass() ||
        ClassDecl->needsOverloadResolutionForMoveAssignment())
      DeclareImplicitMoveAssignment(ClassDecl);
  }

  if (!ClassDecl->hasUserDeclaredDestructor()) {
    ++ASTContext::NumImplicitDestructors;

    // If we have a dynamic class, then the destructor may be virtual, so we
    // have to declare the destructor immediately. This ensures that, e.g., it
    // shows up in the right place in the vtable and that we diagnose problems
    // with the implicit exception specification.
    if (ClassDecl->isDynamicClass() ||
        ClassDecl->needsOverloadResolutionForDestructor())
      DeclareImplicitDestructor(ClassDecl);
  }
}

void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
  if (!D)
    return;

  int NumParamList = D->getNumTemplateParameterLists();
  for (int i = 0; i < NumParamList; i++) {
    TemplateParameterList* Params = D->getTemplateParameterList(i);
    for (TemplateParameterList::iterator Param = Params->begin(),
                                      ParamEnd = Params->end();
          Param != ParamEnd; ++Param) {
      NamedDecl *Named = cast<NamedDecl>(*Param);
      if (Named->getDeclName()) {
        S->AddDecl(Named);
        IdResolver.AddDecl(Named);
      }
    }
  }
}

void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
  if (!D)
    return;
  
  TemplateParameterList *Params = 0;
  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
    Params = Template->getTemplateParameters();
  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
    Params = PartialSpec->getTemplateParameters();
  else
    return;

  for (TemplateParameterList::iterator Param = Params->begin(),
                                    ParamEnd = Params->end();
       Param != ParamEnd; ++Param) {
    NamedDecl *Named = cast<NamedDecl>(*Param);
    if (Named->getDeclName()) {
      S->AddDecl(Named);
      IdResolver.AddDecl(Named);
    }
  }
}

void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
  if (!RecordD) return;
  AdjustDeclIfTemplate(RecordD);
  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
  PushDeclContext(S, Record);
}

void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
  if (!RecordD) return;
  PopDeclContext();
}

/// ActOnStartDelayedCXXMethodDeclaration - We have completed
/// parsing a top-level (non-nested) C++ class, and we are now
/// parsing those parts of the given Method declaration that could
/// not be parsed earlier (C++ [class.mem]p2), such as default
/// arguments. This action should enter the scope of the given
/// Method declaration as if we had just parsed the qualified method
/// name. However, it should not bring the parameters into scope;
/// that will be performed by ActOnDelayedCXXMethodParameter.
void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
}

/// ActOnDelayedCXXMethodParameter - We've already started a delayed
/// C++ method declaration. We're (re-)introducing the given
/// function parameter into scope for use in parsing later parts of
/// the method declaration. For example, we could see an
/// ActOnParamDefaultArgument event for this parameter.
void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
  if (!ParamD)
    return;

  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);

  // If this parameter has an unparsed default argument, clear it out
  // to make way for the parsed default argument.
  if (Param->hasUnparsedDefaultArg())
    Param->setDefaultArg(0);

  S->AddDecl(Param);
  if (Param->getDeclName())
    IdResolver.AddDecl(Param);
}

/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
/// processing the delayed method declaration for Method. The method
/// declaration is now considered finished. There may be a separate
/// ActOnStartOfFunctionDef action later (not necessarily
/// immediately!) for this method, if it was also defined inside the
/// class body.
void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
  if (!MethodD)
    return;

  AdjustDeclIfTemplate(MethodD);

  FunctionDecl *Method = cast<FunctionDecl>(MethodD);

  // Now that we have our default arguments, check the constructor
  // again. It could produce additional diagnostics or affect whether
  // the class has implicitly-declared destructors, among other
  // things.
  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
    CheckConstructor(Constructor);

  // Check the default arguments, which we may have added.
  if (!Method->isInvalidDecl())
    CheckCXXDefaultArguments(Method);
}

/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
/// the well-formedness of the constructor declarator @p D with type @p
/// R. If there are any errors in the declarator, this routine will
/// emit diagnostics and set the invalid bit to true.  In any case, the type
/// will be updated to reflect a well-formed type for the constructor and
/// returned.
QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
                                          StorageClass &SC) {
  bool isVirtual = D.getDeclSpec().isVirtualSpecified();

  // C++ [class.ctor]p3:
  //   A constructor shall not be virtual (10.3) or static (9.4). A
  //   constructor can be invoked for a const, volatile or const
  //   volatile object. A constructor shall not be declared const,
  //   volatile, or const volatile (9.3.2).
  if (isVirtual) {
    if (!D.isInvalidType())
      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
        << SourceRange(D.getIdentifierLoc());
    D.setInvalidType();
  }
  if (SC == SC_Static) {
    if (!D.isInvalidType())
      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
        << SourceRange(D.getIdentifierLoc());
    D.setInvalidType();
    SC = SC_None;
  }

  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
  if (FTI.TypeQuals != 0) {
    if (FTI.TypeQuals & Qualifiers::Const)
      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
        << "const" << SourceRange(D.getIdentifierLoc());
    if (FTI.TypeQuals & Qualifiers::Volatile)
      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
        << "volatile" << SourceRange(D.getIdentifierLoc());
    if (FTI.TypeQuals & Qualifiers::Restrict)
      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
        << "restrict" << SourceRange(D.getIdentifierLoc());
    D.setInvalidType();
  }

  // C++0x [class.ctor]p4:
  //   A constructor shall not be declared with a ref-qualifier.
  if (FTI.hasRefQualifier()) {
    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
      << FTI.RefQualifierIsLValueRef 
      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
    D.setInvalidType();
  }
  
  // Rebuild the function type "R" without any type qualifiers (in
  // case any of the errors above fired) and with "void" as the
  // return type, since constructors don't have return types.
  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
    return R;

  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
  EPI.TypeQuals = 0;
  EPI.RefQualifier = RQ_None;
  
  return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
}

/// CheckConstructor - Checks a fully-formed constructor for
/// well-formedness, issuing any diagnostics required. Returns true if
/// the constructor declarator is invalid.
void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
  CXXRecordDecl *ClassDecl
    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
  if (!ClassDecl)
    return Constructor->setInvalidDecl();

  // C++ [class.copy]p3:
  //   A declaration of a constructor for a class X is ill-formed if
  //   its first parameter is of type (optionally cv-qualified) X and
  //   either there are no other parameters or else all other
  //   parameters have default arguments.
  if (!Constructor->isInvalidDecl() &&
      ((Constructor->getNumParams() == 1) ||
       (Constructor->getNumParams() > 1 &&
        Constructor->getParamDecl(1)->hasDefaultArg())) &&
      Constructor->getTemplateSpecializationKind()
                                              != TSK_ImplicitInstantiation) {
    QualType ParamType = Constructor->getParamDecl(0)->getType();
    QualType ClassTy = Context.getTagDeclType(ClassDecl);
    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
      const char *ConstRef 
        = Constructor->getParamDecl(0)->getIdentifier() ? "const &" 
                                                        : " const &";
      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
        << FixItHint::CreateInsertion(ParamLoc, ConstRef);

      // FIXME: Rather that making the constructor invalid, we should endeavor
      // to fix the type.
      Constructor->setInvalidDecl();
    }
  }
}

/// CheckDestructor - Checks a fully-formed destructor definition for
/// well-formedness, issuing any diagnostics required.  Returns true
/// on error.
bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
  CXXRecordDecl *RD = Destructor->getParent();
  
  if (Destructor->isVirtual()) {
    SourceLocation Loc;
    
    if (!Destructor->isImplicit())
      Loc = Destructor->getLocation();
    else
      Loc = RD->getLocation();
    
    // If we have a virtual destructor, look up the deallocation function
    FunctionDecl *OperatorDelete = 0;
    DeclarationName Name = 
    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
      return true;

    MarkFunctionReferenced(Loc, OperatorDelete);
    
    Destructor->setOperatorDelete(OperatorDelete);
  }
  
  return false;
}

static inline bool
FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
          FTI.ArgInfo[0].Param &&
          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
}

/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
/// the well-formednes of the destructor declarator @p D with type @p
/// R. If there are any errors in the declarator, this routine will
/// emit diagnostics and set the declarator to invalid.  Even if this happens,
/// will be updated to reflect a well-formed type for the destructor and
/// returned.
QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
                                         StorageClass& SC) {
  // C++ [class.dtor]p1:
  //   [...] A typedef-name that names a class is a class-name
  //   (7.1.3); however, a typedef-name that names a class shall not
  //   be used as the identifier in the declarator for a destructor
  //   declaration.
  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
  else if (const TemplateSpecializationType *TST =
             DeclaratorType->getAs<TemplateSpecializationType>())
    if (TST->isTypeAlias())
      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
        << DeclaratorType << 1;

  // C++ [class.dtor]p2:
  //   A destructor is used to destroy objects of its class type. A
  //   destructor takes no parameters, and no return type can be
  //   specified for it (not even void). The address of a destructor
  //   shall not be taken. A destructor shall not be static. A
  //   destructor can be invoked for a const, volatile or const
  //   volatile object. A destructor shall not be declared const,
  //   volatile or const volatile (9.3.2).
  if (SC == SC_Static) {
    if (!D.isInvalidType())
      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
        << SourceRange(D.getIdentifierLoc())
        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
    
    SC = SC_None;
  }
  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
    // Destructors don't have return types, but the parser will
    // happily parse something like:
    //
    //   class X {
    //     float ~X();
    //   };
    //
    // The return type will be eliminated later.
    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
      << SourceRange(D.getIdentifierLoc());
  }

  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
    if (FTI.TypeQuals & Qualifiers::Const)
      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
        << "const" << SourceRange(D.getIdentifierLoc());
    if (FTI.TypeQuals & Qualifiers::Volatile)
      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
        << "volatile" << SourceRange(D.getIdentifierLoc());
    if (FTI.TypeQuals & Qualifiers::Restrict)
      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
        << "restrict" << SourceRange(D.getIdentifierLoc());
    D.setInvalidType();
  }

  // C++0x [class.dtor]p2:
  //   A destructor shall not be declared with a ref-qualifier.
  if (FTI.hasRefQualifier()) {
    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
      << FTI.RefQualifierIsLValueRef
      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
    D.setInvalidType();
  }
  
  // Make sure we don't have any parameters.
  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);

    // Delete the parameters.
    FTI.freeArgs();
    D.setInvalidType();
  }

  // Make sure the destructor isn't variadic.
  if (FTI.isVariadic) {
    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
    D.setInvalidType();
  }

  // Rebuild the function type "R" without any type qualifiers or
  // parameters (in case any of the errors above fired) and with
  // "void" as the return type, since destructors don't have return
  // types. 
  if (!D.isInvalidType())
    return R;

  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
  EPI.Variadic = false;
  EPI.TypeQuals = 0;
  EPI.RefQualifier = RQ_None;
  return Context.getFunctionType(Context.VoidTy, None, EPI);
}

/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
/// well-formednes of the conversion function declarator @p D with
/// type @p R. If there are any errors in the declarator, this routine
/// will emit diagnostics and return true. Otherwise, it will return
/// false. Either way, the type @p R will be updated to reflect a
/// well-formed type for the conversion operator.
void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
                                     StorageClass& SC) {
  // C++ [class.conv.fct]p1:
  //   Neither parameter types nor return type can be specified. The
  //   type of a conversion function (8.3.5) is "function taking no
  //   parameter returning conversion-type-id."
  if (SC == SC_Static) {
    if (!D.isInvalidType())
      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
        << SourceRange(D.getIdentifierLoc());
    D.setInvalidType();
    SC = SC_None;
  }

  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);

  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
    // Conversion functions don't have return types, but the parser will
    // happily parse something like:
    //
    //   class X {
    //     float operator bool();
    //   };
    //
    // The return type will be changed later anyway.
    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
      << SourceRange(D.getIdentifierLoc());
    D.setInvalidType();
  }

  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();

  // Make sure we don't have any parameters.
  if (Proto->getNumArgs() > 0) {
    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);

    // Delete the parameters.
    D.getFunctionTypeInfo().freeArgs();
    D.setInvalidType();
  } else if (Proto->isVariadic()) {
    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
    D.setInvalidType();
  }

  // Diagnose "&operator bool()" and other such nonsense.  This
  // is actually a gcc extension which we don't support.
  if (Proto->getResultType() != ConvType) {
    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
      << Proto->getResultType();
    D.setInvalidType();
    ConvType = Proto->getResultType();
  }

  // C++ [class.conv.fct]p4:
  //   The conversion-type-id shall not represent a function type nor
  //   an array type.
  if (ConvType->isArrayType()) {
    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
    ConvType = Context.getPointerType(ConvType);
    D.setInvalidType();
  } else if (ConvType->isFunctionType()) {
    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
    ConvType = Context.getPointerType(ConvType);
    D.setInvalidType();
  }

  // Rebuild the function type "R" without any parameters (in case any
  // of the errors above fired) and with the conversion type as the
  // return type.
  if (D.isInvalidType())
    R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());

  // C++0x explicit conversion operators.
  if (D.getDeclSpec().isExplicitSpecified())
    Diag(D.getDeclSpec().getExplicitSpecLoc(),
         getLangOpts().CPlusPlus11 ?
           diag::warn_cxx98_compat_explicit_conversion_functions :
           diag::ext_explicit_conversion_functions)
      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
}

/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
/// the declaration of the given C++ conversion function. This routine
/// is responsible for recording the conversion function in the C++
/// class, if possible.
Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
  assert(Conversion && "Expected to receive a conversion function declaration");

  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());

  // Make sure we aren't redeclaring the conversion function.
  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());

  // C++ [class.conv.fct]p1:
  //   [...] A conversion function is never used to convert a
  //   (possibly cv-qualified) object to the (possibly cv-qualified)
  //   same object type (or a reference to it), to a (possibly
  //   cv-qualified) base class of that type (or a reference to it),
  //   or to (possibly cv-qualified) void.
  // FIXME: Suppress this warning if the conversion function ends up being a
  // virtual function that overrides a virtual function in a base class.
  QualType ClassType
    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
    ConvType = ConvTypeRef->getPointeeType();
  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
    /* Suppress diagnostics for instantiations. */;
  else if (ConvType->isRecordType()) {
    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
    if (ConvType == ClassType)
      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
        << ClassType;
    else if (IsDerivedFrom(ClassType, ConvType))
      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
        <<  ClassType << ConvType;
  } else if (ConvType->isVoidType()) {
    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
      << ClassType << ConvType;
  }

  if (FunctionTemplateDecl *ConversionTemplate
                                = Conversion->getDescribedFunctionTemplate())
    return ConversionTemplate;
  
  return Conversion;
}

//===----------------------------------------------------------------------===//
// Namespace Handling
//===----------------------------------------------------------------------===//

/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
/// reopened.
static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
                                            SourceLocation Loc,
                                            IdentifierInfo *II, bool *IsInline,
                                            NamespaceDecl *PrevNS) {
  assert(*IsInline != PrevNS->isInline());

  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
  // inline namespaces, with the intention of bringing names into namespace std.
  //
  // We support this just well enough to get that case working; this is not
  // sufficient to support reopening namespaces as inline in general.
  if (*IsInline && II && II->getName().startswith("__atomic") &&
      S.getSourceManager().isInSystemHeader(Loc)) {
    // Mark all prior declarations of the namespace as inline.
    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
         NS = NS->getPreviousDecl())
      NS->setInline(*IsInline);
    // Patch up the lookup table for the containing namespace. This isn't really
    // correct, but it's good enough for this particular case.
    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
                                    E = PrevNS->decls_end(); I != E; ++I)
      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
        PrevNS->getParent()->makeDeclVisibleInContext(ND);
    return;
  }

  if (PrevNS->isInline())
    // The user probably just forgot the 'inline', so suggest that it
    // be added back.
    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
  else
    S.Diag(Loc, diag::err_inline_namespace_mismatch)
      << IsInline;

  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
  *IsInline = PrevNS->isInline();
}

/// ActOnStartNamespaceDef - This is called at the start of a namespace
/// definition.
Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
                                   SourceLocation InlineLoc,
                                   SourceLocation NamespaceLoc,
                                   SourceLocation IdentLoc,
                                   IdentifierInfo *II,
                                   SourceLocation LBrace,
                                   AttributeList *AttrList) {
  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
  // For anonymous namespace, take the location of the left brace.
  SourceLocation Loc = II ? IdentLoc : LBrace;
  bool IsInline = InlineLoc.isValid();
  bool IsInvalid = false;
  bool IsStd = false;
  bool AddToKnown = false;
  Scope *DeclRegionScope = NamespcScope->getParent();

  NamespaceDecl *PrevNS = 0;
  if (II) {
    // C++ [namespace.def]p2:
    //   The identifier in an original-namespace-definition shall not
    //   have been previously defined in the declarative region in
    //   which the original-namespace-definition appears. The
    //   identifier in an original-namespace-definition is the name of
    //   the namespace. Subsequently in that declarative region, it is
    //   treated as an original-namespace-name.
    //
    // Since namespace names are unique in their scope, and we don't
    // look through using directives, just look for any ordinary names.
    
    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member | 
    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag | 
    Decl::IDNS_Namespace;
    NamedDecl *PrevDecl = 0;
    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
         ++I) {
      if ((*I)->getIdentifierNamespace() & IDNS) {
        PrevDecl = *I;
        break;
      }
    }
    
    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
    
    if (PrevNS) {
      // This is an extended namespace definition.
      if (IsInline != PrevNS->isInline())
        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
                                        &IsInline, PrevNS);
    } else if (PrevDecl) {
      // This is an invalid name redefinition.
      Diag(Loc, diag::err_redefinition_different_kind)
        << II;
      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
      IsInvalid = true;
      // Continue on to push Namespc as current DeclContext and return it.
    } else if (II->isStr("std") &&
               CurContext->getRedeclContext()->isTranslationUnit()) {
      // This is the first "real" definition of the namespace "std", so update
      // our cache of the "std" namespace to point at this definition.
      PrevNS = getStdNamespace();
      IsStd = true;
      AddToKnown = !IsInline;
    } else {
      // We've seen this namespace for the first time.
      AddToKnown = !IsInline;
    }
  } else {
    // Anonymous namespaces.
    
    // Determine whether the parent already has an anonymous namespace.
    DeclContext *Parent = CurContext->getRedeclContext();
    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
      PrevNS = TU->getAnonymousNamespace();
    } else {
      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
      PrevNS = ND->getAnonymousNamespace();
    }

    if (PrevNS && IsInline != PrevNS->isInline())
      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
                                      &IsInline, PrevNS);
  }
  
  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
                                                 StartLoc, Loc, II, PrevNS);
  if (IsInvalid)
    Namespc->setInvalidDecl();
  
  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);

  // FIXME: Should we be merging attributes?
  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
    PushNamespaceVisibilityAttr(Attr, Loc);

  if (IsStd)
    StdNamespace = Namespc;
  if (AddToKnown)
    KnownNamespaces[Namespc] = false;
  
  if (II) {
    PushOnScopeChains(Namespc, DeclRegionScope);
  } else {
    // Link the anonymous namespace into its parent.
    DeclContext *Parent = CurContext->getRedeclContext();
    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
      TU->setAnonymousNamespace(Namespc);
    } else {
      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
    }

    CurContext->addDecl(Namespc);

    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
    //   behaves as if it were replaced by
    //     namespace unique { /* empty body */ }
    //     using namespace unique;
    //     namespace unique { namespace-body }
    //   where all occurrences of 'unique' in a translation unit are
    //   replaced by the same identifier and this identifier differs
    //   from all other identifiers in the entire program.

    // We just create the namespace with an empty name and then add an
    // implicit using declaration, just like the standard suggests.
    //
    // CodeGen enforces the "universally unique" aspect by giving all
    // declarations semantically contained within an anonymous
    // namespace internal linkage.

    if (!PrevNS) {
      UsingDirectiveDecl* UD
        = UsingDirectiveDecl::Create(Context, Parent,
                                     /* 'using' */ LBrace,
                                     /* 'namespace' */ SourceLocation(),
                                     /* qualifier */ NestedNameSpecifierLoc(),
                                     /* identifier */ SourceLocation(),
                                     Namespc,
                                     /* Ancestor */ Parent);
      UD->setImplicit();
      Parent->addDecl(UD);
    }
  }

  ActOnDocumentableDecl(Namespc);

  // Although we could have an invalid decl (i.e. the namespace name is a
  // redefinition), push it as current DeclContext and try to continue parsing.
  // FIXME: We should be able to push Namespc here, so that the each DeclContext
  // for the namespace has the declarations that showed up in that particular
  // namespace definition.
  PushDeclContext(NamespcScope, Namespc);
  return Namespc;
}

/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
/// is a namespace alias, returns the namespace it points to.
static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
    return AD->getNamespace();
  return dyn_cast_or_null<NamespaceDecl>(D);
}

/// ActOnFinishNamespaceDef - This callback is called after a namespace is
/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
  Namespc->setRBraceLoc(RBrace);
  PopDeclContext();
  if (Namespc->hasAttr<VisibilityAttr>())
    PopPragmaVisibility(true, RBrace);
}

CXXRecordDecl *Sema::getStdBadAlloc() const {
  return cast_or_null<CXXRecordDecl>(
                                  StdBadAlloc.get(Context.getExternalSource()));
}

NamespaceDecl *Sema::getStdNamespace() const {
  return cast_or_null<NamespaceDecl>(
                                 StdNamespace.get(Context.getExternalSource()));
}

/// \brief Retrieve the special "std" namespace, which may require us to 
/// implicitly define the namespace.
NamespaceDecl *Sema::getOrCreateStdNamespace() {
  if (!StdNamespace) {
    // The "std" namespace has not yet been defined, so build one implicitly.
    StdNamespace = NamespaceDecl::Create(Context, 
                                         Context.getTranslationUnitDecl(),
                                         /*Inline=*/false,
                                         SourceLocation(), SourceLocation(),
                                         &PP.getIdentifierTable().get("std"),
                                         /*PrevDecl=*/0);
    getStdNamespace()->setImplicit(true);
  }
  
  return getStdNamespace();
}

bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
  assert(getLangOpts().CPlusPlus &&
         "Looking for std::initializer_list outside of C++.");

  // We're looking for implicit instantiations of
  // template <typename E> class std::initializer_list.

  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
    return false;

  ClassTemplateDecl *Template = 0;
  const TemplateArgument *Arguments = 0;

  if (const RecordType *RT = Ty->getAs<RecordType>()) {

    ClassTemplateSpecializationDecl *Specialization =
        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
    if (!Specialization)
      return false;

    Template = Specialization->getSpecializedTemplate();
    Arguments = Specialization->getTemplateArgs().data();
  } else if (const TemplateSpecializationType *TST =
                 Ty->getAs<TemplateSpecializationType>()) {
    Template = dyn_cast_or_null<ClassTemplateDecl>(
        TST->getTemplateName().getAsTemplateDecl());
    Arguments = TST->getArgs();
  }
  if (!Template)
    return false;

  if (!StdInitializerList) {
    // Haven't recognized std::initializer_list yet, maybe this is it.
    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
    if (TemplateClass->getIdentifier() !=
            &PP.getIdentifierTable().get("initializer_list") ||
        !getStdNamespace()->InEnclosingNamespaceSetOf(
            TemplateClass->getDeclContext()))
      return false;
    // This is a template called std::initializer_list, but is it the right
    // template?
    TemplateParameterList *Params = Template->getTemplateParameters();
    if (Params->getMinRequiredArguments() != 1)
      return false;
    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
      return false;

    // It's the right template.
    StdInitializerList = Template;
  }

  if (Template != StdInitializerList)
    return false;

  // This is an instance of std::initializer_list. Find the argument type.
  if (Element)
    *Element = Arguments[0].getAsType();
  return true;
}

static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
  NamespaceDecl *Std = S.getStdNamespace();
  if (!Std) {
    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
    return 0;
  }

  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
                      Loc, Sema::LookupOrdinaryName);
  if (!S.LookupQualifiedName(Result, Std)) {
    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
    return 0;
  }
  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
  if (!Template) {
    Result.suppressDiagnostics();
    // We found something weird. Complain about the first thing we found.
    NamedDecl *Found = *Result.begin();
    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
    return 0;
  }

  // We found some template called std::initializer_list. Now verify that it's
  // correct.
  TemplateParameterList *Params = Template->getTemplateParameters();
  if (Params->getMinRequiredArguments() != 1 ||
      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
    return 0;
  }

  return Template;
}

QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
  if (!StdInitializerList) {
    StdInitializerList = LookupStdInitializerList(*this, Loc);
    if (!StdInitializerList)
      return QualType();
  }

  TemplateArgumentListInfo Args(Loc, Loc);
  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
                                       Context.getTrivialTypeSourceInfo(Element,
                                                                        Loc)));
  return Context.getCanonicalType(
      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
}

bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
  // C++ [dcl.init.list]p2:
  //   A constructor is an initializer-list constructor if its first parameter
  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
  //   std::initializer_list<E> for some type E, and either there are no other
  //   parameters or else all other parameters have default arguments.
  if (Ctor->getNumParams() < 1 ||
      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
    return false;

  QualType ArgType = Ctor->getParamDecl(0)->getType();
  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
    ArgType = RT->getPointeeType().getUnqualifiedType();

  return isStdInitializerList(ArgType, 0);
}

/// \brief Determine whether a using statement is in a context where it will be
/// apply in all contexts.
static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
  switch (CurContext->getDeclKind()) {
    case Decl::TranslationUnit:
      return true;
    case Decl::LinkageSpec:
      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
    default:
      return false;
  }
}

namespace {

// Callback to only accept typo corrections that are namespaces.
class NamespaceValidatorCCC : public CorrectionCandidateCallback {
 public:
  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
    }
    return false;
  }
};

}

static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
                                       CXXScopeSpec &SS,
                                       SourceLocation IdentLoc,
                                       IdentifierInfo *Ident) {
  NamespaceValidatorCCC Validator;
  R.clear();
  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
                                               R.getLookupKind(), Sc, &SS,
                                               Validator)) {
    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
    if (DeclContext *DC = S.computeDeclContext(SS, false))
      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
        << Ident << DC << CorrectedQuotedStr << SS.getRange()
        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
                                        CorrectedStr);
    else
      S.Diag(IdentLoc, diag::err_using_directive_suggest)
        << Ident << CorrectedQuotedStr
        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);

    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
         diag::note_namespace_defined_here) << CorrectedQuotedStr;

    R.addDecl(Corrected.getCorrectionDecl());
    return true;
  }
  return false;
}

Decl *Sema::ActOnUsingDirective(Scope *S,
                                          SourceLocation UsingLoc,
                                          SourceLocation NamespcLoc,
                                          CXXScopeSpec &SS,
                                          SourceLocation IdentLoc,
                                          IdentifierInfo *NamespcName,
                                          AttributeList *AttrList) {
  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
  assert(NamespcName && "Invalid NamespcName.");
  assert(IdentLoc.isValid() && "Invalid NamespceName location.");

  // This can only happen along a recovery path.
  while (S->getFlags() & Scope::TemplateParamScope)
    S = S->getParent();
  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");

  UsingDirectiveDecl *UDir = 0;
  NestedNameSpecifier *Qualifier = 0;
  if (SS.isSet())
    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
  
  // Lookup namespace name.
  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
  LookupParsedName(R, S, &SS);
  if (R.isAmbiguous())
    return 0;

  if (R.empty()) {
    R.clear();
    // Allow "using namespace std;" or "using namespace ::std;" even if 
    // "std" hasn't been defined yet, for GCC compatibility.
    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
        NamespcName->isStr("std")) {
      Diag(IdentLoc, diag::ext_using_undefined_std);
      R.addDecl(getOrCreateStdNamespace());
      R.resolveKind();
    } 
    // Otherwise, attempt typo correction.
    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
  }
  
  if (!R.empty()) {
    NamedDecl *Named = R.getFoundDecl();
    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
        && "expected namespace decl");
    // C++ [namespace.udir]p1:
    //   A using-directive specifies that the names in the nominated
    //   namespace can be used in the scope in which the
    //   using-directive appears after the using-directive. During
    //   unqualified name lookup (3.4.1), the names appear as if they
    //   were declared in the nearest enclosing namespace which
    //   contains both the using-directive and the nominated
    //   namespace. [Note: in this context, "contains" means "contains
    //   directly or indirectly". ]

    // Find enclosing context containing both using-directive and
    // nominated namespace.
    NamespaceDecl *NS = getNamespaceDecl(Named);
    DeclContext *CommonAncestor = cast<DeclContext>(NS);
    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
      CommonAncestor = CommonAncestor->getParent();

    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
                                      SS.getWithLocInContext(Context),
                                      IdentLoc, Named, CommonAncestor);

    if (IsUsingDirectiveInToplevelContext(CurContext) &&
        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
      Diag(IdentLoc, diag::warn_using_directive_in_header);
    }

    PushUsingDirective(S, UDir);
  } else {
    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
  }

  if (UDir)
    ProcessDeclAttributeList(S, UDir, AttrList);

  return UDir;
}

void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
  // If the scope has an associated entity and the using directive is at
  // namespace or translation unit scope, add the UsingDirectiveDecl into
  // its lookup structure so qualified name lookup can find it.
  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
  if (Ctx && !Ctx->isFunctionOrMethod())
    Ctx->addDecl(UDir);
  else
    // Otherwise, it is at block sope. The using-directives will affect lookup
    // only to the end of the scope.
    S->PushUsingDirective(UDir);
}


Decl *Sema::ActOnUsingDeclaration(Scope *S,
                                  AccessSpecifier AS,
                                  bool HasUsingKeyword,
                                  SourceLocation UsingLoc,
                                  CXXScopeSpec &SS,
                                  UnqualifiedId &Name,
                                  AttributeList *AttrList,
                                  bool IsTypeName,
                                  SourceLocation TypenameLoc) {
  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");

  switch (Name.getKind()) {
  case UnqualifiedId::IK_ImplicitSelfParam:
  case UnqualifiedId::IK_Identifier:
  case UnqualifiedId::IK_OperatorFunctionId:
  case UnqualifiedId::IK_LiteralOperatorId:
  case UnqualifiedId::IK_ConversionFunctionId:
    break;
      
  case UnqualifiedId::IK_ConstructorName:
  case UnqualifiedId::IK_ConstructorTemplateId:
    // C++11 inheriting constructors.
    Diag(Name.getLocStart(),
         getLangOpts().CPlusPlus11 ?
           diag::warn_cxx98_compat_using_decl_constructor :
           diag::err_using_decl_constructor)
      << SS.getRange();

    if (getLangOpts().CPlusPlus11) break;

    return 0;
      
  case UnqualifiedId::IK_DestructorName:
    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
      << SS.getRange();
    return 0;
      
  case UnqualifiedId::IK_TemplateId:
    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
    return 0;
  }

  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
  DeclarationName TargetName = TargetNameInfo.getName();
  if (!TargetName)
    return 0;

  // Warn about access declarations.
  // TODO: store that the declaration was written without 'using' and
  // talk about access decls instead of using decls in the
  // diagnostics.
  if (!HasUsingKeyword) {
    UsingLoc = Name.getLocStart();
    
    Diag(UsingLoc, diag::warn_access_decl_deprecated)
      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
  }

  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
    return 0;

  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
                                        TargetNameInfo, AttrList,
                                        /* IsInstantiation */ false,
                                        IsTypeName, TypenameLoc);
  if (UD)
    PushOnScopeChains(UD, S, /*AddToContext*/ false);

  return UD;
}

/// \brief Determine whether a using declaration considers the given
/// declarations as "equivalent", e.g., if they are redeclarations of
/// the same entity or are both typedefs of the same type.
static bool 
IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
                         bool &SuppressRedeclaration) {
  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
    SuppressRedeclaration = false;
    return true;
  }

  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
      SuppressRedeclaration = true;
      return Context.hasSameType(TD1->getUnderlyingType(),
                                 TD2->getUnderlyingType());
    }

  return false;
}


/// Determines whether to create a using shadow decl for a particular
/// decl, given the set of decls existing prior to this using lookup.
bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
                                const LookupResult &Previous) {
  // Diagnose finding a decl which is not from a base class of the
  // current class.  We do this now because there are cases where this
  // function will silently decide not to build a shadow decl, which
  // will pre-empt further diagnostics.
  //
  // We don't need to do this in C++0x because we do the check once on
  // the qualifier.
  //
  // FIXME: diagnose the following if we care enough:
  //   struct A { int foo; };
  //   struct B : A { using A::foo; };
  //   template <class T> struct C : A {};
  //   template <class T> struct D : C<T> { using B::foo; } // <---
  // This is invalid (during instantiation) in C++03 because B::foo
  // resolves to the using decl in B, which is not a base class of D<T>.
  // We can't diagnose it immediately because C<T> is an unknown
  // specialization.  The UsingShadowDecl in D<T> then points directly
  // to A::foo, which will look well-formed when we instantiate.
  // The right solution is to not collapse the shadow-decl chain.
  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
    DeclContext *OrigDC = Orig->getDeclContext();

    // Handle enums and anonymous structs.
    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
    while (OrigRec->isAnonymousStructOrUnion())
      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());

    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
      if (OrigDC == CurContext) {
        Diag(Using->getLocation(),
             diag::err_using_decl_nested_name_specifier_is_current_class)
          << Using->getQualifierLoc().getSourceRange();
        Diag(Orig->getLocation(), diag::note_using_decl_target);
        return true;
      }

      Diag(Using->getQualifierLoc().getBeginLoc(),
           diag::err_using_decl_nested_name_specifier_is_not_base_class)
        << Using->getQualifier()
        << cast<CXXRecordDecl>(CurContext)
        << Using->getQualifierLoc().getSourceRange();
      Diag(Orig->getLocation(), diag::note_using_decl_target);
      return true;
    }
  }

  if (Previous.empty()) return false;

  NamedDecl *Target = Orig;
  if (isa<UsingShadowDecl>(Target))
    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();

  // If the target happens to be one of the previous declarations, we
  // don't have a conflict.
  // 
  // FIXME: but we might be increasing its access, in which case we
  // should redeclare it.
  NamedDecl *NonTag = 0, *Tag = 0;
  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
         I != E; ++I) {
    NamedDecl *D = (*I)->getUnderlyingDecl();
    bool Result;
    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
      return Result;

    (isa<TagDecl>(D) ? Tag : NonTag) = D;
  }

  if (Target->isFunctionOrFunctionTemplate()) {
    FunctionDecl *FD;
    if (isa<FunctionTemplateDecl>(Target))
      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
    else
      FD = cast<FunctionDecl>(Target);

    NamedDecl *OldDecl = 0;
    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
    case Ovl_Overload:
      return false;

    case Ovl_NonFunction:
      Diag(Using->getLocation(), diag::err_using_decl_conflict);
      break;
      
    // We found a decl with the exact signature.
    case Ovl_Match:
      // If we're in a record, we want to hide the target, so we
      // return true (without a diagnostic) to tell the caller not to
      // build a shadow decl.
      if (CurContext->isRecord())
        return true;

      // If we're not in a record, this is an error.
      Diag(Using->getLocation(), diag::err_using_decl_conflict);
      break;
    }

    Diag(Target->getLocation(), diag::note_using_decl_target);
    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
    return true;
  }

  // Target is not a function.

  if (isa<TagDecl>(Target)) {
    // No conflict between a tag and a non-tag.
    if (!Tag) return false;

    Diag(Using->getLocation(), diag::err_using_decl_conflict);
    Diag(Target->getLocation(), diag::note_using_decl_target);
    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
    return true;
  }

  // No conflict between a tag and a non-tag.
  if (!NonTag) return false;

  Diag(Using->getLocation(), diag::err_using_decl_conflict);
  Diag(Target->getLocation(), diag::note_using_decl_target);
  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
  return true;
}

/// Builds a shadow declaration corresponding to a 'using' declaration.
UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
                                            UsingDecl *UD,
                                            NamedDecl *Orig) {

  // If we resolved to another shadow declaration, just coalesce them.
  NamedDecl *Target = Orig;
  if (isa<UsingShadowDecl>(Target)) {
    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
  }
  
  UsingShadowDecl *Shadow
    = UsingShadowDecl::Create(Context, CurContext,
                              UD->getLocation(), UD, Target);
  UD->addShadowDecl(Shadow);
  
  Shadow->setAccess(UD->getAccess());
  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
    Shadow->setInvalidDecl();
  
  if (S)
    PushOnScopeChains(Shadow, S);
  else
    CurContext->addDecl(Shadow);


  return Shadow;
}

/// Hides a using shadow declaration.  This is required by the current
/// using-decl implementation when a resolvable using declaration in a
/// class is followed by a declaration which would hide or override
/// one or more of the using decl's targets; for example:
///
///   struct Base { void foo(int); };
///   struct Derived : Base {
///     using Base::foo;
///     void foo(int);
///   };
///
/// The governing language is C++03 [namespace.udecl]p12:
///
///   When a using-declaration brings names from a base class into a
///   derived class scope, member functions in the derived class
///   override and/or hide member functions with the same name and
///   parameter types in a base class (rather than conflicting).
///
/// There are two ways to implement this:
///   (1) optimistically create shadow decls when they're not hidden
///       by existing declarations, or
///   (2) don't create any shadow decls (or at least don't make them
///       visible) until we've fully parsed/instantiated the class.
/// The problem with (1) is that we might have to retroactively remove
/// a shadow decl, which requires several O(n) operations because the
/// decl structures are (very reasonably) not designed for removal.
/// (2) avoids this but is very fiddly and phase-dependent.
void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
  if (Shadow->getDeclName().getNameKind() ==
        DeclarationName::CXXConversionFunctionName)
    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);

  // Remove it from the DeclContext...
  Shadow->getDeclContext()->removeDecl(Shadow);

  // ...and the scope, if applicable...
  if (S) {
    S->RemoveDecl(Shadow);
    IdResolver.RemoveDecl(Shadow);
  }

  // ...and the using decl.
  Shadow->getUsingDecl()->removeShadowDecl(Shadow);

  // TODO: complain somehow if Shadow was used.  It shouldn't
  // be possible for this to happen, because...?
}

/// Builds a using declaration.
///
/// \param IsInstantiation - Whether this call arises from an
///   instantiation of an unresolved using declaration.  We treat
///   the lookup differently for these declarations.
NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
                                       SourceLocation UsingLoc,
                                       CXXScopeSpec &SS,
                                       const DeclarationNameInfo &NameInfo,
                                       AttributeList *AttrList,
                                       bool IsInstantiation,
                                       bool IsTypeName,
                                       SourceLocation TypenameLoc) {
  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
  SourceLocation IdentLoc = NameInfo.getLoc();
  assert(IdentLoc.isValid() && "Invalid TargetName location.");

  // FIXME: We ignore attributes for now.

  if (SS.isEmpty()) {
    Diag(IdentLoc, diag::err_using_requires_qualname);
    return 0;
  }

  // Do the redeclaration lookup in the current scope.
  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
                        ForRedeclaration);
  Previous.setHideTags(false);
  if (S) {
    LookupName(Previous, S);

    // It is really dumb that we have to do this.
    LookupResult::Filter F = Previous.makeFilter();
    while (F.hasNext()) {
      NamedDecl *D = F.next();
      if (!isDeclInScope(D, CurContext, S))
        F.erase();
    }
    F.done();
  } else {
    assert(IsInstantiation && "no scope in non-instantiation");
    assert(CurContext->isRecord() && "scope not record in instantiation");
    LookupQualifiedName(Previous, CurContext);
  }

  // Check for invalid redeclarations.
  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
    return 0;

  // Check for bad qualifiers.
  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
    return 0;

  DeclContext *LookupContext = computeDeclContext(SS);
  NamedDecl *D;
  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
  if (!LookupContext) {
    if (IsTypeName) {
      // FIXME: not all declaration name kinds are legal here
      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
                                              UsingLoc, TypenameLoc,
                                              QualifierLoc,
                                              IdentLoc, NameInfo.getName());
    } else {
      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, 
                                           QualifierLoc, NameInfo);
    }
  } else {
    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
                          NameInfo, IsTypeName);
  }
  D->setAccess(AS);
  CurContext->addDecl(D);

  if (!LookupContext) return D;
  UsingDecl *UD = cast<UsingDecl>(D);

  if (RequireCompleteDeclContext(SS, LookupContext)) {
    UD->setInvalidDecl();
    return UD;
  }

  // The normal rules do not apply to inheriting constructor declarations.
  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
    if (CheckInheritingConstructorUsingDecl(UD))
      UD->setInvalidDecl();
    return UD;
  }

  // Otherwise, look up the target name.

  LookupResult R(*this, NameInfo, LookupOrdinaryName);

  // Unlike most lookups, we don't always want to hide tag
  // declarations: tag names are visible through the using declaration
  // even if hidden by ordinary names, *except* in a dependent context
  // where it's important for the sanity of two-phase lookup.
  if (!IsInstantiation)
    R.setHideTags(false);

  // For the purposes of this lookup, we have a base object type
  // equal to that of the current context.
  if (CurContext->isRecord()) {
    R.setBaseObjectType(
                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
  }

  LookupQualifiedName(R, LookupContext);

  if (R.empty()) {
    Diag(IdentLoc, diag::err_no_member) 
      << NameInfo.getName() << LookupContext << SS.getRange();
    UD->setInvalidDecl();
    return UD;
  }

  if (R.isAmbiguous()) {
    UD->setInvalidDecl();
    return UD;
  }

  if (IsTypeName) {
    // If we asked for a typename and got a non-type decl, error out.
    if (!R.getAsSingle<TypeDecl>()) {
      Diag(IdentLoc, diag::err_using_typename_non_type);
      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
        Diag((*I)->getUnderlyingDecl()->getLocation(),
             diag::note_using_decl_target);
      UD->setInvalidDecl();
      return UD;
    }
  } else {
    // If we asked for a non-typename and we got a type, error out,
    // but only if this is an instantiation of an unresolved using
    // decl.  Otherwise just silently find the type name.
    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
      UD->setInvalidDecl();
      return UD;
    }
  }

  // C++0x N2914 [namespace.udecl]p6:
  // A using-declaration shall not name a namespace.
  if (R.getAsSingle<NamespaceDecl>()) {
    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
      << SS.getRange();
    UD->setInvalidDecl();
    return UD;
  }

  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
    if (!CheckUsingShadowDecl(UD, *I, Previous))
      BuildUsingShadowDecl(S, UD, *I);
  }

  return UD;
}

/// Additional checks for a using declaration referring to a constructor name.
bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
  assert(!UD->isTypeName() && "expecting a constructor name");

  const Type *SourceType = UD->getQualifier()->getAsType();
  assert(SourceType &&
         "Using decl naming constructor doesn't have type in scope spec.");
  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);

  // Check whether the named type is a direct base class.
  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
       BaseIt != BaseE; ++BaseIt) {
    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
    if (CanonicalSourceType == BaseType)
      break;
    if (BaseIt->getType()->isDependentType())
      break;
  }

  if (BaseIt == BaseE) {
    // Did not find SourceType in the bases.
    Diag(UD->getUsingLocation(),
         diag::err_using_decl_constructor_not_in_direct_base)
      << UD->getNameInfo().getSourceRange()
      << QualType(SourceType, 0) << TargetClass;
    return true;
  }

  if (!CurContext->isDependentContext())
    BaseIt->setInheritConstructors();

  return false;
}

/// Checks that the given using declaration is not an invalid
/// redeclaration.  Note that this is checking only for the using decl
/// itself, not for any ill-formedness among the UsingShadowDecls.
bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
                                       bool isTypeName,
                                       const CXXScopeSpec &SS,
                                       SourceLocation NameLoc,
                                       const LookupResult &Prev) {
  // C++03 [namespace.udecl]p8:
  // C++0x [namespace.udecl]p10:
  //   A using-declaration is a declaration and can therefore be used
  //   repeatedly where (and only where) multiple declarations are
  //   allowed.
  //
  // That's in non-member contexts.
  if (!CurContext->getRedeclContext()->isRecord())
    return false;

  NestedNameSpecifier *Qual
    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());

  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
    NamedDecl *D = *I;

    bool DTypename;
    NestedNameSpecifier *DQual;
    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
      DTypename = UD->isTypeName();
      DQual = UD->getQualifier();
    } else if (UnresolvedUsingValueDecl *UD
                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
      DTypename = false;
      DQual = UD->getQualifier();
    } else if (UnresolvedUsingTypenameDecl *UD
                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
      DTypename = true;
      DQual = UD->getQualifier();
    } else continue;

    // using decls differ if one says 'typename' and the other doesn't.
    // FIXME: non-dependent using decls?
    if (isTypeName != DTypename) continue;

    // using decls differ if they name different scopes (but note that
    // template instantiation can cause this check to trigger when it
    // didn't before instantiation).
    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
        Context.getCanonicalNestedNameSpecifier(DQual))
      continue;

    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
    Diag(D->getLocation(), diag::note_using_decl) << 1;
    return true;
  }

  return false;
}


/// Checks that the given nested-name qualifier used in a using decl
/// in the current context is appropriately related to the current
/// scope.  If an error is found, diagnoses it and returns true.
bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
                                   const CXXScopeSpec &SS,
                                   SourceLocation NameLoc) {
  DeclContext *NamedContext = computeDeclContext(SS);

  if (!CurContext->isRecord()) {
    // C++03 [namespace.udecl]p3:
    // C++0x [namespace.udecl]p8:
    //   A using-declaration for a class member shall be a member-declaration.

    // If we weren't able to compute a valid scope, it must be a
    // dependent class scope.
    if (!NamedContext || NamedContext->isRecord()) {
      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
        << SS.getRange();
      return true;
    }

    // Otherwise, everything is known to be fine.
    return false;
  }

  // The current scope is a record.

  // If the named context is dependent, we can't decide much.
  if (!NamedContext) {
    // FIXME: in C++0x, we can diagnose if we can prove that the
    // nested-name-specifier does not refer to a base class, which is
    // still possible in some cases.

    // Otherwise we have to conservatively report that things might be
    // okay.
    return false;
  }

  if (!NamedContext->isRecord()) {
    // Ideally this would point at the last name in the specifier,
    // but we don't have that level of source info.
    Diag(SS.getRange().getBegin(),
         diag::err_using_decl_nested_name_specifier_is_not_class)
      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
    return true;
  }

  if (!NamedContext->isDependentContext() &&
      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
    return true;

  if (getLangOpts().CPlusPlus11) {
    // C++0x [namespace.udecl]p3:
    //   In a using-declaration used as a member-declaration, the
    //   nested-name-specifier shall name a base class of the class
    //   being defined.

    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
                                 cast<CXXRecordDecl>(NamedContext))) {
      if (CurContext == NamedContext) {
        Diag(NameLoc,
             diag::err_using_decl_nested_name_specifier_is_current_class)
          << SS.getRange();
        return true;
      }

      Diag(SS.getRange().getBegin(),
           diag::err_using_decl_nested_name_specifier_is_not_base_class)
        << (NestedNameSpecifier*) SS.getScopeRep()
        << cast<CXXRecordDecl>(CurContext)
        << SS.getRange();
      return true;
    }

    return false;
  }

  // C++03 [namespace.udecl]p4:
  //   A using-declaration used as a member-declaration shall refer
  //   to a member of a base class of the class being defined [etc.].

  // Salient point: SS doesn't have to name a base class as long as
  // lookup only finds members from base classes.  Therefore we can
  // diagnose here only if we can prove that that can't happen,
  // i.e. if the class hierarchies provably don't intersect.

  // TODO: it would be nice if "definitely valid" results were cached
  // in the UsingDecl and UsingShadowDecl so that these checks didn't
  // need to be repeated.

  struct UserData {
    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;

    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
      Data->Bases.insert(Base);
      return true;
    }

    bool hasDependentBases(const CXXRecordDecl *Class) {
      return !Class->forallBases(collect, this);
    }

    /// Returns true if the base is dependent or is one of the
    /// accumulated base classes.
    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
      return !Data->Bases.count(Base);
    }

    bool mightShareBases(const CXXRecordDecl *Class) {
      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
    }
  };

  UserData Data;

  // Returns false if we find a dependent base.
  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
    return false;

  // Returns false if the class has a dependent base or if it or one
  // of its bases is present in the base set of the current context.
  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
    return false;

  Diag(SS.getRange().getBegin(),
       diag::err_using_decl_nested_name_specifier_is_not_base_class)
    << (NestedNameSpecifier*) SS.getScopeRep()
    << cast<CXXRecordDecl>(CurContext)
    << SS.getRange();

  return true;
}

Decl *Sema::ActOnAliasDeclaration(Scope *S,
                                  AccessSpecifier AS,
                                  MultiTemplateParamsArg TemplateParamLists,
                                  SourceLocation UsingLoc,
                                  UnqualifiedId &Name,
                                  AttributeList *AttrList,
                                  TypeResult Type) {
  // Skip up to the relevant declaration scope.
  while (S->getFlags() & Scope::TemplateParamScope)
    S = S->getParent();
  assert((S->getFlags() & Scope::DeclScope) &&
         "got alias-declaration outside of declaration scope");

  if (Type.isInvalid())
    return 0;

  bool Invalid = false;
  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
  TypeSourceInfo *TInfo = 0;
  GetTypeFromParser(Type.get(), &TInfo);

  if (DiagnoseClassNameShadow(CurContext, NameInfo))
    return 0;

  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
                                      UPPC_DeclarationType)) {
    Invalid = true;
    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 
                                             TInfo->getTypeLoc().getBeginLoc());
  }

  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
  LookupName(Previous, S);

  // Warn about shadowing the name of a template parameter.
  if (Previous.isSingleResult() &&
      Previous.getFoundDecl()->isTemplateParameter()) {
    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
    Previous.clear();
  }

  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
         "name in alias declaration must be an identifier");
  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
                                               Name.StartLocation,
                                               Name.Identifier, TInfo);

  NewTD->setAccess(AS);

  if (Invalid)
    NewTD->setInvalidDecl();

  ProcessDeclAttributeList(S, NewTD, AttrList);

  CheckTypedefForVariablyModifiedType(S, NewTD);
  Invalid |= NewTD->isInvalidDecl();

  bool Redeclaration = false;

  NamedDecl *NewND;
  if (TemplateParamLists.size()) {
    TypeAliasTemplateDecl *OldDecl = 0;
    TemplateParameterList *OldTemplateParams = 0;

    if (TemplateParamLists.size() != 1) {
      Diag(UsingLoc, diag::err_alias_template_extra_headers)
        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
    }
    TemplateParameterList *TemplateParams = TemplateParamLists[0];

    // Only consider previous declarations in the same scope.
    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
                         /*ExplicitInstantiationOrSpecialization*/false);
    if (!Previous.empty()) {
      Redeclaration = true;

      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
      if (!OldDecl && !Invalid) {
        Diag(UsingLoc, diag::err_redefinition_different_kind)
          << Name.Identifier;

        NamedDecl *OldD = Previous.getRepresentativeDecl();
        if (OldD->getLocation().isValid())
          Diag(OldD->getLocation(), diag::note_previous_definition);

        Invalid = true;
      }

      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
        if (TemplateParameterListsAreEqual(TemplateParams,
                                           OldDecl->getTemplateParameters(),
                                           /*Complain=*/true,
                                           TPL_TemplateMatch))
          OldTemplateParams = OldDecl->getTemplateParameters();
        else
          Invalid = true;

        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
        if (!Invalid &&
            !Context.hasSameType(OldTD->getUnderlyingType(),
                                 NewTD->getUnderlyingType())) {
          // FIXME: The C++0x standard does not clearly say this is ill-formed,
          // but we can't reasonably accept it.
          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
          if (OldTD->getLocation().isValid())
            Diag(OldTD->getLocation(), diag::note_previous_definition);
          Invalid = true;
        }
      }
    }

    // Merge any previous default template arguments into our parameters,
    // and check the parameter list.
    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
                                   TPC_TypeAliasTemplate))
      return 0;

    TypeAliasTemplateDecl *NewDecl =
      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
                                    Name.Identifier, TemplateParams,
                                    NewTD);

    NewDecl->setAccess(AS);

    if (Invalid)
      NewDecl->setInvalidDecl();
    else if (OldDecl)
      NewDecl->setPreviousDeclaration(OldDecl);

    NewND = NewDecl;
  } else {
    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
    NewND = NewTD;
  }

  if (!Redeclaration)
    PushOnScopeChains(NewND, S);

  ActOnDocumentableDecl(NewND);
  return NewND;
}

Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
                                             SourceLocation NamespaceLoc,
                                             SourceLocation AliasLoc,
                                             IdentifierInfo *Alias,
                                             CXXScopeSpec &SS,
                                             SourceLocation IdentLoc,
                                             IdentifierInfo *Ident) {

  // Lookup the namespace name.
  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
  LookupParsedName(R, S, &SS);

  // Check if we have a previous declaration with the same name.
  NamedDecl *PrevDecl
    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName, 
                       ForRedeclaration);
  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
    PrevDecl = 0;

  if (PrevDecl) {
    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
      // We already have an alias with the same name that points to the same
      // namespace, so don't create a new one.
      // FIXME: At some point, we'll want to create the (redundant)
      // declaration to maintain better source information.
      if (!R.isAmbiguous() && !R.empty() &&
          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
        return 0;
    }

    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
      diag::err_redefinition_different_kind;
    Diag(AliasLoc, DiagID) << Alias;
    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    return 0;
  }

  if (R.isAmbiguous())
    return 0;

  if (R.empty()) {
    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
      return 0;
    }
  }

  NamespaceAliasDecl *AliasDecl =
    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
                               Alias, SS.getWithLocInContext(Context),
                               IdentLoc, R.getFoundDecl());

  PushOnScopeChains(AliasDecl, S);
  return AliasDecl;
}

Sema::ImplicitExceptionSpecification
Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
                                               CXXMethodDecl *MD) {
  CXXRecordDecl *ClassDecl = MD->getParent();

  // C++ [except.spec]p14:
  //   An implicitly declared special member function (Clause 12) shall have an 
  //   exception-specification. [...]
  ImplicitExceptionSpecification ExceptSpec(*this);
  if (ClassDecl->isInvalidDecl())
    return ExceptSpec;

  // Direct base-class constructors.
  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
                                       BEnd = ClassDecl->bases_end();
       B != BEnd; ++B) {
    if (B->isVirtual()) // Handled below.
      continue;
    
    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
      // If this is a deleted function, add it anyway. This might be conformant
      // with the standard. This might not. I'm not sure. It might not matter.
      if (Constructor)
        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
    }
  }

  // Virtual base-class constructors.
  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
                                       BEnd = ClassDecl->vbases_end();
       B != BEnd; ++B) {
    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
      // If this is a deleted function, add it anyway. This might be conformant
      // with the standard. This might not. I'm not sure. It might not matter.
      if (Constructor)
        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
    }
  }

  // Field constructors.
  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
                               FEnd = ClassDecl->field_end();
       F != FEnd; ++F) {
    if (F->hasInClassInitializer()) {
      if (Expr *E = F->getInClassInitializer())
        ExceptSpec.CalledExpr(E);
      else if (!F->isInvalidDecl())
        // DR1351:
        //   If the brace-or-equal-initializer of a non-static data member
        //   invokes a defaulted default constructor of its class or of an
        //   enclosing class in a potentially evaluated subexpression, the
        //   program is ill-formed.
        //
        // This resolution is unworkable: the exception specification of the
        // default constructor can be needed in an unevaluated context, in
        // particular, in the operand of a noexcept-expression, and we can be
        // unable to compute an exception specification for an enclosed class.
        //
        // We do not allow an in-class initializer to require the evaluation
        // of the exception specification for any in-class initializer whose
        // definition is not lexically complete.
        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
    } else if (const RecordType *RecordTy
              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
      // If this is a deleted function, add it anyway. This might be conformant
      // with the standard. This might not. I'm not sure. It might not matter.
      // In particular, the problem is that this function never gets called. It
      // might just be ill-formed because this function attempts to refer to
      // a deleted function here.
      if (Constructor)
        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
    }
  }

  return ExceptSpec;
}

Sema::ImplicitExceptionSpecification
Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
  CXXRecordDecl *ClassDecl = CD->getParent();

  // C++ [except.spec]p14:
  //   An inheriting constructor [...] shall have an exception-specification. [...]
  ImplicitExceptionSpecification ExceptSpec(*this);
  if (ClassDecl->isInvalidDecl())
    return ExceptSpec;

  // Inherited constructor.
  const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
  const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
  // FIXME: Copying or moving the parameters could add extra exceptions to the
  // set, as could the default arguments for the inherited constructor. This
  // will be addressed when we implement the resolution of core issue 1351.
  ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);

  // Direct base-class constructors.
  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
                                       BEnd = ClassDecl->bases_end();
       B != BEnd; ++B) {
    if (B->isVirtual()) // Handled below.
      continue;

    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
      if (BaseClassDecl == InheritedDecl)
        continue;
      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
      if (Constructor)
        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
    }
  }

  // Virtual base-class constructors.
  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
                                       BEnd = ClassDecl->vbases_end();
       B != BEnd; ++B) {
    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
      if (BaseClassDecl == InheritedDecl)
        continue;
      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
      if (Constructor)
        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
    }
  }

  // Field constructors.
  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
                               FEnd = ClassDecl->field_end();
       F != FEnd; ++F) {
    if (F->hasInClassInitializer()) {
      if (Expr *E = F->getInClassInitializer())
        ExceptSpec.CalledExpr(E);
      else if (!F->isInvalidDecl())
        Diag(CD->getLocation(),
             diag::err_in_class_initializer_references_def_ctor) << CD;
    } else if (const RecordType *RecordTy
              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
      if (Constructor)
        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
    }
  }

  return ExceptSpec;
}

namespace {
/// RAII object to register a special member as being currently declared.
struct DeclaringSpecialMember {
  Sema &S;
  Sema::SpecialMemberDecl D;
  bool WasAlreadyBeingDeclared;

  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
    : S(S), D(RD, CSM) {
    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
    if (WasAlreadyBeingDeclared)
      // This almost never happens, but if it does, ensure that our cache
      // doesn't contain a stale result.
      S.SpecialMemberCache.clear();

    // FIXME: Register a note to be produced if we encounter an error while
    // declaring the special member.
  }
  ~DeclaringSpecialMember() {
    if (!WasAlreadyBeingDeclared)
      S.SpecialMembersBeingDeclared.erase(D);
  }

  /// \brief Are we already trying to declare this special member?
  bool isAlreadyBeingDeclared() const {
    return WasAlreadyBeingDeclared;
  }
};
}

CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
                                                     CXXRecordDecl *ClassDecl) {
  // C++ [class.ctor]p5:
  //   A default constructor for a class X is a constructor of class X
  //   that can be called without an argument. If there is no
  //   user-declared constructor for class X, a default constructor is
  //   implicitly declared. An implicitly-declared default constructor
  //   is an inline public member of its class.
  assert(ClassDecl->needsImplicitDefaultConstructor() && 
         "Should not build implicit default constructor!");

  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
  if (DSM.isAlreadyBeingDeclared())
    return 0;

  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
                                                     CXXDefaultConstructor,
                                                     false);

  // Create the actual constructor declaration.
  CanQualType ClassType
    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
  SourceLocation ClassLoc = ClassDecl->getLocation();
  DeclarationName Name
    = Context.DeclarationNames.getCXXConstructorName(ClassType);
  DeclarationNameInfo NameInfo(Name, ClassLoc);
  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
      Constexpr);
  DefaultCon->setAccess(AS_public);
  DefaultCon->setDefaulted();
  DefaultCon->setImplicit();

  // Build an exception specification pointing back at this constructor.
  FunctionProtoType::ExtProtoInfo EPI;
  EPI.ExceptionSpecType = EST_Unevaluated;
  EPI.ExceptionSpecDecl = DefaultCon;
  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));

  // We don't need to use SpecialMemberIsTrivial here; triviality for default
  // constructors is easy to compute.
  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());

  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
    SetDeclDeleted(DefaultCon, ClassLoc);

  // Note that we have declared this constructor.
  ++ASTContext::NumImplicitDefaultConstructorsDeclared;

  if (Scope *S = getScopeForContext(ClassDecl))
    PushOnScopeChains(DefaultCon, S, false);
  ClassDecl->addDecl(DefaultCon);

  return DefaultCon;
}

void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
                                            CXXConstructorDecl *Constructor) {
  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
          !Constructor->doesThisDeclarationHaveABody() &&
          !Constructor->isDeleted()) &&
    "DefineImplicitDefaultConstructor - call it for implicit default ctor");

  CXXRecordDecl *ClassDecl = Constructor->getParent();
  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");

  SynthesizedFunctionScope Scope(*this, Constructor);
  DiagnosticErrorTrap Trap(Diags);
  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
      Trap.hasErrorOccurred()) {
    Diag(CurrentLocation, diag::note_member_synthesized_at) 
      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
    Constructor->setInvalidDecl();
    return;
  }

  SourceLocation Loc = Constructor->getLocation();
  Constructor->setBody(new (Context) CompoundStmt(Loc));

  Constructor->setUsed();
  MarkVTableUsed(CurrentLocation, ClassDecl);

  if (ASTMutationListener *L = getASTMutationListener()) {
    L->CompletedImplicitDefinition(Constructor);
  }
}

void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
  // Check that any explicitly-defaulted methods have exception specifications
  // compatible with their implicit exception specifications.
  CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
}

namespace {
/// Information on inheriting constructors to declare.
class InheritingConstructorInfo {
public:
  InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
      : SemaRef(SemaRef), Derived(Derived) {
    // Mark the constructors that we already have in the derived class.
    //
    // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
    //   unless there is a user-declared constructor with the same signature in
    //   the class where the using-declaration appears.
    visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
  }

  void inheritAll(CXXRecordDecl *RD) {
    visitAll(RD, &InheritingConstructorInfo::inherit);
  }

private:
  /// Information about an inheriting constructor.
  struct InheritingConstructor {
    InheritingConstructor()
      : DeclaredInDerived(false), BaseCtor(0), DerivedCtor(0) {}

    /// If \c true, a constructor with this signature is already declared
    /// in the derived class.
    bool DeclaredInDerived;

    /// The constructor which is inherited.
    const CXXConstructorDecl *BaseCtor;

    /// The derived constructor we declared.
    CXXConstructorDecl *DerivedCtor;
  };

  /// Inheriting constructors with a given canonical type. There can be at
  /// most one such non-template constructor, and any number of templated
  /// constructors.
  struct InheritingConstructorsForType {
    InheritingConstructor NonTemplate;
    llvm::SmallVector<
      std::pair<TemplateParameterList*, InheritingConstructor>, 4> Templates;

    InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
      if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
        TemplateParameterList *ParamList = FTD->getTemplateParameters();
        for (unsigned I = 0, N = Templates.size(); I != N; ++I)
          if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
                                               false, S.TPL_TemplateMatch))
            return Templates[I].second;
        Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
        return Templates.back().second;
      }

      return NonTemplate;
    }
  };

  /// Get or create the inheriting constructor record for a constructor.
  InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
                                  QualType CtorType) {
    return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
        .getEntry(SemaRef, Ctor);
  }

  typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);

  /// Process all constructors for a class.
  void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
    for (CXXRecordDecl::ctor_iterator CtorIt = RD->ctor_begin(),
                                      CtorE = RD->ctor_end();
         CtorIt != CtorE; ++CtorIt)
      (this->*Callback)(*CtorIt);
    for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
             I(RD->decls_begin()), E(RD->decls_end());
         I != E; ++I) {
      const FunctionDecl *FD = (*I)->getTemplatedDecl();
      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
        (this->*Callback)(CD);
    }
  }

  /// Note that a constructor (or constructor template) was declared in Derived.
  void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
    getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
  }

  /// Inherit a single constructor.
  void inherit(const CXXConstructorDecl *Ctor) {
    const FunctionProtoType *CtorType =
        Ctor->getType()->castAs<FunctionProtoType>();
    ArrayRef<QualType> ArgTypes(CtorType->getArgTypes());
    FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();

    SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());

    // Core issue (no number yet): the ellipsis is always discarded.
    if (EPI.Variadic) {
      SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
      SemaRef.Diag(Ctor->getLocation(),
                   diag::note_using_decl_constructor_ellipsis);
      EPI.Variadic = false;
    }

    // Declare a constructor for each number of parameters.
    //
    // C++11 [class.inhctor]p1:
    //   The candidate set of inherited constructors from the class X named in
    //   the using-declaration consists of [... modulo defects ...] for each
    //   constructor or constructor template of X, the set of constructors or
    //   constructor templates that results from omitting any ellipsis parameter
    //   specification and successively omitting parameters with a default
    //   argument from the end of the parameter-type-list
    unsigned MinParams = minParamsToInherit(Ctor);
    unsigned Params = Ctor->getNumParams();
    if (Params >= MinParams) {
      do
        declareCtor(UsingLoc, Ctor,
                    SemaRef.Context.getFunctionType(
                        Ctor->getResultType(), ArgTypes.slice(0, Params), EPI));
      while (Params > MinParams &&
             Ctor->getParamDecl(--Params)->hasDefaultArg());
    }
  }

  /// Find the using-declaration which specified that we should inherit the
  /// constructors of \p Base.
  SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
    // No fancy lookup required; just look for the base constructor name
    // directly within the derived class.
    ASTContext &Context = SemaRef.Context;
    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
        Context.getCanonicalType(Context.getRecordType(Base)));
    DeclContext::lookup_const_result Decls = Derived->lookup(Name);
    return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
  }

  unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
    // C++11 [class.inhctor]p3:
    //   [F]or each constructor template in the candidate set of inherited
    //   constructors, a constructor template is implicitly declared
    if (Ctor->getDescribedFunctionTemplate())
      return 0;

    //   For each non-template constructor in the candidate set of inherited
    //   constructors other than a constructor having no parameters or a
    //   copy/move constructor having a single parameter, a constructor is
    //   implicitly declared [...]
    if (Ctor->getNumParams() == 0)
      return 1;
    if (Ctor->isCopyOrMoveConstructor())
      return 2;

    // Per discussion on core reflector, never inherit a constructor which
    // would become a default, copy, or move constructor of Derived either.
    const ParmVarDecl *PD = Ctor->getParamDecl(0);
    const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
    return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
  }

  /// Declare a single inheriting constructor, inheriting the specified
  /// constructor, with the given type.
  void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
                   QualType DerivedType) {
    InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);

    // C++11 [class.inhctor]p3:
    //   ... a constructor is implicitly declared with the same constructor
    //   characteristics unless there is a user-declared constructor with
    //   the same signature in the class where the using-declaration appears
    if (Entry.DeclaredInDerived)
      return;

    // C++11 [class.inhctor]p7:
    //   If two using-declarations declare inheriting constructors with the
    //   same signature, the program is ill-formed
    if (Entry.DerivedCtor) {
      if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
        // Only diagnose this once per constructor.
        if (Entry.DerivedCtor->isInvalidDecl())
          return;
        Entry.DerivedCtor->setInvalidDecl();

        SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
        SemaRef.Diag(BaseCtor->getLocation(),
                     diag::note_using_decl_constructor_conflict_current_ctor);
        SemaRef.Diag(Entry.BaseCtor->getLocation(),
                     diag::note_using_decl_constructor_conflict_previous_ctor);
        SemaRef.Diag(Entry.DerivedCtor->getLocation(),
                     diag::note_using_decl_constructor_conflict_previous_using);
      } else {
        // Core issue (no number): if the same inheriting constructor is
        // produced by multiple base class constructors from the same base
        // class, the inheriting constructor is defined as deleted.
        SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
      }

      return;
    }

    ASTContext &Context = SemaRef.Context;
    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
        Context.getCanonicalType(Context.getRecordType(Derived)));
    DeclarationNameInfo NameInfo(Name, UsingLoc);

    TemplateParameterList *TemplateParams = 0;
    if (const FunctionTemplateDecl *FTD =
            BaseCtor->getDescribedFunctionTemplate()) {
      TemplateParams = FTD->getTemplateParameters();
      // We're reusing template parameters from a different DeclContext. This
      // is questionable at best, but works out because the template depth in
      // both places is guaranteed to be 0.
      // FIXME: Rebuild the template parameters in the new context, and
      // transform the function type to refer to them.
    }

    // Build type source info pointing at the using-declaration. This is
    // required by template instantiation.
    TypeSourceInfo *TInfo =
        Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
    FunctionProtoTypeLoc ProtoLoc =
        TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();

    CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
        Context, Derived, UsingLoc, NameInfo, DerivedType,
        TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
        /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());

    // Build an unevaluated exception specification for this constructor.
    const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
    EPI.ExceptionSpecType = EST_Unevaluated;
    EPI.ExceptionSpecDecl = DerivedCtor;
    DerivedCtor->setType(Context.getFunctionType(FPT->getResultType(),
                                                 FPT->getArgTypes(), EPI));

    // Build the parameter declarations.
    SmallVector<ParmVarDecl *, 16> ParamDecls;
    for (unsigned I = 0, N = FPT->getNumArgs(); I != N; ++I) {
      TypeSourceInfo *TInfo =
          Context.getTrivialTypeSourceInfo(FPT->getArgType(I), UsingLoc);
      ParmVarDecl *PD = ParmVarDecl::Create(
          Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/0,
          FPT->getArgType(I), TInfo, SC_None, /*DefaultArg=*/0);
      PD->setScopeInfo(0, I);
      PD->setImplicit();
      ParamDecls.push_back(PD);
      ProtoLoc.setArg(I, PD);
    }

    // Set up the new constructor.
    DerivedCtor->setAccess(BaseCtor->getAccess());
    DerivedCtor->setParams(ParamDecls);
    DerivedCtor->setInheritedConstructor(BaseCtor);
    if (BaseCtor->isDeleted())
      SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);

    // If this is a constructor template, build the template declaration.
    if (TemplateParams) {
      FunctionTemplateDecl *DerivedTemplate =
          FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
                                       TemplateParams, DerivedCtor);
      DerivedTemplate->setAccess(BaseCtor->getAccess());
      DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
      Derived->addDecl(DerivedTemplate);
    } else {
      Derived->addDecl(DerivedCtor);
    }

    Entry.BaseCtor = BaseCtor;
    Entry.DerivedCtor = DerivedCtor;
  }

  Sema &SemaRef;
  CXXRecordDecl *Derived;
  typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
  MapType Map;
};
}

void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
  // Defer declaring the inheriting constructors until the class is
  // instantiated.
  if (ClassDecl->isDependentContext())
    return;

  // Find base classes from which we might inherit constructors.
  SmallVector<CXXRecordDecl*, 4> InheritedBases;
  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
                                          BaseE = ClassDecl->bases_end();
       BaseIt != BaseE; ++BaseIt)
    if (BaseIt->getInheritConstructors())
      InheritedBases.push_back(BaseIt->getType()->getAsCXXRecordDecl());

  // Go no further if we're not inheriting any constructors.
  if (InheritedBases.empty())
    return;

  // Declare the inherited constructors.
  InheritingConstructorInfo ICI(*this, ClassDecl);
  for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
    ICI.inheritAll(InheritedBases[I]);
}

void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
                                       CXXConstructorDecl *Constructor) {
  CXXRecordDecl *ClassDecl = Constructor->getParent();
  assert(Constructor->getInheritedConstructor() &&
         !Constructor->doesThisDeclarationHaveABody() &&
         !Constructor->isDeleted());

  SynthesizedFunctionScope Scope(*this, Constructor);
  DiagnosticErrorTrap Trap(Diags);
  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
      Trap.hasErrorOccurred()) {
    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
      << Context.getTagDeclType(ClassDecl);
    Constructor->setInvalidDecl();
    return;
  }

  SourceLocation Loc = Constructor->getLocation();
  Constructor->setBody(new (Context) CompoundStmt(Loc));

  Constructor->setUsed();
  MarkVTableUsed(CurrentLocation, ClassDecl);

  if (ASTMutationListener *L = getASTMutationListener()) {
    L->CompletedImplicitDefinition(Constructor);
  }
}


Sema::ImplicitExceptionSpecification
Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
  CXXRecordDecl *ClassDecl = MD->getParent();

  // C++ [except.spec]p14: 
  //   An implicitly declared special member function (Clause 12) shall have 
  //   an exception-specification.
  ImplicitExceptionSpecification ExceptSpec(*this);
  if (ClassDecl->isInvalidDecl())
    return ExceptSpec;

  // Direct base-class destructors.
  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
                                       BEnd = ClassDecl->bases_end();
       B != BEnd; ++B) {
    if (B->isVirtual()) // Handled below.
      continue;
    
    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
      ExceptSpec.CalledDecl(B->getLocStart(),
                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
  }

  // Virtual base-class destructors.
  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
                                       BEnd = ClassDecl->vbases_end();
       B != BEnd; ++B) {
    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
      ExceptSpec.CalledDecl(B->getLocStart(),
                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
  }

  // Field destructors.
  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
                               FEnd = ClassDecl->field_end();
       F != FEnd; ++F) {
    if (const RecordType *RecordTy
        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
      ExceptSpec.CalledDecl(F->getLocation(),
                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
  }

  return ExceptSpec;
}

CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
  // C++ [class.dtor]p2:
  //   If a class has no user-declared destructor, a destructor is
  //   declared implicitly. An implicitly-declared destructor is an
  //   inline public member of its class.
  assert(ClassDecl->needsImplicitDestructor());

  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
  if (DSM.isAlreadyBeingDeclared())
    return 0;

  // Create the actual destructor declaration.
  CanQualType ClassType
    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
  SourceLocation ClassLoc = ClassDecl->getLocation();
  DeclarationName Name
    = Context.DeclarationNames.getCXXDestructorName(ClassType);
  DeclarationNameInfo NameInfo(Name, ClassLoc);
  CXXDestructorDecl *Destructor
      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
                                  QualType(), 0, /*isInline=*/true,
                                  /*isImplicitlyDeclared=*/true);
  Destructor->setAccess(AS_public);
  Destructor->setDefaulted();
  Destructor->setImplicit();

  // Build an exception specification pointing back at this destructor.
  FunctionProtoType::ExtProtoInfo EPI;
  EPI.ExceptionSpecType = EST_Unevaluated;
  EPI.ExceptionSpecDecl = Destructor;
  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));

  AddOverriddenMethods(ClassDecl, Destructor);

  // We don't need to use SpecialMemberIsTrivial here; triviality for
  // destructors is easy to compute.
  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());

  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
    SetDeclDeleted(Destructor, ClassLoc);

  // Note that we have declared this destructor.
  ++ASTContext::NumImplicitDestructorsDeclared;

  // Introduce this destructor into its scope.
  if (Scope *S = getScopeForContext(ClassDecl))
    PushOnScopeChains(Destructor, S, false);
  ClassDecl->addDecl(Destructor);

  return Destructor;
}

void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
                                    CXXDestructorDecl *Destructor) {
  assert((Destructor->isDefaulted() &&
          !Destructor->doesThisDeclarationHaveABody() &&
          !Destructor->isDeleted()) &&
         "DefineImplicitDestructor - call it for implicit default dtor");
  CXXRecordDecl *ClassDecl = Destructor->getParent();
  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");

  if (Destructor->isInvalidDecl())
    return;

  SynthesizedFunctionScope Scope(*this, Destructor);

  DiagnosticErrorTrap Trap(Diags);
  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
                                         Destructor->getParent());

  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
    Diag(CurrentLocation, diag::note_member_synthesized_at) 
      << CXXDestructor << Context.getTagDeclType(ClassDecl);

    Destructor->setInvalidDecl();
    return;
  }

  SourceLocation Loc = Destructor->getLocation();
  Destructor->setBody(new (Context) CompoundStmt(Loc));
  Destructor->setImplicitlyDefined(true);
  Destructor->setUsed();
  MarkVTableUsed(CurrentLocation, ClassDecl);

  if (ASTMutationListener *L = getASTMutationListener()) {
    L->CompletedImplicitDefinition(Destructor);
  }
}

/// \brief Perform any semantic analysis which needs to be delayed until all
/// pending class member declarations have been parsed.
void Sema::ActOnFinishCXXMemberDecls() {
  // If the context is an invalid C++ class, just suppress these checks.
  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
    if (Record->isInvalidDecl()) {
      DelayedDestructorExceptionSpecChecks.clear();
      return;
    }
  }

  // Perform any deferred checking of exception specifications for virtual
  // destructors.
  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
       i != e; ++i) {
    const CXXDestructorDecl *Dtor =
        DelayedDestructorExceptionSpecChecks[i].first;
    assert(!Dtor->getParent()->isDependentType() &&
           "Should not ever add destructors of templates into the list.");
    CheckOverridingFunctionExceptionSpec(Dtor,
        DelayedDestructorExceptionSpecChecks[i].second);
  }
  DelayedDestructorExceptionSpecChecks.clear();
}

void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
                                         CXXDestructorDecl *Destructor) {
  assert(getLangOpts().CPlusPlus11 &&
         "adjusting dtor exception specs was introduced in c++11");

  // C++11 [class.dtor]p3:
  //   A declaration of a destructor that does not have an exception-
  //   specification is implicitly considered to have the same exception-
  //   specification as an implicit declaration.
  const FunctionProtoType *DtorType = Destructor->getType()->
                                        getAs<FunctionProtoType>();
  if (DtorType->hasExceptionSpec())
    return;

  // Replace the destructor's type, building off the existing one. Fortunately,
  // the only thing of interest in the destructor type is its extended info.
  // The return and arguments are fixed.
  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
  EPI.ExceptionSpecType = EST_Unevaluated;
  EPI.ExceptionSpecDecl = Destructor;
  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));

  // FIXME: If the destructor has a body that could throw, and the newly created
  // spec doesn't allow exceptions, we should emit a warning, because this
  // change in behavior can break conforming C++03 programs at runtime.
  // However, we don't have a body or an exception specification yet, so it
  // needs to be done somewhere else.
}

/// When generating a defaulted copy or move assignment operator, if a field
/// should be copied with __builtin_memcpy rather than via explicit assignments,
/// do so. This optimization only applies for arrays of scalars, and for arrays
/// of class type where the selected copy/move-assignment operator is trivial.
static StmtResult
buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
                           Expr *To, Expr *From) {
  // Compute the size of the memory buffer to be copied.
  QualType SizeType = S.Context.getSizeType();
  llvm::APInt Size(S.Context.getTypeSize(SizeType),
                   S.Context.getTypeSizeInChars(T).getQuantity());

  // Take the address of the field references for "from" and "to". We
  // directly construct UnaryOperators here because semantic analysis
  // does not permit us to take the address of an xvalue.
  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
                         S.Context.getPointerType(From->getType()),
                         VK_RValue, OK_Ordinary, Loc);
  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
                       S.Context.getPointerType(To->getType()),
                       VK_RValue, OK_Ordinary, Loc);

  const Type *E = T->getBaseElementTypeUnsafe();
  bool NeedsCollectableMemCpy =
    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();

  // Create a reference to the __builtin_objc_memmove_collectable function
  StringRef MemCpyName = NeedsCollectableMemCpy ?
    "__builtin_objc_memmove_collectable" :
    "__builtin_memcpy";
  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
                 Sema::LookupOrdinaryName);
  S.LookupName(R, S.TUScope, true);

  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
  if (!MemCpy)
    // Something went horribly wrong earlier, and we will have complained
    // about it.
    return StmtError();

  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
                                            VK_RValue, Loc, 0);
  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");

  Expr *CallArgs[] = {
    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
  };
  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
                                    Loc, CallArgs, Loc);

  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
  return S.Owned(Call.takeAs<Stmt>());
}

/// \brief Builds a statement that copies/moves the given entity from \p From to
/// \c To.
///
/// This routine is used to copy/move the members of a class with an
/// implicitly-declared copy/move assignment operator. When the entities being
/// copied are arrays, this routine builds for loops to copy them.
///
/// \param S The Sema object used for type-checking.
///
/// \param Loc The location where the implicit copy/move is being generated.
///
/// \param T The type of the expressions being copied/moved. Both expressions
/// must have this type.
///
/// \param To The expression we are copying/moving to.
///
/// \param From The expression we are copying/moving from.
///
/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
/// Otherwise, it's a non-static member subobject.
///
/// \param Copying Whether we're copying or moving.
///
/// \param Depth Internal parameter recording the depth of the recursion.
///
/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
/// if a memcpy should be used instead.
static StmtResult
buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
                                 Expr *To, Expr *From,
                                 bool CopyingBaseSubobject, bool Copying,
                                 unsigned Depth = 0) {
  // C++11 [class.copy]p28:
  //   Each subobject is assigned in the manner appropriate to its type:
  //
  //     - if the subobject is of class type, as if by a call to operator= with
  //       the subobject as the object expression and the corresponding
  //       subobject of x as a single function argument (as if by explicit
  //       qualification; that is, ignoring any possible virtual overriding
  //       functions in more derived classes);
  //
  // C++03 [class.copy]p13:
  //     - if the subobject is of class type, the copy assignment operator for
  //       the class is used (as if by explicit qualification; that is,
  //       ignoring any possible virtual overriding functions in more derived
  //       classes);
  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());

    // Look for operator=.
    DeclarationName Name
      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
    S.LookupQualifiedName(OpLookup, ClassDecl, false);

    // Prior to C++11, filter out any result that isn't a copy/move-assignment
    // operator.
    if (!S.getLangOpts().CPlusPlus11) {
      LookupResult::Filter F = OpLookup.makeFilter();
      while (F.hasNext()) {
        NamedDecl *D = F.next();
        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
          if (Method->isCopyAssignmentOperator() ||
              (!Copying && Method->isMoveAssignmentOperator()))
            continue;

        F.erase();
      }
      F.done();
    }

    // Suppress the protected check (C++ [class.protected]) for each of the
    // assignment operators we found. This strange dance is required when
    // we're assigning via a base classes's copy-assignment operator. To
    // ensure that we're getting the right base class subobject (without
    // ambiguities), we need to cast "this" to that subobject type; to
    // ensure that we don't go through the virtual call mechanism, we need
    // to qualify the operator= name with the base class (see below). However,
    // this means that if the base class has a protected copy assignment
    // operator, the protected member access check will fail. So, we
    // rewrite "protected" access to "public" access in this case, since we
    // know by construction that we're calling from a derived class.
    if (CopyingBaseSubobject) {
      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
           L != LEnd; ++L) {
        if (L.getAccess() == AS_protected)
          L.setAccess(AS_public);
      }
    }

    // Create the nested-name-specifier that will be used to qualify the
    // reference to operator=; this is required to suppress the virtual
    // call mechanism.
    CXXScopeSpec SS;
    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
    SS.MakeTrivial(S.Context,
                   NestedNameSpecifier::Create(S.Context, 0, false,
                                               CanonicalT),
                   Loc);

    // Create the reference to operator=.
    ExprResult OpEqualRef
      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
                                   /*TemplateKWLoc=*/SourceLocation(),
                                   /*FirstQualifierInScope=*/0,
                                   OpLookup,
                                   /*TemplateArgs=*/0,
                                   /*SuppressQualifierCheck=*/true);
    if (OpEqualRef.isInvalid())
      return StmtError();

    // Build the call to the assignment operator.

    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
                                                  OpEqualRef.takeAs<Expr>(),
                                                  Loc, &From, 1, Loc);
    if (Call.isInvalid())
      return StmtError();

    // If we built a call to a trivial 'operator=' while copying an array,
    // bail out. We'll replace the whole shebang with a memcpy.
    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
      return StmtResult((Stmt*)0);

    // Convert to an expression-statement, and clean up any produced
    // temporaries.
    return S.ActOnExprStmt(Call);
  }

  //     - if the subobject is of scalar type, the built-in assignment
  //       operator is used.
  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
  if (!ArrayTy) {
    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
    if (Assignment.isInvalid())
      return StmtError();
    return S.ActOnExprStmt(Assignment);
  }

  //     - if the subobject is an array, each element is assigned, in the
  //       manner appropriate to the element type;

  // Construct a loop over the array bounds, e.g.,
  //
  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
  //
  // that will copy each of the array elements. 
  QualType SizeType = S.Context.getSizeType();

  // Create the iteration variable.
  IdentifierInfo *IterationVarName = 0;
  {
    SmallString<8> Str;
    llvm::raw_svector_ostream OS(Str);
    OS << "__i" << Depth;
    IterationVarName = &S.Context.Idents.get(OS.str());
  }
  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
                                          IterationVarName, SizeType,
                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
                                          SC_None);

  // Initialize the iteration variable to zero.
  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));

  // Create a reference to the iteration variable; we'll use this several
  // times throughout.
  Expr *IterationVarRef
    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
  assert(IterationVarRef && "Reference to invented variable cannot fail!");
  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");

  // Create the DeclStmt that holds the iteration variable.
  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);

  // Subscript the "from" and "to" expressions with the iteration variable.
  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
                                                         IterationVarRefRVal,
                                                         Loc));
  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
                                                       IterationVarRefRVal,
                                                       Loc));
  if (!Copying) // Cast to rvalue
    From = CastForMoving(S, From);

  // Build the copy/move for an individual element of the array.
  StmtResult Copy =
    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
                                     To, From, CopyingBaseSubobject,
                                     Copying, Depth + 1);
  // Bail out if copying fails or if we determined that we should use memcpy.
  if (Copy.isInvalid() || !Copy.get())
    return Copy;

  // Create the comparison against the array bound.
  llvm::APInt Upper
    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
  Expr *Comparison
    = new (S.Context) BinaryOperator(IterationVarRefRVal,
                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
                                     BO_NE, S.Context.BoolTy,
                                     VK_RValue, OK_Ordinary, Loc, false);

  // Create the pre-increment of the iteration variable.
  Expr *Increment
    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
                                    VK_LValue, OK_Ordinary, Loc);

  // Construct the loop that copies all elements of this array.
  return S.ActOnForStmt(Loc, Loc, InitStmt, 
                        S.MakeFullExpr(Comparison),
                        0, S.MakeFullDiscardedValueExpr(Increment),
                        Loc, Copy.take());
}

static StmtResult
buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
                      Expr *To, Expr *From,
                      bool CopyingBaseSubobject, bool Copying) {
  // Maybe we should use a memcpy?
  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
      T.isTriviallyCopyableType(S.Context))
    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);

  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
                                                     CopyingBaseSubobject,
                                                     Copying, 0));

  // If we ended up picking a trivial assignment operator for an array of a
  // non-trivially-copyable class type, just emit a memcpy.
  if (!Result.isInvalid() && !Result.get())
    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);

  return Result;
}

Sema::ImplicitExceptionSpecification
Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
  CXXRecordDecl *ClassDecl = MD->getParent();

  ImplicitExceptionSpecification ExceptSpec(*this);
  if (ClassDecl->isInvalidDecl())
    return ExceptSpec;

  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
  assert(T->getNumArgs() == 1 && "not a copy assignment op");
  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();

  // C++ [except.spec]p14:
  //   An implicitly declared special member function (Clause 12) shall have an
  //   exception-specification. [...]

  // It is unspecified whether or not an implicit copy assignment operator
  // attempts to deduplicate calls to assignment operators of virtual bases are
  // made. As such, this exception specification is effectively unspecified.
  // Based on a similar decision made for constness in C++0x, we're erring on
  // the side of assuming such calls to be made regardless of whether they
  // actually happen.
  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
                                       BaseEnd = ClassDecl->bases_end();
       Base != BaseEnd; ++Base) {
    if (Base->isVirtual())
      continue;

    CXXRecordDecl *BaseClassDecl
      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
                                                            ArgQuals, false, 0))
      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
  }

  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
                                       BaseEnd = ClassDecl->vbases_end();
       Base != BaseEnd; ++Base) {
    CXXRecordDecl *BaseClassDecl
      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
                                                            ArgQuals, false, 0))
      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
  }

  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
                                  FieldEnd = ClassDecl->field_end();
       Field != FieldEnd;
       ++Field) {
    QualType FieldType = Context.getBaseElementType(Field->getType());
    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
      if (CXXMethodDecl *CopyAssign =
          LookupCopyingAssignment(FieldClassDecl,
                                  ArgQuals | FieldType.getCVRQualifiers(),
                                  false, 0))
        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
    }
  }

  return ExceptSpec;
}

CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
  // Note: The following rules are largely analoguous to the copy
  // constructor rules. Note that virtual bases are not taken into account
  // for determining the argument type of the operator. Note also that
  // operators taking an object instead of a reference are allowed.
  assert(ClassDecl->needsImplicitCopyAssignment());

  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
  if (DSM.isAlreadyBeingDeclared())
    return 0;

  QualType ArgType = Context.getTypeDeclType(ClassDecl);
  QualType RetType = Context.getLValueReferenceType(ArgType);
  if (ClassDecl->implicitCopyAssignmentHasConstParam())
    ArgType = ArgType.withConst();
  ArgType = Context.getLValueReferenceType(ArgType);

  //   An implicitly-declared copy assignment operator is an inline public
  //   member of its class.
  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
  SourceLocation ClassLoc = ClassDecl->getLocation();
  DeclarationNameInfo NameInfo(Name, ClassLoc);
  CXXMethodDecl *CopyAssignment
    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
                            /*TInfo=*/0,
                            /*StorageClass=*/SC_None,
                            /*isInline=*/true, /*isConstexpr=*/false,
                            SourceLocation());
  CopyAssignment->setAccess(AS_public);
  CopyAssignment->setDefaulted();
  CopyAssignment->setImplicit();

  // Build an exception specification pointing back at this member.
  FunctionProtoType::ExtProtoInfo EPI;
  EPI.ExceptionSpecType = EST_Unevaluated;
  EPI.ExceptionSpecDecl = CopyAssignment;
  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));

  // Add the parameter to the operator.
  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
                                               ClassLoc, ClassLoc, /*Id=*/0,
                                               ArgType, /*TInfo=*/0,
                                               SC_None, 0);
  CopyAssignment->setParams(FromParam);

  AddOverriddenMethods(ClassDecl, CopyAssignment);

  CopyAssignment->setTrivial(
    ClassDecl->needsOverloadResolutionForCopyAssignment()
      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
      : ClassDecl->hasTrivialCopyAssignment());

  // C++0x [class.copy]p19:
  //   ....  If the class definition does not explicitly declare a copy
  //   assignment operator, there is no user-declared move constructor, and
  //   there is no user-declared move assignment operator, a copy assignment
  //   operator is implicitly declared as defaulted.
  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
    SetDeclDeleted(CopyAssignment, ClassLoc);

  // Note that we have added this copy-assignment operator.
  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;

  if (Scope *S = getScopeForContext(ClassDecl))
    PushOnScopeChains(CopyAssignment, S, false);
  ClassDecl->addDecl(CopyAssignment);

  return CopyAssignment;
}

void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
                                        CXXMethodDecl *CopyAssignOperator) {
  assert((CopyAssignOperator->isDefaulted() && 
          CopyAssignOperator->isOverloadedOperator() &&
          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
          !CopyAssignOperator->isDeleted()) &&
         "DefineImplicitCopyAssignment called for wrong function");

  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();

  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
    CopyAssignOperator->setInvalidDecl();
    return;
  }
  
  CopyAssignOperator->setUsed();

  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
  DiagnosticErrorTrap Trap(Diags);

  // C++0x [class.copy]p30:
  //   The implicitly-defined or explicitly-defaulted copy assignment operator
  //   for a non-union class X performs memberwise copy assignment of its 
  //   subobjects. The direct base classes of X are assigned first, in the 
  //   order of their declaration in the base-specifier-list, and then the 
  //   immediate non-static data members of X are assigned, in the order in 
  //   which they were declared in the class definition.
  
  // The statements that form the synthesized function body.
  SmallVector<Stmt*, 8> Statements;
  
  // The parameter for the "other" object, which we are copying from.
  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
  Qualifiers OtherQuals = Other->getType().getQualifiers();
  QualType OtherRefType = Other->getType();
  if (const LValueReferenceType *OtherRef
                                = OtherRefType->getAs<LValueReferenceType>()) {
    OtherRefType = OtherRef->getPointeeType();
    OtherQuals = OtherRefType.getQualifiers();
  }
  
  // Our location for everything implicitly-generated.
  SourceLocation Loc = CopyAssignOperator->getLocation();
  
  // Construct a reference to the "other" object. We'll be using this 
  // throughout the generated ASTs.
  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
  assert(OtherRef && "Reference to parameter cannot fail!");
  
  // Construct the "this" pointer. We'll be using this throughout the generated
  // ASTs.
  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
  assert(This && "Reference to this cannot fail!");
  
  // Assign base classes.
  bool Invalid = false;
  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
       E = ClassDecl->bases_end(); Base != E; ++Base) {
    // Form the assignment:
    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
    QualType BaseType = Base->getType().getUnqualifiedType();
    if (!BaseType->isRecordType()) {
      Invalid = true;
      continue;
    }

    CXXCastPath BasePath;
    BasePath.push_back(Base);

    // Construct the "from" expression, which is an implicit cast to the
    // appropriately-qualified base type.
    Expr *From = OtherRef;
    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
                             CK_UncheckedDerivedToBase,
                             VK_LValue, &BasePath).take();

    // Dereference "this".
    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
    
    // Implicitly cast "this" to the appropriately-qualified base type.
    To = ImpCastExprToType(To.take(), 
                           Context.getCVRQualifiedType(BaseType,
                                     CopyAssignOperator->getTypeQualifiers()),
                           CK_UncheckedDerivedToBase, 
                           VK_LValue, &BasePath);

    // Build the copy.
    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
                                            To.get(), From,
                                            /*CopyingBaseSubobject=*/true,
                                            /*Copying=*/true);
    if (Copy.isInvalid()) {
      Diag(CurrentLocation, diag::note_member_synthesized_at) 
        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
      CopyAssignOperator->setInvalidDecl();
      return;
    }
    
    // Success! Record the copy.
    Statements.push_back(Copy.takeAs<Expr>());
  }
  
  // Assign non-static members.
  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
                                  FieldEnd = ClassDecl->field_end(); 
       Field != FieldEnd; ++Field) {
    if (Field->isUnnamedBitfield())
      continue;
    
    // Check for members of reference type; we can't copy those.
    if (Field->getType()->isReferenceType()) {
      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
      Diag(Field->getLocation(), diag::note_declared_at);
      Diag(CurrentLocation, diag::note_member_synthesized_at) 
        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
      Invalid = true;
      continue;
    }
    
    // Check for members of const-qualified, non-class type.
    QualType BaseType = Context.getBaseElementType(Field->getType());
    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
      Diag(Field->getLocation(), diag::note_declared_at);
      Diag(CurrentLocation, diag::note_member_synthesized_at) 
        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
      Invalid = true;      
      continue;
    }

    // Suppress assigning zero-width bitfields.
    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
      continue;
    
    QualType FieldType = Field->getType().getNonReferenceType();
    if (FieldType->isIncompleteArrayType()) {
      assert(ClassDecl->hasFlexibleArrayMember() && 
             "Incomplete array type is not valid");
      continue;
    }
    
    // Build references to the field in the object we're copying from and to.
    CXXScopeSpec SS; // Intentionally empty
    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
                              LookupMemberName);
    MemberLookup.addDecl(*Field);
    MemberLookup.resolveKind();
    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
                                               Loc, /*IsArrow=*/false,
                                               SS, SourceLocation(), 0,
                                               MemberLookup, 0);
    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
                                             Loc, /*IsArrow=*/true,
                                             SS, SourceLocation(), 0,
                                             MemberLookup, 0);
    assert(!From.isInvalid() && "Implicit field reference cannot fail");
    assert(!To.isInvalid() && "Implicit field reference cannot fail");

    // Build the copy of this field.
    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
                                            To.get(), From.get(),
                                            /*CopyingBaseSubobject=*/false,
                                            /*Copying=*/true);
    if (Copy.isInvalid()) {
      Diag(CurrentLocation, diag::note_member_synthesized_at) 
        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
      CopyAssignOperator->setInvalidDecl();
      return;
    }
    
    // Success! Record the copy.
    Statements.push_back(Copy.takeAs<Stmt>());
  }

  if (!Invalid) {
    // Add a "return *this;"
    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
    
    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
    if (Return.isInvalid())
      Invalid = true;
    else {
      Statements.push_back(Return.takeAs<Stmt>());

      if (Trap.hasErrorOccurred()) {
        Diag(CurrentLocation, diag::note_member_synthesized_at) 
          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
        Invalid = true;
      }
    }
  }

  if (Invalid) {
    CopyAssignOperator->setInvalidDecl();
    return;
  }

  StmtResult Body;
  {
    CompoundScopeRAII CompoundScope(*this);
    Body = ActOnCompoundStmt(Loc, Loc, Statements,
                             /*isStmtExpr=*/false);
    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
  }
  CopyAssignOperator->setBody(Body.takeAs<Stmt>());

  if (ASTMutationListener *L = getASTMutationListener()) {
    L->CompletedImplicitDefinition(CopyAssignOperator);
  }
}

Sema::ImplicitExceptionSpecification
Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
  CXXRecordDecl *ClassDecl = MD->getParent();

  ImplicitExceptionSpecification ExceptSpec(*this);
  if (ClassDecl->isInvalidDecl())
    return ExceptSpec;

  // C++0x [except.spec]p14:
  //   An implicitly declared special member function (Clause 12) shall have an 
  //   exception-specification. [...]

  // It is unspecified whether or not an implicit move assignment operator
  // attempts to deduplicate calls to assignment operators of virtual bases are
  // made. As such, this exception specification is effectively unspecified.
  // Based on a similar decision made for constness in C++0x, we're erring on
  // the side of assuming such calls to be made regardless of whether they
  // actually happen.
  // Note that a move constructor is not implicitly declared when there are
  // virtual bases, but it can still be user-declared and explicitly defaulted.
  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
                                       BaseEnd = ClassDecl->bases_end();
       Base != BaseEnd; ++Base) {
    if (Base->isVirtual())
      continue;

    CXXRecordDecl *BaseClassDecl
      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
                                                           0, false, 0))
      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
  }

  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
                                       BaseEnd = ClassDecl->vbases_end();
       Base != BaseEnd; ++Base) {
    CXXRecordDecl *BaseClassDecl
      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
                                                           0, false, 0))
      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
  }

  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
                                  FieldEnd = ClassDecl->field_end();
       Field != FieldEnd;
       ++Field) {
    QualType FieldType = Context.getBaseElementType(Field->getType());
    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
      if (CXXMethodDecl *MoveAssign =
              LookupMovingAssignment(FieldClassDecl,
                                     FieldType.getCVRQualifiers(),
                                     false, 0))
        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
    }
  }

  return ExceptSpec;
}

/// Determine whether the class type has any direct or indirect virtual base
/// classes which have a non-trivial move assignment operator.
static bool
hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
                                          BaseEnd = ClassDecl->vbases_end();
       Base != BaseEnd; ++Base) {
    CXXRecordDecl *BaseClass =
        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());

    // Try to declare the move assignment. If it would be deleted, then the
    // class does not have a non-trivial move assignment.
    if (BaseClass->needsImplicitMoveAssignment())
      S.DeclareImplicitMoveAssignment(BaseClass);

    if (BaseClass->hasNonTrivialMoveAssignment())
      return true;
  }

  return false;
}

/// Determine whether the given type either has a move constructor or is
/// trivially copyable.
static bool
hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
  Type = S.Context.getBaseElementType(Type);

  // FIXME: Technically, non-trivially-copyable non-class types, such as
  // reference types, are supposed to return false here, but that appears
  // to be a standard defect.
  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
    return true;

  if (Type.isTriviallyCopyableType(S.Context))
    return true;

  if (IsConstructor) {
    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
    // give the right answer.
    if (ClassDecl->needsImplicitMoveConstructor())
      S.DeclareImplicitMoveConstructor(ClassDecl);
    return ClassDecl->hasMoveConstructor();
  }

  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
  // give the right answer.
  if (ClassDecl->needsImplicitMoveAssignment())
    S.DeclareImplicitMoveAssignment(ClassDecl);
  return ClassDecl->hasMoveAssignment();
}

/// Determine whether all non-static data members and direct or virtual bases
/// of class \p ClassDecl have either a move operation, or are trivially
/// copyable.
static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
                                            bool IsConstructor) {
  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
                                          BaseEnd = ClassDecl->bases_end();
       Base != BaseEnd; ++Base) {
    if (Base->isVirtual())
      continue;

    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
      return false;
  }

  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
                                          BaseEnd = ClassDecl->vbases_end();
       Base != BaseEnd; ++Base) {
    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
      return false;
  }

  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
                                     FieldEnd = ClassDecl->field_end();
       Field != FieldEnd; ++Field) {
    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
      return false;
  }

  return true;
}

CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
  // C++11 [class.copy]p20:
  //   If the definition of a class X does not explicitly declare a move
  //   assignment operator, one will be implicitly declared as defaulted
  //   if and only if:
  //
  //   - [first 4 bullets]
  assert(ClassDecl->needsImplicitMoveAssignment());

  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
  if (DSM.isAlreadyBeingDeclared())
    return 0;

  // [Checked after we build the declaration]
  //   - the move assignment operator would not be implicitly defined as
  //     deleted,

  // [DR1402]:
  //   - X has no direct or indirect virtual base class with a non-trivial
  //     move assignment operator, and
  //   - each of X's non-static data members and direct or virtual base classes
  //     has a type that either has a move assignment operator or is trivially
  //     copyable.
  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
    ClassDecl->setFailedImplicitMoveAssignment();
    return 0;
  }

  // Note: The following rules are largely analoguous to the move
  // constructor rules.

  QualType ArgType = Context.getTypeDeclType(ClassDecl);
  QualType RetType = Context.getLValueReferenceType(ArgType);
  ArgType = Context.getRValueReferenceType(ArgType);

  //   An implicitly-declared move assignment operator is an inline public
  //   member of its class.
  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
  SourceLocation ClassLoc = ClassDecl->getLocation();
  DeclarationNameInfo NameInfo(Name, ClassLoc);
  CXXMethodDecl *MoveAssignment
    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
                            /*TInfo=*/0,
                            /*StorageClass=*/SC_None,
                            /*isInline=*/true,
                            /*isConstexpr=*/false,
                            SourceLocation());
  MoveAssignment->setAccess(AS_public);
  MoveAssignment->setDefaulted();
  MoveAssignment->setImplicit();

  // Build an exception specification pointing back at this member.
  FunctionProtoType::ExtProtoInfo EPI;
  EPI.ExceptionSpecType = EST_Unevaluated;
  EPI.ExceptionSpecDecl = MoveAssignment;
  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));

  // Add the parameter to the operator.
  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
                                               ClassLoc, ClassLoc, /*Id=*/0,
                                               ArgType, /*TInfo=*/0,
                                               SC_None, 0);
  MoveAssignment->setParams(FromParam);

  AddOverriddenMethods(ClassDecl, MoveAssignment);

  MoveAssignment->setTrivial(
    ClassDecl->needsOverloadResolutionForMoveAssignment()
      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
      : ClassDecl->hasTrivialMoveAssignment());

  // C++0x [class.copy]p9:
  //   If the definition of a class X does not explicitly declare a move
  //   assignment operator, one will be implicitly declared as defaulted if and
  //   only if:
  //   [...]
  //   - the move assignment operator would not be implicitly defined as
  //     deleted.
  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
    // Cache this result so that we don't try to generate this over and over
    // on every lookup, leaking memory and wasting time.
    ClassDecl->setFailedImplicitMoveAssignment();
    return 0;
  }

  // Note that we have added this copy-assignment operator.
  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;

  if (Scope *S = getScopeForContext(ClassDecl))
    PushOnScopeChains(MoveAssignment, S, false);
  ClassDecl->addDecl(MoveAssignment);

  return MoveAssignment;
}

void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
                                        CXXMethodDecl *MoveAssignOperator) {
  assert((MoveAssignOperator->isDefaulted() && 
          MoveAssignOperator->isOverloadedOperator() &&
          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
          !MoveAssignOperator->isDeleted()) &&
         "DefineImplicitMoveAssignment called for wrong function");

  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();

  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
    MoveAssignOperator->setInvalidDecl();
    return;
  }
  
  MoveAssignOperator->setUsed();

  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
  DiagnosticErrorTrap Trap(Diags);

  // C++0x [class.copy]p28:
  //   The implicitly-defined or move assignment operator for a non-union class
  //   X performs memberwise move assignment of its subobjects. The direct base
  //   classes of X are assigned first, in the order of their declaration in the
  //   base-specifier-list, and then the immediate non-static data members of X
  //   are assigned, in the order in which they were declared in the class
  //   definition.

  // The statements that form the synthesized function body.
  SmallVector<Stmt*, 8> Statements;

  // The parameter for the "other" object, which we are move from.
  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
  QualType OtherRefType = Other->getType()->
      getAs<RValueReferenceType>()->getPointeeType();
  assert(OtherRefType.getQualifiers() == 0 &&
         "Bad argument type of defaulted move assignment");

  // Our location for everything implicitly-generated.
  SourceLocation Loc = MoveAssignOperator->getLocation();

  // Construct a reference to the "other" object. We'll be using this 
  // throughout the generated ASTs.
  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
  assert(OtherRef && "Reference to parameter cannot fail!");
  // Cast to rvalue.
  OtherRef = CastForMoving(*this, OtherRef);

  // Construct the "this" pointer. We'll be using this throughout the generated
  // ASTs.
  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
  assert(This && "Reference to this cannot fail!");

  // Assign base classes.
  bool Invalid = false;
  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
       E = ClassDecl->bases_end(); Base != E; ++Base) {
    // Form the assignment:
    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
    QualType BaseType = Base->getType().getUnqualifiedType();
    if (!BaseType->isRecordType()) {
      Invalid = true;
      continue;
    }

    CXXCastPath BasePath;
    BasePath.push_back(Base);

    // Construct the "from" expression, which is an implicit cast to the
    // appropriately-qualified base type.
    Expr *From = OtherRef;
    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
                             VK_XValue, &BasePath).take();

    // Dereference "this".
    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);

    // Implicitly cast "this" to the appropriately-qualified base type.
    To = ImpCastExprToType(To.take(), 
                           Context.getCVRQualifiedType(BaseType,
                                     MoveAssignOperator->getTypeQualifiers()),
                           CK_UncheckedDerivedToBase, 
                           VK_LValue, &BasePath);

    // Build the move.
    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
                                            To.get(), From,
                                            /*CopyingBaseSubobject=*/true,
                                            /*Copying=*/false);
    if (Move.isInvalid()) {
      Diag(CurrentLocation, diag::note_member_synthesized_at) 
        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
      MoveAssignOperator->setInvalidDecl();
      return;
    }

    // Success! Record the move.
    Statements.push_back(Move.takeAs<Expr>());
  }

  // Assign non-static members.
  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
                                  FieldEnd = ClassDecl->field_end(); 
       Field != FieldEnd; ++Field) {
    if (Field->isUnnamedBitfield())
      continue;

    // Check for members of reference type; we can't move those.
    if (Field->getType()->isReferenceType()) {
      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
      Diag(Field->getLocation(), diag::note_declared_at);
      Diag(CurrentLocation, diag::note_member_synthesized_at) 
        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
      Invalid = true;
      continue;
    }

    // Check for members of const-qualified, non-class type.
    QualType BaseType = Context.getBaseElementType(Field->getType());
    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
      Diag(Field->getLocation(), diag::note_declared_at);
      Diag(CurrentLocation, diag::note_member_synthesized_at) 
        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
      Invalid = true;      
      continue;
    }

    // Suppress assigning zero-width bitfields.
    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
      continue;
    
    QualType FieldType = Field->getType().getNonReferenceType();
    if (FieldType->isIncompleteArrayType()) {
      assert(ClassDecl->hasFlexibleArrayMember() && 
             "Incomplete array type is not valid");
      continue;
    }
    
    // Build references to the field in the object we're copying from and to.
    CXXScopeSpec SS; // Intentionally empty
    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
                              LookupMemberName);
    MemberLookup.addDecl(*Field);
    MemberLookup.resolveKind();
    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
                                               Loc, /*IsArrow=*/false,
                                               SS, SourceLocation(), 0,
                                               MemberLookup, 0);
    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
                                             Loc, /*IsArrow=*/true,
                                             SS, SourceLocation(), 0,
                                             MemberLookup, 0);
    assert(!From.isInvalid() && "Implicit field reference cannot fail");
    assert(!To.isInvalid() && "Implicit field reference cannot fail");

    assert(!From.get()->isLValue() && // could be xvalue or prvalue
        "Member reference with rvalue base must be rvalue except for reference "
        "members, which aren't allowed for move assignment.");

    // Build the move of this field.
    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
                                            To.get(), From.get(),
                                            /*CopyingBaseSubobject=*/false,
                                            /*Copying=*/false);
    if (Move.isInvalid()) {
      Diag(CurrentLocation, diag::note_member_synthesized_at) 
        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
      MoveAssignOperator->setInvalidDecl();
      return;
    }

    // Success! Record the copy.
    Statements.push_back(Move.takeAs<Stmt>());
  }

  if (!Invalid) {
    // Add a "return *this;"
    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
    
    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
    if (Return.isInvalid())
      Invalid = true;
    else {
      Statements.push_back(Return.takeAs<Stmt>());

      if (Trap.hasErrorOccurred()) {
        Diag(CurrentLocation, diag::note_member_synthesized_at) 
          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
        Invalid = true;
      }
    }
  }

  if (Invalid) {
    MoveAssignOperator->setInvalidDecl();
    return;
  }

  StmtResult Body;
  {
    CompoundScopeRAII CompoundScope(*this);
    Body = ActOnCompoundStmt(Loc, Loc, Statements,
                             /*isStmtExpr=*/false);
    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
  }
  MoveAssignOperator->setBody(Body.takeAs<Stmt>());

  if (ASTMutationListener *L = getASTMutationListener()) {
    L->CompletedImplicitDefinition(MoveAssignOperator);
  }
}

Sema::ImplicitExceptionSpecification
Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
  CXXRecordDecl *ClassDecl = MD->getParent();

  ImplicitExceptionSpecification ExceptSpec(*this);
  if (ClassDecl->isInvalidDecl())
    return ExceptSpec;

  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
  assert(T->getNumArgs() >= 1 && "not a copy ctor");
  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();

  // C++ [except.spec]p14:
  //   An implicitly declared special member function (Clause 12) shall have an 
  //   exception-specification. [...]
  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
                                       BaseEnd = ClassDecl->bases_end();
       Base != BaseEnd; 
       ++Base) {
    // Virtual bases are handled below.
    if (Base->isVirtual())
      continue;
    
    CXXRecordDecl *BaseClassDecl
      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
    if (CXXConstructorDecl *CopyConstructor =
          LookupCopyingConstructor(BaseClassDecl, Quals))
      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
  }
  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
                                       BaseEnd = ClassDecl->vbases_end();
       Base != BaseEnd; 
       ++Base) {
    CXXRecordDecl *BaseClassDecl
      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
    if (CXXConstructorDecl *CopyConstructor =
          LookupCopyingConstructor(BaseClassDecl, Quals))
      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
  }
  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
                                  FieldEnd = ClassDecl->field_end();
       Field != FieldEnd;
       ++Field) {
    QualType FieldType = Context.getBaseElementType(Field->getType());
    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
      if (CXXConstructorDecl *CopyConstructor =
              LookupCopyingConstructor(FieldClassDecl,
                                       Quals | FieldType.getCVRQualifiers()))
      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
    }
  }

  return ExceptSpec;
}

CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
                                                    CXXRecordDecl *ClassDecl) {
  // C++ [class.copy]p4:
  //   If the class definition does not explicitly declare a copy
  //   constructor, one is declared implicitly.
  assert(ClassDecl->needsImplicitCopyConstructor());

  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
  if (DSM.isAlreadyBeingDeclared())
    return 0;

  QualType ClassType = Context.getTypeDeclType(ClassDecl);
  QualType ArgType = ClassType;
  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
  if (Const)
    ArgType = ArgType.withConst();
  ArgType = Context.getLValueReferenceType(ArgType);

  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
                                                     CXXCopyConstructor,
                                                     Const);

  DeclarationName Name
    = Context.DeclarationNames.getCXXConstructorName(
                                           Context.getCanonicalType(ClassType));
  SourceLocation ClassLoc = ClassDecl->getLocation();
  DeclarationNameInfo NameInfo(Name, ClassLoc);

  //   An implicitly-declared copy constructor is an inline public
  //   member of its class.
  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
      Constexpr);
  CopyConstructor->setAccess(AS_public);
  CopyConstructor->setDefaulted();

  // Build an exception specification pointing back at this member.
  FunctionProtoType::ExtProtoInfo EPI;
  EPI.ExceptionSpecType = EST_Unevaluated;
  EPI.ExceptionSpecDecl = CopyConstructor;
  CopyConstructor->setType(
      Context.getFunctionType(Context.VoidTy, ArgType, EPI));

  // Add the parameter to the constructor.
  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
                                               ClassLoc, ClassLoc,
                                               /*IdentifierInfo=*/0,
                                               ArgType, /*TInfo=*/0,
                                               SC_None, 0);
  CopyConstructor->setParams(FromParam);

  CopyConstructor->setTrivial(
    ClassDecl->needsOverloadResolutionForCopyConstructor()
      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
      : ClassDecl->hasTrivialCopyConstructor());

  // C++11 [class.copy]p8:
  //   ... If the class definition does not explicitly declare a copy
  //   constructor, there is no user-declared move constructor, and there is no
  //   user-declared move assignment operator, a copy constructor is implicitly
  //   declared as defaulted.
  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
    SetDeclDeleted(CopyConstructor, ClassLoc);

  // Note that we have declared this constructor.
  ++ASTContext::NumImplicitCopyConstructorsDeclared;

  if (Scope *S = getScopeForContext(ClassDecl))
    PushOnScopeChains(CopyConstructor, S, false);
  ClassDecl->addDecl(CopyConstructor);

  return CopyConstructor;
}

void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
                                   CXXConstructorDecl *CopyConstructor) {
  assert((CopyConstructor->isDefaulted() &&
          CopyConstructor->isCopyConstructor() &&
          !CopyConstructor->doesThisDeclarationHaveABody() &&
          !CopyConstructor->isDeleted()) &&
         "DefineImplicitCopyConstructor - call it for implicit copy ctor");

  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");

  SynthesizedFunctionScope Scope(*this, CopyConstructor);
  DiagnosticErrorTrap Trap(Diags);

  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
      Trap.hasErrorOccurred()) {
    Diag(CurrentLocation, diag::note_member_synthesized_at) 
      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
    CopyConstructor->setInvalidDecl();
  }  else {
    Sema::CompoundScopeRAII CompoundScope(*this);
    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
                                               CopyConstructor->getLocation(),
                                               MultiStmtArg(),
                                               /*isStmtExpr=*/false)
                                                              .takeAs<Stmt>());
    CopyConstructor->setImplicitlyDefined(true);
  }
  
  CopyConstructor->setUsed();
  if (ASTMutationListener *L = getASTMutationListener()) {
    L->CompletedImplicitDefinition(CopyConstructor);
  }
}

Sema::ImplicitExceptionSpecification
Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
  CXXRecordDecl *ClassDecl = MD->getParent();

  // C++ [except.spec]p14:
  //   An implicitly declared special member function (Clause 12) shall have an 
  //   exception-specification. [...]
  ImplicitExceptionSpecification ExceptSpec(*this);
  if (ClassDecl->isInvalidDecl())
    return ExceptSpec;

  // Direct base-class constructors.
  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
                                       BEnd = ClassDecl->bases_end();
       B != BEnd; ++B) {
    if (B->isVirtual()) // Handled below.
      continue;
    
    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
      CXXConstructorDecl *Constructor =
          LookupMovingConstructor(BaseClassDecl, 0);
      // If this is a deleted function, add it anyway. This might be conformant
      // with the standard. This might not. I'm not sure. It might not matter.
      if (Constructor)
        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
    }
  }

  // Virtual base-class constructors.
  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
                                       BEnd = ClassDecl->vbases_end();
       B != BEnd; ++B) {
    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
      CXXConstructorDecl *Constructor =
          LookupMovingConstructor(BaseClassDecl, 0);
      // If this is a deleted function, add it anyway. This might be conformant
      // with the standard. This might not. I'm not sure. It might not matter.
      if (Constructor)
        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
    }
  }

  // Field constructors.
  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
                               FEnd = ClassDecl->field_end();
       F != FEnd; ++F) {
    QualType FieldType = Context.getBaseElementType(F->getType());
    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
      CXXConstructorDecl *Constructor =
          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
      // If this is a deleted function, add it anyway. This might be conformant
      // with the standard. This might not. I'm not sure. It might not matter.
      // In particular, the problem is that this function never gets called. It
      // might just be ill-formed because this function attempts to refer to
      // a deleted function here.
      if (Constructor)
        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
    }
  }

  return ExceptSpec;
}

CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
                                                    CXXRecordDecl *ClassDecl) {
  // C++11 [class.copy]p9:
  //   If the definition of a class X does not explicitly declare a move
  //   constructor, one will be implicitly declared as defaulted if and only if:
  //
  //   - [first 4 bullets]
  assert(ClassDecl->needsImplicitMoveConstructor());

  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
  if (DSM.isAlreadyBeingDeclared())
    return 0;

  // [Checked after we build the declaration]
  //   - the move assignment operator would not be implicitly defined as
  //     deleted,

  // [DR1402]:
  //   - each of X's non-static data members and direct or virtual base classes
  //     has a type that either has a move constructor or is trivially copyable.
  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
    ClassDecl->setFailedImplicitMoveConstructor();
    return 0;
  }

  QualType ClassType = Context.getTypeDeclType(ClassDecl);
  QualType ArgType = Context.getRValueReferenceType(ClassType);

  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
                                                     CXXMoveConstructor,
                                                     false);

  DeclarationName Name
    = Context.DeclarationNames.getCXXConstructorName(
                                           Context.getCanonicalType(ClassType));
  SourceLocation ClassLoc = ClassDecl->getLocation();
  DeclarationNameInfo NameInfo(Name, ClassLoc);

  // C++0x [class.copy]p11:
  //   An implicitly-declared copy/move constructor is an inline public
  //   member of its class.
  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
      Constexpr);
  MoveConstructor->setAccess(AS_public);
  MoveConstructor->setDefaulted();

  // Build an exception specification pointing back at this member.
  FunctionProtoType::ExtProtoInfo EPI;
  EPI.ExceptionSpecType = EST_Unevaluated;
  EPI.ExceptionSpecDecl = MoveConstructor;
  MoveConstructor->setType(
      Context.getFunctionType(Context.VoidTy, ArgType, EPI));

  // Add the parameter to the constructor.
  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
                                               ClassLoc, ClassLoc,
                                               /*IdentifierInfo=*/0,
                                               ArgType, /*TInfo=*/0,
                                               SC_None, 0);
  MoveConstructor->setParams(FromParam);

  MoveConstructor->setTrivial(
    ClassDecl->needsOverloadResolutionForMoveConstructor()
      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
      : ClassDecl->hasTrivialMoveConstructor());

  // C++0x [class.copy]p9:
  //   If the definition of a class X does not explicitly declare a move
  //   constructor, one will be implicitly declared as defaulted if and only if:
  //   [...]
  //   - the move constructor would not be implicitly defined as deleted.
  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
    // Cache this result so that we don't try to generate this over and over
    // on every lookup, leaking memory and wasting time.
    ClassDecl->setFailedImplicitMoveConstructor();
    return 0;
  }

  // Note that we have declared this constructor.
  ++ASTContext::NumImplicitMoveConstructorsDeclared;

  if (Scope *S = getScopeForContext(ClassDecl))
    PushOnScopeChains(MoveConstructor, S, false);
  ClassDecl->addDecl(MoveConstructor);

  return MoveConstructor;
}

void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
                                   CXXConstructorDecl *MoveConstructor) {
  assert((MoveConstructor->isDefaulted() &&
          MoveConstructor->isMoveConstructor() &&
          !MoveConstructor->doesThisDeclarationHaveABody() &&
          !MoveConstructor->isDeleted()) &&
         "DefineImplicitMoveConstructor - call it for implicit move ctor");

  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");

  SynthesizedFunctionScope Scope(*this, MoveConstructor);
  DiagnosticErrorTrap Trap(Diags);

  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
      Trap.hasErrorOccurred()) {
    Diag(CurrentLocation, diag::note_member_synthesized_at) 
      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
    MoveConstructor->setInvalidDecl();
  }  else {
    Sema::CompoundScopeRAII CompoundScope(*this);
    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
                                               MoveConstructor->getLocation(),
                                               MultiStmtArg(),
                                               /*isStmtExpr=*/false)
                                                              .takeAs<Stmt>());
    MoveConstructor->setImplicitlyDefined(true);
  }

  MoveConstructor->setUsed();

  if (ASTMutationListener *L = getASTMutationListener()) {
    L->CompletedImplicitDefinition(MoveConstructor);
  }
}

bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
  return FD->isDeleted() && 
         (FD->isDefaulted() || FD->isImplicit()) &&
         isa<CXXMethodDecl>(FD);
}

/// \brief Mark the call operator of the given lambda closure type as "used".
static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
  CXXMethodDecl *CallOperator 
    = cast<CXXMethodDecl>(
        Lambda->lookup(
          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
  CallOperator->setReferenced();
  CallOperator->setUsed();
}

void Sema::DefineImplicitLambdaToFunctionPointerConversion(
       SourceLocation CurrentLocation,
       CXXConversionDecl *Conv) 
{
  CXXRecordDecl *Lambda = Conv->getParent();
  
  // Make sure that the lambda call operator is marked used.
  markLambdaCallOperatorUsed(*this, Lambda);
  
  Conv->setUsed();
  
  SynthesizedFunctionScope Scope(*this, Conv);
  DiagnosticErrorTrap Trap(Diags);
  
  // Return the address of the __invoke function.
  DeclarationName InvokeName = &Context.Idents.get("__invoke");
  CXXMethodDecl *Invoke 
    = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
                                       VK_LValue, Conv->getLocation()).take();
  assert(FunctionRef && "Can't refer to __invoke function?");
  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
  Conv->setBody(new (Context) CompoundStmt(Context, Return,
                                           Conv->getLocation(),
                                           Conv->getLocation()));
    
  // Fill in the __invoke function with a dummy implementation. IR generation
  // will fill in the actual details.
  Invoke->setUsed();
  Invoke->setReferenced();
  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
  
  if (ASTMutationListener *L = getASTMutationListener()) {
    L->CompletedImplicitDefinition(Conv);
    L->CompletedImplicitDefinition(Invoke);
  }
}

void Sema::DefineImplicitLambdaToBlockPointerConversion(
       SourceLocation CurrentLocation,
       CXXConversionDecl *Conv) 
{
  Conv->setUsed();
  
  SynthesizedFunctionScope Scope(*this, Conv);
  DiagnosticErrorTrap Trap(Diags);
  
  // Copy-initialize the lambda object as needed to capture it.
  Expr *This = ActOnCXXThis(CurrentLocation).take();
  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
  
  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
                                                        Conv->getLocation(),
                                                        Conv, DerefThis);

  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
  // behavior.  Note that only the general conversion function does this
  // (since it's unusable otherwise); in the case where we inline the
  // block literal, it has block literal lifetime semantics.
  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
                                          CK_CopyAndAutoreleaseBlockObject,
                                          BuildBlock.get(), 0, VK_RValue);

  if (BuildBlock.isInvalid()) {
    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
    Conv->setInvalidDecl();
    return;
  }

  // Create the return statement that returns the block from the conversion
  // function.
  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
  if (Return.isInvalid()) {
    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
    Conv->setInvalidDecl();
    return;
  }

  // Set the body of the conversion function.
  Stmt *ReturnS = Return.take();
  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
                                           Conv->getLocation(), 
                                           Conv->getLocation()));
  
  // We're done; notify the mutation listener, if any.
  if (ASTMutationListener *L = getASTMutationListener()) {
    L->CompletedImplicitDefinition(Conv);
  }
}

/// \brief Determine whether the given list arguments contains exactly one 
/// "real" (non-default) argument.
static bool hasOneRealArgument(MultiExprArg Args) {
  switch (Args.size()) {
  case 0:
    return false;
    
  default:
    if (!Args[1]->isDefaultArgument())
      return false;
    
    // fall through
  case 1:
    return !Args[0]->isDefaultArgument();
  }
  
  return false;
}

ExprResult
Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
                            CXXConstructorDecl *Constructor,
                            MultiExprArg ExprArgs,
                            bool HadMultipleCandidates,
                            bool IsListInitialization,
                            bool RequiresZeroInit,
                            unsigned ConstructKind,
                            SourceRange ParenRange) {
  bool Elidable = false;

  // C++0x [class.copy]p34:
  //   When certain criteria are met, an implementation is allowed to
  //   omit the copy/move construction of a class object, even if the
  //   copy/move constructor and/or destructor for the object have
  //   side effects. [...]
  //     - when a temporary class object that has not been bound to a
  //       reference (12.2) would be copied/moved to a class object
  //       with the same cv-unqualified type, the copy/move operation
  //       can be omitted by constructing the temporary object
  //       directly into the target of the omitted copy/move
  if (ConstructKind == CXXConstructExpr::CK_Complete &&
      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
    Expr *SubExpr = ExprArgs[0];
    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
  }

  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
                               Elidable, ExprArgs, HadMultipleCandidates,
                               IsListInitialization, RequiresZeroInit,
                               ConstructKind, ParenRange);
}

/// BuildCXXConstructExpr - Creates a complete call to a constructor,
/// including handling of its default argument expressions.
ExprResult
Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
                            CXXConstructorDecl *Constructor, bool Elidable,
                            MultiExprArg ExprArgs,
                            bool HadMultipleCandidates,
                            bool IsListInitialization,
                            bool RequiresZeroInit,
                            unsigned ConstructKind,
                            SourceRange ParenRange) {
  MarkFunctionReferenced(ConstructLoc, Constructor);
  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
                                        Constructor, Elidable, ExprArgs,
                                        HadMultipleCandidates,
                                        IsListInitialization, RequiresZeroInit,
              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
                                        ParenRange));
}

void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
  if (VD->isInvalidDecl()) return;

  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
  if (ClassDecl->isInvalidDecl()) return;
  if (ClassDecl->hasIrrelevantDestructor()) return;
  if (ClassDecl->isDependentContext()) return;

  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
  MarkFunctionReferenced(VD->getLocation(), Destructor);
  CheckDestructorAccess(VD->getLocation(), Destructor,
                        PDiag(diag::err_access_dtor_var)
                        << VD->getDeclName()
                        << VD->getType());
  DiagnoseUseOfDecl(Destructor, VD->getLocation());

  if (!VD->hasGlobalStorage()) return;

  // Emit warning for non-trivial dtor in global scope (a real global,
  // class-static, function-static).
  Diag(VD->getLocation(), diag::warn_exit_time_destructor);

  // TODO: this should be re-enabled for static locals by !CXAAtExit
  if (!VD->isStaticLocal())
    Diag(VD->getLocation(), diag::warn_global_destructor);
}

/// \brief Given a constructor and the set of arguments provided for the
/// constructor, convert the arguments and add any required default arguments
/// to form a proper call to this constructor.
///
/// \returns true if an error occurred, false otherwise.
bool 
Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
                              MultiExprArg ArgsPtr,
                              SourceLocation Loc,
                              SmallVectorImpl<Expr*> &ConvertedArgs,
                              bool AllowExplicit,
                              bool IsListInitialization) {
  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
  unsigned NumArgs = ArgsPtr.size();
  Expr **Args = ArgsPtr.data();

  const FunctionProtoType *Proto 
    = Constructor->getType()->getAs<FunctionProtoType>();
  assert(Proto && "Constructor without a prototype?");
  unsigned NumArgsInProto = Proto->getNumArgs();
  
  // If too few arguments are available, we'll fill in the rest with defaults.
  if (NumArgs < NumArgsInProto)
    ConvertedArgs.reserve(NumArgsInProto);
  else
    ConvertedArgs.reserve(NumArgs);

  VariadicCallType CallType = 
    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
  SmallVector<Expr *, 8> AllArgs;
  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
                                        Proto, 0, Args, NumArgs, AllArgs, 
                                        CallType, AllowExplicit,
                                        IsListInitialization);
  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());

  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());

  CheckConstructorCall(Constructor,
                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
                                                        AllArgs.size()),
                       Proto, Loc);

  return Invalid;
}

static inline bool
CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, 
                                       const FunctionDecl *FnDecl) {
  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
  if (isa<NamespaceDecl>(DC)) {
    return SemaRef.Diag(FnDecl->getLocation(), 
                        diag::err_operator_new_delete_declared_in_namespace)
      << FnDecl->getDeclName();
  }
  
  if (isa<TranslationUnitDecl>(DC) && 
      FnDecl->getStorageClass() == SC_Static) {
    return SemaRef.Diag(FnDecl->getLocation(),
                        diag::err_operator_new_delete_declared_static)
      << FnDecl->getDeclName();
  }
  
  return false;
}

static inline bool
CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
                            CanQualType ExpectedResultType,
                            CanQualType ExpectedFirstParamType,
                            unsigned DependentParamTypeDiag,
                            unsigned InvalidParamTypeDiag) {
  QualType ResultType = 
    FnDecl->getType()->getAs<FunctionType>()->getResultType();

  // Check that the result type is not dependent.
  if (ResultType->isDependentType())
    return SemaRef.Diag(FnDecl->getLocation(),
                        diag::err_operator_new_delete_dependent_result_type)
    << FnDecl->getDeclName() << ExpectedResultType;

  // Check that the result type is what we expect.
  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
    return SemaRef.Diag(FnDecl->getLocation(),
                        diag::err_operator_new_delete_invalid_result_type) 
    << FnDecl->getDeclName() << ExpectedResultType;
  
  // A function template must have at least 2 parameters.
  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
    return SemaRef.Diag(FnDecl->getLocation(),
                      diag::err_operator_new_delete_template_too_few_parameters)
        << FnDecl->getDeclName();
  
  // The function decl must have at least 1 parameter.
  if (FnDecl->getNumParams() == 0)
    return SemaRef.Diag(FnDecl->getLocation(),
                        diag::err_operator_new_delete_too_few_parameters)
      << FnDecl->getDeclName();
 
  // Check the first parameter type is not dependent.
  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
  if (FirstParamType->isDependentType())
    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
      << FnDecl->getDeclName() << ExpectedFirstParamType;

  // Check that the first parameter type is what we expect.
  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != 
      ExpectedFirstParamType)
    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
    << FnDecl->getDeclName() << ExpectedFirstParamType;
  
  return false;
}

static bool
CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
  // C++ [basic.stc.dynamic.allocation]p1:
  //   A program is ill-formed if an allocation function is declared in a
  //   namespace scope other than global scope or declared static in global 
  //   scope.
  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
    return true;

  CanQualType SizeTy = 
    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());

  // C++ [basic.stc.dynamic.allocation]p1:
  //  The return type shall be void*. The first parameter shall have type 
  //  std::size_t.
  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, 
                                  SizeTy,
                                  diag::err_operator_new_dependent_param_type,
                                  diag::err_operator_new_param_type))
    return true;

  // C++ [basic.stc.dynamic.allocation]p1:
  //  The first parameter shall not have an associated default argument.
  if (FnDecl->getParamDecl(0)->hasDefaultArg())
    return SemaRef.Diag(FnDecl->getLocation(),
                        diag::err_operator_new_default_arg)
      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();

  return false;
}

static bool
CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
  // C++ [basic.stc.dynamic.deallocation]p1:
  //   A program is ill-formed if deallocation functions are declared in a
  //   namespace scope other than global scope or declared static in global 
  //   scope.
  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
    return true;

  // C++ [basic.stc.dynamic.deallocation]p2:
  //   Each deallocation function shall return void and its first parameter 
  //   shall be void*.
  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy, 
                                  SemaRef.Context.VoidPtrTy,
                                 diag::err_operator_delete_dependent_param_type,
                                 diag::err_operator_delete_param_type))
    return true;

  return false;
}

/// CheckOverloadedOperatorDeclaration - Check whether the declaration
/// of this overloaded operator is well-formed. If so, returns false;
/// otherwise, emits appropriate diagnostics and returns true.
bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
  assert(FnDecl && FnDecl->isOverloadedOperator() &&
         "Expected an overloaded operator declaration");

  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();

  // C++ [over.oper]p5:
  //   The allocation and deallocation functions, operator new,
  //   operator new[], operator delete and operator delete[], are
  //   described completely in 3.7.3. The attributes and restrictions
  //   found in the rest of this subclause do not apply to them unless
  //   explicitly stated in 3.7.3.
  if (Op == OO_Delete || Op == OO_Array_Delete)
    return CheckOperatorDeleteDeclaration(*this, FnDecl);
  
  if (Op == OO_New || Op == OO_Array_New)
    return CheckOperatorNewDeclaration(*this, FnDecl);

  // C++ [over.oper]p6:
  //   An operator function shall either be a non-static member
  //   function or be a non-member function and have at least one
  //   parameter whose type is a class, a reference to a class, an
  //   enumeration, or a reference to an enumeration.
  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
    if (MethodDecl->isStatic())
      return Diag(FnDecl->getLocation(),
                  diag::err_operator_overload_static) << FnDecl->getDeclName();
  } else {
    bool ClassOrEnumParam = false;
    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
                                   ParamEnd = FnDecl->param_end();
         Param != ParamEnd; ++Param) {
      QualType ParamType = (*Param)->getType().getNonReferenceType();
      if (ParamType->isDependentType() || ParamType->isRecordType() ||
          ParamType->isEnumeralType()) {
        ClassOrEnumParam = true;
        break;
      }
    }

    if (!ClassOrEnumParam)
      return Diag(FnDecl->getLocation(),
                  diag::err_operator_overload_needs_class_or_enum)
        << FnDecl->getDeclName();
  }

  // C++ [over.oper]p8:
  //   An operator function cannot have default arguments (8.3.6),
  //   except where explicitly stated below.
  //
  // Only the function-call operator allows default arguments
  // (C++ [over.call]p1).
  if (Op != OO_Call) {
    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
         Param != FnDecl->param_end(); ++Param) {
      if ((*Param)->hasDefaultArg())
        return Diag((*Param)->getLocation(),
                    diag::err_operator_overload_default_arg)
          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
    }
  }

  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
    { false, false, false }
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
    , { Unary, Binary, MemberOnly }
#include "clang/Basic/OperatorKinds.def"
  };

  bool CanBeUnaryOperator = OperatorUses[Op][0];
  bool CanBeBinaryOperator = OperatorUses[Op][1];
  bool MustBeMemberOperator = OperatorUses[Op][2];

  // C++ [over.oper]p8:
  //   [...] Operator functions cannot have more or fewer parameters
  //   than the number required for the corresponding operator, as
  //   described in the rest of this subclause.
  unsigned NumParams = FnDecl->getNumParams()
                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
  if (Op != OO_Call &&
      ((NumParams == 1 && !CanBeUnaryOperator) ||
       (NumParams == 2 && !CanBeBinaryOperator) ||
       (NumParams < 1) || (NumParams > 2))) {
    // We have the wrong number of parameters.
    unsigned ErrorKind;
    if (CanBeUnaryOperator && CanBeBinaryOperator) {
      ErrorKind = 2;  // 2 -> unary or binary.
    } else if (CanBeUnaryOperator) {
      ErrorKind = 0;  // 0 -> unary
    } else {
      assert(CanBeBinaryOperator &&
             "All non-call overloaded operators are unary or binary!");
      ErrorKind = 1;  // 1 -> binary
    }

    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
      << FnDecl->getDeclName() << NumParams << ErrorKind;
  }

  // Overloaded operators other than operator() cannot be variadic.
  if (Op != OO_Call &&
      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
      << FnDecl->getDeclName();
  }

  // Some operators must be non-static member functions.
  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
    return Diag(FnDecl->getLocation(),
                diag::err_operator_overload_must_be_member)
      << FnDecl->getDeclName();
  }

  // C++ [over.inc]p1:
  //   The user-defined function called operator++ implements the
  //   prefix and postfix ++ operator. If this function is a member
  //   function with no parameters, or a non-member function with one
  //   parameter of class or enumeration type, it defines the prefix
  //   increment operator ++ for objects of that type. If the function
  //   is a member function with one parameter (which shall be of type
  //   int) or a non-member function with two parameters (the second
  //   of which shall be of type int), it defines the postfix
  //   increment operator ++ for objects of that type.
  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
    bool ParamIsInt = false;
    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
      ParamIsInt = BT->getKind() == BuiltinType::Int;

    if (!ParamIsInt)
      return Diag(LastParam->getLocation(),
                  diag::err_operator_overload_post_incdec_must_be_int)
        << LastParam->getType() << (Op == OO_MinusMinus);
  }

  return false;
}

/// CheckLiteralOperatorDeclaration - Check whether the declaration
/// of this literal operator function is well-formed. If so, returns
/// false; otherwise, emits appropriate diagnostics and returns true.
bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
  if (isa<CXXMethodDecl>(FnDecl)) {
    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
      << FnDecl->getDeclName();
    return true;
  }

  if (FnDecl->isExternC()) {
    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
    return true;
  }

  bool Valid = false;

  // This might be the definition of a literal operator template.
  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
  // This might be a specialization of a literal operator template.
  if (!TpDecl)
    TpDecl = FnDecl->getPrimaryTemplate();

  // template <char...> type operator "" name() is the only valid template
  // signature, and the only valid signature with no parameters.
  if (TpDecl) {
    if (FnDecl->param_size() == 0) {
      // Must have only one template parameter
      TemplateParameterList *Params = TpDecl->getTemplateParameters();
      if (Params->size() == 1) {
        NonTypeTemplateParmDecl *PmDecl =
          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));

        // The template parameter must be a char parameter pack.
        if (PmDecl && PmDecl->isTemplateParameterPack() &&
            Context.hasSameType(PmDecl->getType(), Context.CharTy))
          Valid = true;
      }
    }
  } else if (FnDecl->param_size()) {
    // Check the first parameter
    FunctionDecl::param_iterator Param = FnDecl->param_begin();

    QualType T = (*Param)->getType().getUnqualifiedType();

    // unsigned long long int, long double, and any character type are allowed
    // as the only parameters.
    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
        Context.hasSameType(T, Context.LongDoubleTy) ||
        Context.hasSameType(T, Context.CharTy) ||
        Context.hasSameType(T, Context.WCharTy) ||
        Context.hasSameType(T, Context.Char16Ty) ||
        Context.hasSameType(T, Context.Char32Ty)) {
      if (++Param == FnDecl->param_end())
        Valid = true;
      goto FinishedParams;
    }

    // Otherwise it must be a pointer to const; let's strip those qualifiers.
    const PointerType *PT = T->getAs<PointerType>();
    if (!PT)
      goto FinishedParams;
    T = PT->getPointeeType();
    if (!T.isConstQualified() || T.isVolatileQualified())
      goto FinishedParams;
    T = T.getUnqualifiedType();

    // Move on to the second parameter;
    ++Param;

    // If there is no second parameter, the first must be a const char *
    if (Param == FnDecl->param_end()) {
      if (Context.hasSameType(T, Context.CharTy))
        Valid = true;
      goto FinishedParams;
    }

    // const char *, const wchar_t*, const char16_t*, and const char32_t*
    // are allowed as the first parameter to a two-parameter function
    if (!(Context.hasSameType(T, Context.CharTy) ||
          Context.hasSameType(T, Context.WCharTy) ||
          Context.hasSameType(T, Context.Char16Ty) ||
          Context.hasSameType(T, Context.Char32Ty)))
      goto FinishedParams;

    // The second and final parameter must be an std::size_t
    T = (*Param)->getType().getUnqualifiedType();
    if (Context.hasSameType(T, Context.getSizeType()) &&
        ++Param == FnDecl->param_end())
      Valid = true;
  }

  // FIXME: This diagnostic is absolutely terrible.
FinishedParams:
  if (!Valid) {
    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
      << FnDecl->getDeclName();
    return true;
  }

  // A parameter-declaration-clause containing a default argument is not
  // equivalent to any of the permitted forms.
  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
                                    ParamEnd = FnDecl->param_end();
       Param != ParamEnd; ++Param) {
    if ((*Param)->hasDefaultArg()) {
      Diag((*Param)->getDefaultArgRange().getBegin(),
           diag::err_literal_operator_default_argument)
        << (*Param)->getDefaultArgRange();
      break;
    }
  }

  StringRef LiteralName
    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
  if (LiteralName[0] != '_') {
    // C++11 [usrlit.suffix]p1:
    //   Literal suffix identifiers that do not start with an underscore
    //   are reserved for future standardization.
    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
  }

  return false;
}

/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
/// linkage specification, including the language and (if present)
/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
/// the location of the language string literal, which is provided
/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
/// the '{' brace. Otherwise, this linkage specification does not
/// have any braces.
Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
                                           SourceLocation LangLoc,
                                           StringRef Lang,
                                           SourceLocation LBraceLoc) {
  LinkageSpecDecl::LanguageIDs Language;
  if (Lang == "\"C\"")
    Language = LinkageSpecDecl::lang_c;
  else if (Lang == "\"C++\"")
    Language = LinkageSpecDecl::lang_cxx;
  else {
    Diag(LangLoc, diag::err_bad_language);
    return 0;
  }

  // FIXME: Add all the various semantics of linkage specifications

  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
                                               ExternLoc, LangLoc, Language,
                                               LBraceLoc.isValid());
  CurContext->addDecl(D);
  PushDeclContext(S, D);
  return D;
}

/// ActOnFinishLinkageSpecification - Complete the definition of
/// the C++ linkage specification LinkageSpec. If RBraceLoc is
/// valid, it's the position of the closing '}' brace in a linkage
/// specification that uses braces.
Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
                                            Decl *LinkageSpec,
                                            SourceLocation RBraceLoc) {
  if (LinkageSpec) {
    if (RBraceLoc.isValid()) {
      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
      LSDecl->setRBraceLoc(RBraceLoc);
    }
    PopDeclContext();
  }
  return LinkageSpec;
}

Decl *Sema::ActOnEmptyDeclaration(Scope *S,
                                  AttributeList *AttrList,
                                  SourceLocation SemiLoc) {
  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
  // Attribute declarations appertain to empty declaration so we handle
  // them here.
  if (AttrList)
    ProcessDeclAttributeList(S, ED, AttrList);

  CurContext->addDecl(ED);
  return ED;
}

/// \brief Perform semantic analysis for the variable declaration that
/// occurs within a C++ catch clause, returning the newly-created
/// variable.
VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
                                         TypeSourceInfo *TInfo,
                                         SourceLocation StartLoc,
                                         SourceLocation Loc,
                                         IdentifierInfo *Name) {
  bool Invalid = false;
  QualType ExDeclType = TInfo->getType();
  
  // Arrays and functions decay.
  if (ExDeclType->isArrayType())
    ExDeclType = Context.getArrayDecayedType(ExDeclType);
  else if (ExDeclType->isFunctionType())
    ExDeclType = Context.getPointerType(ExDeclType);

  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
  // The exception-declaration shall not denote a pointer or reference to an
  // incomplete type, other than [cv] void*.
  // N2844 forbids rvalue references.
  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
    Diag(Loc, diag::err_catch_rvalue_ref);
    Invalid = true;
  }

  QualType BaseType = ExDeclType;
  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
  unsigned DK = diag::err_catch_incomplete;
  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
    BaseType = Ptr->getPointeeType();
    Mode = 1;
    DK = diag::err_catch_incomplete_ptr;
  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
    BaseType = Ref->getPointeeType();
    Mode = 2;
    DK = diag::err_catch_incomplete_ref;
  }
  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
    Invalid = true;

  if (!Invalid && !ExDeclType->isDependentType() &&
      RequireNonAbstractType(Loc, ExDeclType,
                             diag::err_abstract_type_in_decl,
                             AbstractVariableType))
    Invalid = true;

  // Only the non-fragile NeXT runtime currently supports C++ catches
  // of ObjC types, and no runtime supports catching ObjC types by value.
  if (!Invalid && getLangOpts().ObjC1) {
    QualType T = ExDeclType;
    if (const ReferenceType *RT = T->getAs<ReferenceType>())
      T = RT->getPointeeType();

    if (T->isObjCObjectType()) {
      Diag(Loc, diag::err_objc_object_catch);
      Invalid = true;
    } else if (T->isObjCObjectPointerType()) {
      // FIXME: should this be a test for macosx-fragile specifically?
      if (getLangOpts().ObjCRuntime.isFragile())
        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
    }
  }

  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
                                    ExDeclType, TInfo, SC_None);
  ExDecl->setExceptionVariable(true);
  
  // In ARC, infer 'retaining' for variables of retainable type.
  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
    Invalid = true;

  if (!Invalid && !ExDeclType->isDependentType()) {
    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
      // Insulate this from anything else we might currently be parsing.
      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);

      // C++ [except.handle]p16:
      //   The object declared in an exception-declaration or, if the 
      //   exception-declaration does not specify a name, a temporary (12.2) is 
      //   copy-initialized (8.5) from the exception object. [...]
      //   The object is destroyed when the handler exits, after the destruction
      //   of any automatic objects initialized within the handler.
      //
      // We just pretend to initialize the object with itself, then make sure 
      // it can be destroyed later.
      QualType initType = ExDeclType;

      InitializedEntity entity =
        InitializedEntity::InitializeVariable(ExDecl);
      InitializationKind initKind =
        InitializationKind::CreateCopy(Loc, SourceLocation());

      Expr *opaqueValue =
        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
      InitializationSequence sequence(*this, entity, initKind, opaqueValue);
      ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
      if (result.isInvalid())
        Invalid = true;
      else {
        // If the constructor used was non-trivial, set this as the
        // "initializer".
        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
        if (!construct->getConstructor()->isTrivial()) {
          Expr *init = MaybeCreateExprWithCleanups(construct);
          ExDecl->setInit(init);
        }
        
        // And make sure it's destructable.
        FinalizeVarWithDestructor(ExDecl, recordType);
      }
    }
  }
  
  if (Invalid)
    ExDecl->setInvalidDecl();

  return ExDecl;
}

/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
/// handler.
Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
  bool Invalid = D.isInvalidType();

  // Check for unexpanded parameter packs.
  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
                                      UPPC_ExceptionType)) {
    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 
                                             D.getIdentifierLoc());
    Invalid = true;
  }

  IdentifierInfo *II = D.getIdentifier();
  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
                                             LookupOrdinaryName,
                                             ForRedeclaration)) {
    // The scope should be freshly made just for us. There is just no way
    // it contains any previous declaration.
    assert(!S->isDeclScope(PrevDecl));
    if (PrevDecl->isTemplateParameter()) {
      // Maybe we will complain about the shadowed template parameter.
      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
      PrevDecl = 0;
    }
  }

  if (D.getCXXScopeSpec().isSet() && !Invalid) {
    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
      << D.getCXXScopeSpec().getRange();
    Invalid = true;
  }

  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
                                              D.getLocStart(),
                                              D.getIdentifierLoc(),
                                              D.getIdentifier());
  if (Invalid)
    ExDecl->setInvalidDecl();

  // Add the exception declaration into this scope.
  if (II)
    PushOnScopeChains(ExDecl, S);
  else
    CurContext->addDecl(ExDecl);

  ProcessDeclAttributes(S, ExDecl, D);
  return ExDecl;
}

Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
                                         Expr *AssertExpr,
                                         Expr *AssertMessageExpr,
                                         SourceLocation RParenLoc) {
  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);

  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
    return 0;

  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
                                      AssertMessage, RParenLoc, false);
}

Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
                                         Expr *AssertExpr,
                                         StringLiteral *AssertMessage,
                                         SourceLocation RParenLoc,
                                         bool Failed) {
  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
      !Failed) {
    // In a static_assert-declaration, the constant-expression shall be a
    // constant expression that can be contextually converted to bool.
    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
    if (Converted.isInvalid())
      Failed = true;

    llvm::APSInt Cond;
    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
          diag::err_static_assert_expression_is_not_constant,
          /*AllowFold=*/false).isInvalid())
      Failed = true;

    if (!Failed && !Cond) {
      SmallString<256> MsgBuffer;
      llvm::raw_svector_ostream Msg(MsgBuffer);
      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
      Diag(StaticAssertLoc, diag::err_static_assert_failed)
        << Msg.str() << AssertExpr->getSourceRange();
      Failed = true;
    }
  }

  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
                                        AssertExpr, AssertMessage, RParenLoc,
                                        Failed);

  CurContext->addDecl(Decl);
  return Decl;
}

/// \brief Perform semantic analysis of the given friend type declaration.
///
/// \returns A friend declaration that.
FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
                                      SourceLocation FriendLoc,
                                      TypeSourceInfo *TSInfo) {
  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
  
  QualType T = TSInfo->getType();
  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
  
  // C++03 [class.friend]p2:
  //   An elaborated-type-specifier shall be used in a friend declaration
  //   for a class.*
  //
  //   * The class-key of the elaborated-type-specifier is required.
  if (!ActiveTemplateInstantiations.empty()) {
    // Do not complain about the form of friend template types during
    // template instantiation; we will already have complained when the
    // template was declared.
  } else {
    if (!T->isElaboratedTypeSpecifier()) {
      // If we evaluated the type to a record type, suggest putting
      // a tag in front.
      if (const RecordType *RT = T->getAs<RecordType>()) {
        RecordDecl *RD = RT->getDecl();
      
        std::string InsertionText = std::string(" ") + RD->getKindName();
      
        Diag(TypeRange.getBegin(),
             getLangOpts().CPlusPlus11 ?
               diag::warn_cxx98_compat_unelaborated_friend_type :
               diag::ext_unelaborated_friend_type)
          << (unsigned) RD->getTagKind()
          << T
          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
                                        InsertionText);
      } else {
        Diag(FriendLoc,
             getLangOpts().CPlusPlus11 ?
               diag::warn_cxx98_compat_nonclass_type_friend :
               diag::ext_nonclass_type_friend)
          << T
          << TypeRange;
      }
    } else if (T->getAs<EnumType>()) {
      Diag(FriendLoc,
           getLangOpts().CPlusPlus11 ?
             diag::warn_cxx98_compat_enum_friend :
             diag::ext_enum_friend)
        << T
        << TypeRange;
    }
  
    // C++11 [class.friend]p3:
    //   A friend declaration that does not declare a function shall have one
    //   of the following forms:
    //     friend elaborated-type-specifier ;
    //     friend simple-type-specifier ;
    //     friend typename-specifier ;
    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
  }

  //   If the type specifier in a friend declaration designates a (possibly
  //   cv-qualified) class type, that class is declared as a friend; otherwise,
  //   the friend declaration is ignored.
  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
}

/// Handle a friend tag declaration where the scope specifier was
/// templated.
Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
                                    unsigned TagSpec, SourceLocation TagLoc,
                                    CXXScopeSpec &SS,
                                    IdentifierInfo *Name,
                                    SourceLocation NameLoc,
                                    AttributeList *Attr,
                                    MultiTemplateParamsArg TempParamLists) {
  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);

  bool isExplicitSpecialization = false;
  bool Invalid = false;

  if (TemplateParameterList *TemplateParams
        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
                                                  TempParamLists.data(),
                                                  TempParamLists.size(),
                                                  /*friend*/ true,
                                                  isExplicitSpecialization,
                                                  Invalid)) {
    if (TemplateParams->size() > 0) {
      // This is a declaration of a class template.
      if (Invalid)
        return 0;

      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
                                SS, Name, NameLoc, Attr,
                                TemplateParams, AS_public,
                                /*ModulePrivateLoc=*/SourceLocation(),
                                TempParamLists.size() - 1,
                                TempParamLists.data()).take();
    } else {
      // The "template<>" header is extraneous.
      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
      isExplicitSpecialization = true;
    }
  }

  if (Invalid) return 0;

  bool isAllExplicitSpecializations = true;
  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
    if (TempParamLists[I]->size()) {
      isAllExplicitSpecializations = false;
      break;
    }
  }

  // FIXME: don't ignore attributes.

  // If it's explicit specializations all the way down, just forget
  // about the template header and build an appropriate non-templated
  // friend.  TODO: for source fidelity, remember the headers.
  if (isAllExplicitSpecializations) {
    if (SS.isEmpty()) {
      bool Owned = false;
      bool IsDependent = false;
      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
                      Attr, AS_public, 
                      /*ModulePrivateLoc=*/SourceLocation(),
                      MultiTemplateParamsArg(), Owned, IsDependent, 
                      /*ScopedEnumKWLoc=*/SourceLocation(),
                      /*ScopedEnumUsesClassTag=*/false,
                      /*UnderlyingType=*/TypeResult());          
    }
    
    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
    ElaboratedTypeKeyword Keyword
      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
                                   *Name, NameLoc);
    if (T.isNull())
      return 0;

    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
    if (isa<DependentNameType>(T)) {
      DependentNameTypeLoc TL =
          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
      TL.setElaboratedKeywordLoc(TagLoc);
      TL.setQualifierLoc(QualifierLoc);
      TL.setNameLoc(NameLoc);
    } else {
      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
      TL.setElaboratedKeywordLoc(TagLoc);
      TL.setQualifierLoc(QualifierLoc);
      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
    }

    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
                                            TSI, FriendLoc, TempParamLists);
    Friend->setAccess(AS_public);
    CurContext->addDecl(Friend);
    return Friend;
  }
  
  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
  


  // Handle the case of a templated-scope friend class.  e.g.
  //   template <class T> class A<T>::B;
  // FIXME: we don't support these right now.
  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
  TL.setElaboratedKeywordLoc(TagLoc);
  TL.setQualifierLoc(SS.getWithLocInContext(Context));
  TL.setNameLoc(NameLoc);

  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
                                          TSI, FriendLoc, TempParamLists);
  Friend->setAccess(AS_public);
  Friend->setUnsupportedFriend(true);
  CurContext->addDecl(Friend);
  return Friend;
}


/// Handle a friend type declaration.  This works in tandem with
/// ActOnTag.
///
/// Notes on friend class templates:
///
/// We generally treat friend class declarations as if they were
/// declaring a class.  So, for example, the elaborated type specifier
/// in a friend declaration is required to obey the restrictions of a
/// class-head (i.e. no typedefs in the scope chain), template
/// parameters are required to match up with simple template-ids, &c.
/// However, unlike when declaring a template specialization, it's
/// okay to refer to a template specialization without an empty
/// template parameter declaration, e.g.
///   friend class A<T>::B<unsigned>;
/// We permit this as a special case; if there are any template
/// parameters present at all, require proper matching, i.e.
///   template <> template \<class T> friend class A<int>::B;
Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
                                MultiTemplateParamsArg TempParams) {
  SourceLocation Loc = DS.getLocStart();

  assert(DS.isFriendSpecified());
  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);

  // Try to convert the decl specifier to a type.  This works for
  // friend templates because ActOnTag never produces a ClassTemplateDecl
  // for a TUK_Friend.
  Declarator TheDeclarator(DS, Declarator::MemberContext);
  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
  QualType T = TSI->getType();
  if (TheDeclarator.isInvalidType())
    return 0;

  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
    return 0;

  // This is definitely an error in C++98.  It's probably meant to
  // be forbidden in C++0x, too, but the specification is just
  // poorly written.
  //
  // The problem is with declarations like the following:
  //   template <T> friend A<T>::foo;
  // where deciding whether a class C is a friend or not now hinges
  // on whether there exists an instantiation of A that causes
  // 'foo' to equal C.  There are restrictions on class-heads
  // (which we declare (by fiat) elaborated friend declarations to
  // be) that makes this tractable.
  //
  // FIXME: handle "template <> friend class A<T>;", which
  // is possibly well-formed?  Who even knows?
  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
    Diag(Loc, diag::err_tagless_friend_type_template)
      << DS.getSourceRange();
    return 0;
  }
  
  // C++98 [class.friend]p1: A friend of a class is a function
  //   or class that is not a member of the class . . .
  // This is fixed in DR77, which just barely didn't make the C++03
  // deadline.  It's also a very silly restriction that seriously
  // affects inner classes and which nobody else seems to implement;
  // thus we never diagnose it, not even in -pedantic.
  //
  // But note that we could warn about it: it's always useless to
  // friend one of your own members (it's not, however, worthless to
  // friend a member of an arbitrary specialization of your template).

  Decl *D;
  if (unsigned NumTempParamLists = TempParams.size())
    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
                                   NumTempParamLists,
                                   TempParams.data(),
                                   TSI,
                                   DS.getFriendSpecLoc());
  else
    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
  
  if (!D)
    return 0;
  
  D->setAccess(AS_public);
  CurContext->addDecl(D);

  return D;
}

NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
                                        MultiTemplateParamsArg TemplateParams) {
  const DeclSpec &DS = D.getDeclSpec();

  assert(DS.isFriendSpecified());
  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);

  SourceLocation Loc = D.getIdentifierLoc();
  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);

  // C++ [class.friend]p1
  //   A friend of a class is a function or class....
  // Note that this sees through typedefs, which is intended.
  // It *doesn't* see through dependent types, which is correct
  // according to [temp.arg.type]p3:
  //   If a declaration acquires a function type through a
  //   type dependent on a template-parameter and this causes
  //   a declaration that does not use the syntactic form of a
  //   function declarator to have a function type, the program
  //   is ill-formed.
  if (!TInfo->getType()->isFunctionType()) {
    Diag(Loc, diag::err_unexpected_friend);

    // It might be worthwhile to try to recover by creating an
    // appropriate declaration.
    return 0;
  }

  // C++ [namespace.memdef]p3
  //  - If a friend declaration in a non-local class first declares a
  //    class or function, the friend class or function is a member
  //    of the innermost enclosing namespace.
  //  - The name of the friend is not found by simple name lookup
  //    until a matching declaration is provided in that namespace
  //    scope (either before or after the class declaration granting
  //    friendship).
  //  - If a friend function is called, its name may be found by the
  //    name lookup that considers functions from namespaces and
  //    classes associated with the types of the function arguments.
  //  - When looking for a prior declaration of a class or a function
  //    declared as a friend, scopes outside the innermost enclosing
  //    namespace scope are not considered.

  CXXScopeSpec &SS = D.getCXXScopeSpec();
  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
  DeclarationName Name = NameInfo.getName();
  assert(Name);

  // Check for unexpanded parameter packs.
  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
    return 0;

  // The context we found the declaration in, or in which we should
  // create the declaration.
  DeclContext *DC;
  Scope *DCScope = S;
  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
                        ForRedeclaration);

  // FIXME: there are different rules in local classes

  // There are four cases here.
  //   - There's no scope specifier, in which case we just go to the
  //     appropriate scope and look for a function or function template
  //     there as appropriate.
  // Recover from invalid scope qualifiers as if they just weren't there.
  if (SS.isInvalid() || !SS.isSet()) {
    // C++0x [namespace.memdef]p3:
    //   If the name in a friend declaration is neither qualified nor
    //   a template-id and the declaration is a function or an
    //   elaborated-type-specifier, the lookup to determine whether
    //   the entity has been previously declared shall not consider
    //   any scopes outside the innermost enclosing namespace.
    // C++0x [class.friend]p11:
    //   If a friend declaration appears in a local class and the name
    //   specified is an unqualified name, a prior declaration is
    //   looked up without considering scopes that are outside the
    //   innermost enclosing non-class scope. For a friend function
    //   declaration, if there is no prior declaration, the program is
    //   ill-formed.
    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;

    // Find the appropriate context according to the above.
    DC = CurContext;

    // Skip class contexts.  If someone can cite chapter and verse
    // for this behavior, that would be nice --- it's what GCC and
    // EDG do, and it seems like a reasonable intent, but the spec
    // really only says that checks for unqualified existing
    // declarations should stop at the nearest enclosing namespace,
    // not that they should only consider the nearest enclosing
    // namespace.
    while (DC->isRecord())
      DC = DC->getParent();

    DeclContext *LookupDC = DC;
    while (LookupDC->isTransparentContext())
      LookupDC = LookupDC->getParent();

    while (true) {
      LookupQualifiedName(Previous, LookupDC);

      // TODO: decide what we think about using declarations.
      if (isLocal)
        break;

      if (!Previous.empty()) {
        DC = LookupDC;
        break;
      }

      if (isTemplateId) {
        if (isa<TranslationUnitDecl>(LookupDC)) break;
      } else {
        if (LookupDC->isFileContext()) break;
      }
      LookupDC = LookupDC->getParent();
    }

    DCScope = getScopeForDeclContext(S, DC);
    
    // C++ [class.friend]p6:
    //   A function can be defined in a friend declaration of a class if and 
    //   only if the class is a non-local class (9.8), the function name is
    //   unqualified, and the function has namespace scope.
    if (isLocal && D.isFunctionDefinition()) {
      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
    }
    
  //   - There's a non-dependent scope specifier, in which case we
  //     compute it and do a previous lookup there for a function
  //     or function template.
  } else if (!SS.getScopeRep()->isDependent()) {
    DC = computeDeclContext(SS);
    if (!DC) return 0;

    if (RequireCompleteDeclContext(SS, DC)) return 0;

    LookupQualifiedName(Previous, DC);

    // Ignore things found implicitly in the wrong scope.
    // TODO: better diagnostics for this case.  Suggesting the right
    // qualified scope would be nice...
    LookupResult::Filter F = Previous.makeFilter();
    while (F.hasNext()) {
      NamedDecl *D = F.next();
      if (!DC->InEnclosingNamespaceSetOf(
              D->getDeclContext()->getRedeclContext()))
        F.erase();
    }
    F.done();

    if (Previous.empty()) {
      D.setInvalidType();
      Diag(Loc, diag::err_qualified_friend_not_found)
          << Name << TInfo->getType();
      return 0;
    }

    // C++ [class.friend]p1: A friend of a class is a function or
    //   class that is not a member of the class . . .
    if (DC->Equals(CurContext))
      Diag(DS.getFriendSpecLoc(),
           getLangOpts().CPlusPlus11 ?
             diag::warn_cxx98_compat_friend_is_member :
             diag::err_friend_is_member);
    
    if (D.isFunctionDefinition()) {
      // C++ [class.friend]p6:
      //   A function can be defined in a friend declaration of a class if and 
      //   only if the class is a non-local class (9.8), the function name is
      //   unqualified, and the function has namespace scope.
      SemaDiagnosticBuilder DB
        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
      
      DB << SS.getScopeRep();
      if (DC->isFileContext())
        DB << FixItHint::CreateRemoval(SS.getRange());
      SS.clear();
    }

  //   - There's a scope specifier that does not match any template
  //     parameter lists, in which case we use some arbitrary context,
  //     create a method or method template, and wait for instantiation.
  //   - There's a scope specifier that does match some template
  //     parameter lists, which we don't handle right now.
  } else {
    if (D.isFunctionDefinition()) {
      // C++ [class.friend]p6:
      //   A function can be defined in a friend declaration of a class if and 
      //   only if the class is a non-local class (9.8), the function name is
      //   unqualified, and the function has namespace scope.
      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
        << SS.getScopeRep();
    }
    
    DC = CurContext;
    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
  }
  
  if (!DC->isRecord()) {
    // This implies that it has to be an operator or function.
    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
      Diag(Loc, diag::err_introducing_special_friend) <<
        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
      return 0;
    }
  }

  // FIXME: This is an egregious hack to cope with cases where the scope stack
  // does not contain the declaration context, i.e., in an out-of-line 
  // definition of a class.
  Scope FakeDCScope(S, Scope::DeclScope, Diags);
  if (!DCScope) {
    FakeDCScope.setEntity(DC);
    DCScope = &FakeDCScope;
  }
  
  bool AddToScope = true;
  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
                                          TemplateParams, AddToScope);
  if (!ND) return 0;

  assert(ND->getDeclContext() == DC);
  assert(ND->getLexicalDeclContext() == CurContext);

  // Add the function declaration to the appropriate lookup tables,
  // adjusting the redeclarations list as necessary.  We don't
  // want to do this yet if the friending class is dependent.
  //
  // Also update the scope-based lookup if the target context's
  // lookup context is in lexical scope.
  if (!CurContext->isDependentContext()) {
    DC = DC->getRedeclContext();
    DC->makeDeclVisibleInContext(ND);
    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
  }

  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
                                       D.getIdentifierLoc(), ND,
                                       DS.getFriendSpecLoc());
  FrD->setAccess(AS_public);
  CurContext->addDecl(FrD);

  if (ND->isInvalidDecl()) {
    FrD->setInvalidDecl();
  } else {
    if (DC->isRecord()) CheckFriendAccess(ND);

    FunctionDecl *FD;
    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
      FD = FTD->getTemplatedDecl();
    else
      FD = cast<FunctionDecl>(ND);

    // Mark templated-scope function declarations as unsupported.
    if (FD->getNumTemplateParameterLists())
      FrD->setUnsupportedFriend(true);
  }

  return ND;
}

void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
  AdjustDeclIfTemplate(Dcl);

  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
  if (!Fn) {
    Diag(DelLoc, diag::err_deleted_non_function);
    return;
  }

  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
    // Don't consider the implicit declaration we generate for explicit
    // specializations. FIXME: Do not generate these implicit declarations.
    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
      Diag(DelLoc, diag::err_deleted_decl_not_first);
      Diag(Prev->getLocation(), diag::note_previous_declaration);
    }
    // If the declaration wasn't the first, we delete the function anyway for
    // recovery.
    Fn = Fn->getCanonicalDecl();
  }

  if (Fn->isDeleted())
    return;

  // See if we're deleting a function which is already known to override a
  // non-deleted virtual function.
  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
    bool IssuedDiagnostic = false;
    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
                                        E = MD->end_overridden_methods();
         I != E; ++I) {
      if (!(*MD->begin_overridden_methods())->isDeleted()) {
        if (!IssuedDiagnostic) {
          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
          IssuedDiagnostic = true;
        }
        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
      }
    }
  }

  Fn->setDeletedAsWritten();
}

void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);

  if (MD) {
    if (MD->getParent()->isDependentType()) {
      MD->setDefaulted();
      MD->setExplicitlyDefaulted();
      return;
    }

    CXXSpecialMember Member = getSpecialMember(MD);
    if (Member == CXXInvalid) {
      Diag(DefaultLoc, diag::err_default_special_members);
      return;
    }

    MD->setDefaulted();
    MD->setExplicitlyDefaulted();

    // If this definition appears within the record, do the checking when
    // the record is complete.
    const FunctionDecl *Primary = MD;
    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
      // Find the uninstantiated declaration that actually had the '= default'
      // on it.
      Pattern->isDefined(Primary);

    // If the method was defaulted on its first declaration, we will have
    // already performed the checking in CheckCompletedCXXClass. Such a
    // declaration doesn't trigger an implicit definition.
    if (Primary == Primary->getCanonicalDecl())
      return;

    CheckExplicitlyDefaultedSpecialMember(MD);

    // The exception specification is needed because we are defining the
    // function.
    ResolveExceptionSpec(DefaultLoc,
                         MD->getType()->castAs<FunctionProtoType>());

    switch (Member) {
    case CXXDefaultConstructor: {
      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
      if (!CD->isInvalidDecl())
        DefineImplicitDefaultConstructor(DefaultLoc, CD);
      break;
    }

    case CXXCopyConstructor: {
      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
      if (!CD->isInvalidDecl())
        DefineImplicitCopyConstructor(DefaultLoc, CD);
      break;
    }

    case CXXCopyAssignment: {
      if (!MD->isInvalidDecl())
        DefineImplicitCopyAssignment(DefaultLoc, MD);
      break;
    }

    case CXXDestructor: {
      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
      if (!DD->isInvalidDecl())
        DefineImplicitDestructor(DefaultLoc, DD);
      break;
    }

    case CXXMoveConstructor: {
      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
      if (!CD->isInvalidDecl())
        DefineImplicitMoveConstructor(DefaultLoc, CD);
      break;
    }

    case CXXMoveAssignment: {
      if (!MD->isInvalidDecl())
        DefineImplicitMoveAssignment(DefaultLoc, MD);
      break;
    }

    case CXXInvalid:
      llvm_unreachable("Invalid special member.");
    }
  } else {
    Diag(DefaultLoc, diag::err_default_special_members);
  }
}

static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
  for (Stmt::child_range CI = S->children(); CI; ++CI) {
    Stmt *SubStmt = *CI;
    if (!SubStmt)
      continue;
    if (isa<ReturnStmt>(SubStmt))
      Self.Diag(SubStmt->getLocStart(),
           diag::err_return_in_constructor_handler);
    if (!isa<Expr>(SubStmt))
      SearchForReturnInStmt(Self, SubStmt);
  }
}

void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
    CXXCatchStmt *Handler = TryBlock->getHandler(I);
    SearchForReturnInStmt(*this, Handler);
  }
}

bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
                                             const CXXMethodDecl *Old) {
  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();

  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();

  // If the calling conventions match, everything is fine
  if (NewCC == OldCC)
    return false;

  // If either of the calling conventions are set to "default", we need to pick
  // something more sensible based on the target. This supports code where the
  // one method explicitly sets thiscall, and another has no explicit calling
  // convention.
  CallingConv Default = 
    Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
  if (NewCC == CC_Default)
    NewCC = Default;
  if (OldCC == CC_Default)
    OldCC = Default;

  // If the calling conventions still don't match, then report the error
  if (NewCC != OldCC) {
    Diag(New->getLocation(),
         diag::err_conflicting_overriding_cc_attributes)
      << New->getDeclName() << New->getType() << Old->getType();
    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
    return true;
  }

  return false;
}

bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
                                             const CXXMethodDecl *Old) {
  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();

  if (Context.hasSameType(NewTy, OldTy) ||
      NewTy->isDependentType() || OldTy->isDependentType())
    return false;

  // Check if the return types are covariant
  QualType NewClassTy, OldClassTy;

  /// Both types must be pointers or references to classes.
  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
      NewClassTy = NewPT->getPointeeType();
      OldClassTy = OldPT->getPointeeType();
    }
  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
        NewClassTy = NewRT->getPointeeType();
        OldClassTy = OldRT->getPointeeType();
      }
    }
  }

  // The return types aren't either both pointers or references to a class type.
  if (NewClassTy.isNull()) {
    Diag(New->getLocation(),
         diag::err_different_return_type_for_overriding_virtual_function)
      << New->getDeclName() << NewTy << OldTy;
    Diag(Old->getLocation(), diag::note_overridden_virtual_function);

    return true;
  }

  // C++ [class.virtual]p6:
  //   If the return type of D::f differs from the return type of B::f, the 
  //   class type in the return type of D::f shall be complete at the point of
  //   declaration of D::f or shall be the class type D.
  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
    if (!RT->isBeingDefined() &&
        RequireCompleteType(New->getLocation(), NewClassTy, 
                            diag::err_covariant_return_incomplete,
                            New->getDeclName()))
    return true;
  }

  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
    // Check if the new class derives from the old class.
    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
      Diag(New->getLocation(),
           diag::err_covariant_return_not_derived)
      << New->getDeclName() << NewTy << OldTy;
      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
      return true;
    }

    // Check if we the conversion from derived to base is valid.
    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
                    diag::err_covariant_return_inaccessible_base,
                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
                    // FIXME: Should this point to the return type?
                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
      // FIXME: this note won't trigger for delayed access control
      // diagnostics, and it's impossible to get an undelayed error
      // here from access control during the original parse because
      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
      return true;
    }
  }

  // The qualifiers of the return types must be the same.
  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
    Diag(New->getLocation(),
         diag::err_covariant_return_type_different_qualifications)
    << New->getDeclName() << NewTy << OldTy;
    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
    return true;
  };


  // The new class type must have the same or less qualifiers as the old type.
  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
    Diag(New->getLocation(),
         diag::err_covariant_return_type_class_type_more_qualified)
    << New->getDeclName() << NewTy << OldTy;
    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
    return true;
  };

  return false;
}

/// \brief Mark the given method pure.
///
/// \param Method the method to be marked pure.
///
/// \param InitRange the source range that covers the "0" initializer.
bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
  SourceLocation EndLoc = InitRange.getEnd();
  if (EndLoc.isValid())
    Method->setRangeEnd(EndLoc);

  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
    Method->setPure();
    return false;
  }

  if (!Method->isInvalidDecl())
    Diag(Method->getLocation(), diag::err_non_virtual_pure)
      << Method->getDeclName() << InitRange;
  return true;
}

/// \brief Determine whether the given declaration is a static data member.
static bool isStaticDataMember(Decl *D) {
  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
  if (!Var)
    return false;
  
  return Var->isStaticDataMember();
}
/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
/// an initializer for the out-of-line declaration 'Dcl'.  The scope
/// is a fresh scope pushed for just this purpose.
///
/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
/// static data member of class X, names should be looked up in the scope of
/// class X.
void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
  // If there is no declaration, there was an error parsing it.
  if (D == 0 || D->isInvalidDecl()) return;

  // We should only get called for declarations with scope specifiers, like:
  //   int foo::bar;
  assert(D->isOutOfLine());
  EnterDeclaratorContext(S, D->getDeclContext());
  
  // If we are parsing the initializer for a static data member, push a
  // new expression evaluation context that is associated with this static
  // data member.
  if (isStaticDataMember(D))
    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
}

/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
/// initializer for the out-of-line declaration 'D'.
void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
  // If there is no declaration, there was an error parsing it.
  if (D == 0 || D->isInvalidDecl()) return;

  if (isStaticDataMember(D))
    PopExpressionEvaluationContext();  

  assert(D->isOutOfLine());
  ExitDeclaratorContext(S);
}

/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
/// C++ if/switch/while/for statement.
/// e.g: "if (int x = f()) {...}"
DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
  // C++ 6.4p2:
  // The declarator shall not specify a function or an array.
  // The type-specifier-seq shall not contain typedef and shall not declare a
  // new class or enumeration.
  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
         "Parser allowed 'typedef' as storage class of condition decl.");

  Decl *Dcl = ActOnDeclarator(S, D);
  if (!Dcl)
    return true;

  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
      << D.getSourceRange();
    return true;
  }

  return Dcl;
}

void Sema::LoadExternalVTableUses() {
  if (!ExternalSource)
    return;
  
  SmallVector<ExternalVTableUse, 4> VTables;
  ExternalSource->ReadUsedVTables(VTables);
  SmallVector<VTableUse, 4> NewUses;
  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
      = VTablesUsed.find(VTables[I].Record);
    // Even if a definition wasn't required before, it may be required now.
    if (Pos != VTablesUsed.end()) {
      if (!Pos->second && VTables[I].DefinitionRequired)
        Pos->second = true;
      continue;
    }
    
    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
  }
  
  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
}

void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
                          bool DefinitionRequired) {
  // Ignore any vtable uses in unevaluated operands or for classes that do
  // not have a vtable.
  if (!Class->isDynamicClass() || Class->isDependentContext() ||
      CurContext->isDependentContext() || isUnevaluatedContext())
    return;

  // Try to insert this class into the map.
  LoadExternalVTableUses();
  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
  if (!Pos.second) {
    // If we already had an entry, check to see if we are promoting this vtable
    // to required a definition. If so, we need to reappend to the VTableUses
    // list, since we may have already processed the first entry.
    if (DefinitionRequired && !Pos.first->second) {
      Pos.first->second = true;
    } else {
      // Otherwise, we can early exit.
      return;
    }
  }

  // Local classes need to have their virtual members marked
  // immediately. For all other classes, we mark their virtual members
  // at the end of the translation unit.
  if (Class->isLocalClass())
    MarkVirtualMembersReferenced(Loc, Class);
  else
    VTableUses.push_back(std::make_pair(Class, Loc));
}

bool Sema::DefineUsedVTables() {
  LoadExternalVTableUses();
  if (VTableUses.empty())
    return false;

  // Note: The VTableUses vector could grow as a result of marking
  // the members of a class as "used", so we check the size each
  // time through the loop and prefer indices (which are stable) to
  // iterators (which are not).
  bool DefinedAnything = false;
  for (unsigned I = 0; I != VTableUses.size(); ++I) {
    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
    if (!Class)
      continue;

    SourceLocation Loc = VTableUses[I].second;

    bool DefineVTable = true;

    // If this class has a key function, but that key function is
    // defined in another translation unit, we don't need to emit the
    // vtable even though we're using it.
    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
    if (KeyFunction && !KeyFunction->hasBody()) {
      switch (KeyFunction->getTemplateSpecializationKind()) {
      case TSK_Undeclared:
      case TSK_ExplicitSpecialization:
      case TSK_ExplicitInstantiationDeclaration:
        // The key function is in another translation unit.
        DefineVTable = false;
        break;

      case TSK_ExplicitInstantiationDefinition:
      case TSK_ImplicitInstantiation:
        // We will be instantiating the key function.
        break;
      }
    } else if (!KeyFunction) {
      // If we have a class with no key function that is the subject
      // of an explicit instantiation declaration, suppress the
      // vtable; it will live with the explicit instantiation
      // definition.
      bool IsExplicitInstantiationDeclaration
        = Class->getTemplateSpecializationKind()
                                      == TSK_ExplicitInstantiationDeclaration;
      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
                                 REnd = Class->redecls_end();
           R != REnd; ++R) {
        TemplateSpecializationKind TSK
          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
        if (TSK == TSK_ExplicitInstantiationDeclaration)
          IsExplicitInstantiationDeclaration = true;
        else if (TSK == TSK_ExplicitInstantiationDefinition) {
          IsExplicitInstantiationDeclaration = false;
          break;
        }
      }

      if (IsExplicitInstantiationDeclaration)
        DefineVTable = false;
    }

    // The exception specifications for all virtual members may be needed even
    // if we are not providing an authoritative form of the vtable in this TU.
    // We may choose to emit it available_externally anyway.
    if (!DefineVTable) {
      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
      continue;
    }

    // Mark all of the virtual members of this class as referenced, so
    // that we can build a vtable. Then, tell the AST consumer that a
    // vtable for this class is required.
    DefinedAnything = true;
    MarkVirtualMembersReferenced(Loc, Class);
    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);

    // Optionally warn if we're emitting a weak vtable.
    if (Class->hasExternalLinkage() &&
        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
      const FunctionDecl *KeyFunctionDef = 0;
      if (!KeyFunction || 
          (KeyFunction->hasBody(KeyFunctionDef) && 
           KeyFunctionDef->isInlined()))
        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
             TSK_ExplicitInstantiationDefinition 
             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable) 
          << Class;
    }
  }
  VTableUses.clear();

  return DefinedAnything;
}

void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
                                                 const CXXRecordDecl *RD) {
  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
                                      E = RD->method_end(); I != E; ++I)
    if ((*I)->isVirtual() && !(*I)->isPure())
      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
}

void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
                                        const CXXRecordDecl *RD) {
  // Mark all functions which will appear in RD's vtable as used.
  CXXFinalOverriderMap FinalOverriders;
  RD->getFinalOverriders(FinalOverriders);
  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
                                            E = FinalOverriders.end();
       I != E; ++I) {
    for (OverridingMethods::const_iterator OI = I->second.begin(),
                                           OE = I->second.end();
         OI != OE; ++OI) {
      assert(OI->second.size() > 0 && "no final overrider");
      CXXMethodDecl *Overrider = OI->second.front().Method;

      // C++ [basic.def.odr]p2:
      //   [...] A virtual member function is used if it is not pure. [...]
      if (!Overrider->isPure())
        MarkFunctionReferenced(Loc, Overrider);
    }
  }

  // Only classes that have virtual bases need a VTT.
  if (RD->getNumVBases() == 0)
    return;

  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
           e = RD->bases_end(); i != e; ++i) {
    const CXXRecordDecl *Base =
        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
    if (Base->getNumVBases() == 0)
      continue;
    MarkVirtualMembersReferenced(Loc, Base);
  }
}

/// SetIvarInitializers - This routine builds initialization ASTs for the
/// Objective-C implementation whose ivars need be initialized.
void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
  if (!getLangOpts().CPlusPlus)
    return;
  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
    SmallVector<ObjCIvarDecl*, 8> ivars;
    CollectIvarsToConstructOrDestruct(OID, ivars);
    if (ivars.empty())
      return;
    SmallVector<CXXCtorInitializer*, 32> AllToInit;
    for (unsigned i = 0; i < ivars.size(); i++) {
      FieldDecl *Field = ivars[i];
      if (Field->isInvalidDecl())
        continue;
      
      CXXCtorInitializer *Member;
      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
      InitializationKind InitKind = 
        InitializationKind::CreateDefault(ObjCImplementation->getLocation());

      InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
      ExprResult MemberInit =
        InitSeq.Perform(*this, InitEntity, InitKind, None);
      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
      // Note, MemberInit could actually come back empty if no initialization 
      // is required (e.g., because it would call a trivial default constructor)
      if (!MemberInit.get() || MemberInit.isInvalid())
        continue;

      Member =
        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
                                         SourceLocation(),
                                         MemberInit.takeAs<Expr>(),
                                         SourceLocation());
      AllToInit.push_back(Member);
      
      // Be sure that the destructor is accessible and is marked as referenced.
      if (const RecordType *RecordTy
                  = Context.getBaseElementType(Field->getType())
                                                        ->getAs<RecordType>()) {
                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
          MarkFunctionReferenced(Field->getLocation(), Destructor);
          CheckDestructorAccess(Field->getLocation(), Destructor,
                            PDiag(diag::err_access_dtor_ivar)
                              << Context.getBaseElementType(Field->getType()));
        }
      }      
    }
    ObjCImplementation->setIvarInitializers(Context, 
                                            AllToInit.data(), AllToInit.size());
  }
}

static
void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
                           Sema &S) {
  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
                                                   CE = Current.end();
  if (Ctor->isInvalidDecl())
    return;

  CXXConstructorDecl *Target = Ctor->getTargetConstructor();

  // Target may not be determinable yet, for instance if this is a dependent
  // call in an uninstantiated template.
  if (Target) {
    const FunctionDecl *FNTarget = 0;
    (void)Target->hasBody(FNTarget);
    Target = const_cast<CXXConstructorDecl*>(
      cast_or_null<CXXConstructorDecl>(FNTarget));
  }

  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
                     // Avoid dereferencing a null pointer here.
                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;

  if (!Current.insert(Canonical))
    return;

  // We know that beyond here, we aren't chaining into a cycle.
  if (!Target || !Target->isDelegatingConstructor() ||
      Target->isInvalidDecl() || Valid.count(TCanonical)) {
    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
      Valid.insert(*CI);
    Current.clear();
  // We've hit a cycle.
  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
             Current.count(TCanonical)) {
    // If we haven't diagnosed this cycle yet, do so now.
    if (!Invalid.count(TCanonical)) {
      S.Diag((*Ctor->init_begin())->getSourceLocation(),
             diag::warn_delegating_ctor_cycle)
        << Ctor;

      // Don't add a note for a function delegating directly to itself.
      if (TCanonical != Canonical)
        S.Diag(Target->getLocation(), diag::note_it_delegates_to);

      CXXConstructorDecl *C = Target;
      while (C->getCanonicalDecl() != Canonical) {
        const FunctionDecl *FNTarget = 0;
        (void)C->getTargetConstructor()->hasBody(FNTarget);
        assert(FNTarget && "Ctor cycle through bodiless function");

        C = const_cast<CXXConstructorDecl*>(
          cast<CXXConstructorDecl>(FNTarget));
        S.Diag(C->getLocation(), diag::note_which_delegates_to);
      }
    }

    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
      Invalid.insert(*CI);
    Current.clear();
  } else {
    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
  }
}
   

void Sema::CheckDelegatingCtorCycles() {
  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;

  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
                                                   CE = Current.end();

  for (DelegatingCtorDeclsType::iterator
         I = DelegatingCtorDecls.begin(ExternalSource),
         E = DelegatingCtorDecls.end();
       I != E; ++I)
    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);

  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
    (*CI)->setInvalidDecl();
}

namespace {
  /// \brief AST visitor that finds references to the 'this' expression.
  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
    Sema &S;
    
  public:
    explicit FindCXXThisExpr(Sema &S) : S(S) { }
    
    bool VisitCXXThisExpr(CXXThisExpr *E) {
      S.Diag(E->getLocation(), diag::err_this_static_member_func)
        << E->isImplicit();
      return false;
    }
  };
}

bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
  if (!TSInfo)
    return false;
  
  TypeLoc TL = TSInfo->getTypeLoc();
  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
  if (!ProtoTL)
    return false;
  
  // C++11 [expr.prim.general]p3:
  //   [The expression this] shall not appear before the optional 
  //   cv-qualifier-seq and it shall not appear within the declaration of a 
  //   static member function (although its type and value category are defined
  //   within a static member function as they are within a non-static member
  //   function). [ Note: this is because declaration matching does not occur
  //  until the complete declarator is known. - end note ]
  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
  FindCXXThisExpr Finder(*this);
  
  // If the return type came after the cv-qualifier-seq, check it now.
  if (Proto->hasTrailingReturn() &&
      !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
    return true;

  // Check the exception specification.
  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
    return true;
  
  return checkThisInStaticMemberFunctionAttributes(Method);
}

bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
  if (!TSInfo)
    return false;
  
  TypeLoc TL = TSInfo->getTypeLoc();
  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
  if (!ProtoTL)
    return false;
  
  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
  FindCXXThisExpr Finder(*this);

  switch (Proto->getExceptionSpecType()) {
  case EST_Uninstantiated:
  case EST_Unevaluated:
  case EST_BasicNoexcept:
  case EST_DynamicNone:
  case EST_MSAny:
  case EST_None:
    break;
    
  case EST_ComputedNoexcept:
    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
      return true;
    
  case EST_Dynamic:
    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
         EEnd = Proto->exception_end();
         E != EEnd; ++E) {
      if (!Finder.TraverseType(*E))
        return true;
    }
    break;
  }

  return false;
}

bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
  FindCXXThisExpr Finder(*this);

  // Check attributes.
  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
       A != AEnd; ++A) {
    // FIXME: This should be emitted by tblgen.
    Expr *Arg = 0;
    ArrayRef<Expr *> Args;
    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
      Arg = G->getArg();
    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
      Arg = G->getArg();
    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
    else if (ExclusiveLockFunctionAttr *ELF 
               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
    else if (SharedLockFunctionAttr *SLF 
               = dyn_cast<SharedLockFunctionAttr>(*A))
      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
    else if (ExclusiveTrylockFunctionAttr *ETLF
               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
      Arg = ETLF->getSuccessValue();
      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
    } else if (SharedTrylockFunctionAttr *STLF
                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
      Arg = STLF->getSuccessValue();
      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
      Arg = LR->getArg();
    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
    else if (ExclusiveLocksRequiredAttr *ELR 
               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
    else if (SharedLocksRequiredAttr *SLR 
               = dyn_cast<SharedLocksRequiredAttr>(*A))
      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());

    if (Arg && !Finder.TraverseStmt(Arg))
      return true;
    
    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
      if (!Finder.TraverseStmt(Args[I]))
        return true;
    }
  }
  
  return false;
}

void
Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
                                  ArrayRef<ParsedType> DynamicExceptions,
                                  ArrayRef<SourceRange> DynamicExceptionRanges,
                                  Expr *NoexceptExpr,
                                  SmallVectorImpl<QualType> &Exceptions,
                                  FunctionProtoType::ExtProtoInfo &EPI) {
  Exceptions.clear();
  EPI.ExceptionSpecType = EST;
  if (EST == EST_Dynamic) {
    Exceptions.reserve(DynamicExceptions.size());
    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
      // FIXME: Preserve type source info.
      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);

      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
      collectUnexpandedParameterPacks(ET, Unexpanded);
      if (!Unexpanded.empty()) {
        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
                                         UPPC_ExceptionType,
                                         Unexpanded);
        continue;
      }

      // Check that the type is valid for an exception spec, and
      // drop it if not.
      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
        Exceptions.push_back(ET);
    }
    EPI.NumExceptions = Exceptions.size();
    EPI.Exceptions = Exceptions.data();
    return;
  }
  
  if (EST == EST_ComputedNoexcept) {
    // If an error occurred, there's no expression here.
    if (NoexceptExpr) {
      assert((NoexceptExpr->isTypeDependent() ||
              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
              Context.BoolTy) &&
             "Parser should have made sure that the expression is boolean");
      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
        EPI.ExceptionSpecType = EST_BasicNoexcept;
        return;
      }
      
      if (!NoexceptExpr->isValueDependent())
        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
                         diag::err_noexcept_needs_constant_expression,
                         /*AllowFold*/ false).take();
      EPI.NoexceptExpr = NoexceptExpr;
    }
    return;
  }
}

/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
  // Implicitly declared functions (e.g. copy constructors) are
  // __host__ __device__
  if (D->isImplicit())
    return CFT_HostDevice;

  if (D->hasAttr<CUDAGlobalAttr>())
    return CFT_Global;

  if (D->hasAttr<CUDADeviceAttr>()) {
    if (D->hasAttr<CUDAHostAttr>())
      return CFT_HostDevice;
    else
      return CFT_Device;
  }

  return CFT_Host;
}

bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
                           CUDAFunctionTarget CalleeTarget) {
  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
  // Callable from the device only."
  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
    return true;

  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
  // Callable from the host only."
  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
  // Callable from the host only."
  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
    return true;

  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
    return true;

  return false;
}

/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
///
MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
                                       SourceLocation DeclStart,
                                       Declarator &D, Expr *BitWidth,
                                       InClassInitStyle InitStyle,
                                       AccessSpecifier AS,
                                       AttributeList *MSPropertyAttr) {
  IdentifierInfo *II = D.getIdentifier();
  if (!II) {
    Diag(DeclStart, diag::err_anonymous_property);
    return NULL;
  }
  SourceLocation Loc = D.getIdentifierLoc();

  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
  QualType T = TInfo->getType();
  if (getLangOpts().CPlusPlus) {
    CheckExtraCXXDefaultArguments(D);

    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
                                        UPPC_DataMemberType)) {
      D.setInvalidType();
      T = Context.IntTy;
      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
    }
  }

  DiagnoseFunctionSpecifiers(D.getDeclSpec());

  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
         diag::err_invalid_thread)
      << DeclSpec::getSpecifierName(TSCS);

  // Check to see if this name was declared as a member previously
  NamedDecl *PrevDecl = 0;
  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
  LookupName(Previous, S);
  switch (Previous.getResultKind()) {
  case LookupResult::Found:
  case LookupResult::FoundUnresolvedValue:
    PrevDecl = Previous.getAsSingle<NamedDecl>();
    break;

  case LookupResult::FoundOverloaded:
    PrevDecl = Previous.getRepresentativeDecl();
    break;

  case LookupResult::NotFound:
  case LookupResult::NotFoundInCurrentInstantiation:
  case LookupResult::Ambiguous:
    break;
  }

  if (PrevDecl && PrevDecl->isTemplateParameter()) {
    // Maybe we will complain about the shadowed template parameter.
    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
    // Just pretend that we didn't see the previous declaration.
    PrevDecl = 0;
  }

  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
    PrevDecl = 0;

  SourceLocation TSSL = D.getLocStart();
  MSPropertyDecl *NewPD;
  const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
  NewPD = new (Context) MSPropertyDecl(Record, Loc,
                                       II, T, TInfo, TSSL,
                                       Data.GetterId, Data.SetterId);
  ProcessDeclAttributes(TUScope, NewPD, D);
  NewPD->setAccess(AS);

  if (NewPD->isInvalidDecl())
    Record->setInvalidDecl();

  if (D.getDeclSpec().isModulePrivateSpecified())
    NewPD->setModulePrivate();

  if (NewPD->isInvalidDecl() && PrevDecl) {
    // Don't introduce NewFD into scope; there's already something
    // with the same name in the same scope.
  } else if (II) {
    PushOnScopeChains(NewPD, S);
  } else
    Record->addDecl(NewPD);

  return NewPD;
}