aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/CGStmt.cpp
blob: efde3807111fa2cca7d201f6e30d878c347156ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Stmt nodes as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CGDebugInfo.h"
#include "CodeGenModule.h"
#include "CodeGenFunction.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/PrettyStackTrace.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/InlineAsm.h"
#include "llvm/Intrinsics.h"
#include "llvm/Target/TargetData.h"
using namespace clang;
using namespace CodeGen;

//===----------------------------------------------------------------------===//
//                              Statement Emission
//===----------------------------------------------------------------------===//

void CodeGenFunction::EmitStopPoint(const Stmt *S) {
  if (CGDebugInfo *DI = getDebugInfo()) {
    if (isa<DeclStmt>(S))
      DI->setLocation(S->getLocEnd());
    else
      DI->setLocation(S->getLocStart());
    DI->EmitStopPoint(CurFn, Builder);
  }
}

void CodeGenFunction::EmitStmt(const Stmt *S) {
  assert(S && "Null statement?");

  // Check if we can handle this without bothering to generate an
  // insert point or debug info.
  if (EmitSimpleStmt(S))
    return;

  // Check if we are generating unreachable code.
  if (!HaveInsertPoint()) {
    // If so, and the statement doesn't contain a label, then we do not need to
    // generate actual code. This is safe because (1) the current point is
    // unreachable, so we don't need to execute the code, and (2) we've already
    // handled the statements which update internal data structures (like the
    // local variable map) which could be used by subsequent statements.
    if (!ContainsLabel(S)) {
      // Verify that any decl statements were handled as simple, they may be in
      // scope of subsequent reachable statements.
      assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
      return;
    }

    // Otherwise, make a new block to hold the code.
    EnsureInsertPoint();
  }

  // Generate a stoppoint if we are emitting debug info.
  EmitStopPoint(S);

  switch (S->getStmtClass()) {
  default:
    // Must be an expression in a stmt context.  Emit the value (to get
    // side-effects) and ignore the result.
    if (!isa<Expr>(S))
      ErrorUnsupported(S, "statement");

    EmitAnyExpr(cast<Expr>(S), 0, false, true);

    // Expression emitters don't handle unreachable blocks yet, so look for one
    // explicitly here. This handles the common case of a call to a noreturn
    // function.
    // We can't erase blocks with an associated cleanup size here since the
    // memory might be reused, leaving the old cleanup info pointing at a new
    // block.
    if (llvm::BasicBlock *CurBB = Builder.GetInsertBlock()) {
      if (CurBB->empty() && CurBB->use_empty() && !BlockScopes.count(CurBB)) {
        CurBB->eraseFromParent();
        Builder.ClearInsertionPoint();
      }
    }
    break;
  case Stmt::IndirectGotoStmtClass:
    EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;

  case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
  case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
  case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
  case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;

  case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;

  case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
  case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;

  case Stmt::ObjCAtTryStmtClass:
    EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
    break;
  case Stmt::ObjCAtCatchStmtClass:
    assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt");
    break;
  case Stmt::ObjCAtFinallyStmtClass:
    assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt");
    break;
  case Stmt::ObjCAtThrowStmtClass:
    EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
    break;
  case Stmt::ObjCAtSynchronizedStmtClass:
    EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
    break;
  case Stmt::ObjCForCollectionStmtClass:
    EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
    break;
      
  case Stmt::CXXTryStmtClass:
    EmitCXXTryStmt(cast<CXXTryStmt>(*S));
    break;
  }
}

bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
  switch (S->getStmtClass()) {
  default: return false;
  case Stmt::NullStmtClass: break;
  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
  case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
  case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
  case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
  case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
  case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
  case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
  }

  return true;
}

/// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
/// this captures the expression result of the last sub-statement and returns it
/// (for use by the statement expression extension).
RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
                                         llvm::Value *AggLoc, bool isAggVol) {
  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
                             "LLVM IR generation of compound statement ('{}')");

  CGDebugInfo *DI = getDebugInfo();
  if (DI) {
    DI->setLocation(S.getLBracLoc());
    DI->EmitRegionStart(CurFn, Builder);
  }

  // Keep track of the current cleanup stack depth.
  CleanupScope Scope(*this);

  for (CompoundStmt::const_body_iterator I = S.body_begin(),
       E = S.body_end()-GetLast; I != E; ++I)
    EmitStmt(*I);

  if (DI) {
    DI->setLocation(S.getRBracLoc());
    DI->EmitRegionEnd(CurFn, Builder);
  }

  RValue RV;
  if (!GetLast)
    RV = RValue::get(0);
  else {
    // We have to special case labels here.  They are statements, but when put
    // at the end of a statement expression, they yield the value of their
    // subexpression.  Handle this by walking through all labels we encounter,
    // emitting them before we evaluate the subexpr.
    const Stmt *LastStmt = S.body_back();
    while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
      EmitLabel(*LS);
      LastStmt = LS->getSubStmt();
    }

    EnsureInsertPoint();

    RV = EmitAnyExpr(cast<Expr>(LastStmt), AggLoc);
  }

  return RV;
}

void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());

  // If there is a cleanup stack, then we it isn't worth trying to
  // simplify this block (we would need to remove it from the scope map
  // and cleanup entry).
  if (!CleanupEntries.empty())
    return;

  // Can only simplify direct branches.
  if (!BI || !BI->isUnconditional())
    return;

  BB->replaceAllUsesWith(BI->getSuccessor(0));
  BI->eraseFromParent();
  BB->eraseFromParent();
}

void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();

  // Fall out of the current block (if necessary).
  EmitBranch(BB);

  if (IsFinished && BB->use_empty()) {
    delete BB;
    return;
  }

  // If necessary, associate the block with the cleanup stack size.
  if (!CleanupEntries.empty()) {
    // Check if the basic block has already been inserted.
    BlockScopeMap::iterator I = BlockScopes.find(BB);
    if (I != BlockScopes.end()) {
      assert(I->second == CleanupEntries.size() - 1);
    } else {
      BlockScopes[BB] = CleanupEntries.size() - 1;
      CleanupEntries.back().Blocks.push_back(BB);
    }
  }

  // Place the block after the current block, if possible, or else at
  // the end of the function.
  if (CurBB && CurBB->getParent())
    CurFn->getBasicBlockList().insertAfter(CurBB, BB);
  else
    CurFn->getBasicBlockList().push_back(BB);
  Builder.SetInsertPoint(BB);
}

void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
  // Emit a branch from the current block to the target one if this
  // was a real block.  If this was just a fall-through block after a
  // terminator, don't emit it.
  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();

  if (!CurBB || CurBB->getTerminator()) {
    // If there is no insert point or the previous block is already
    // terminated, don't touch it.
  } else {
    // Otherwise, create a fall-through branch.
    Builder.CreateBr(Target);
  }

  Builder.ClearInsertionPoint();
}

void CodeGenFunction::EmitLabel(const LabelStmt &S) {
  EmitBlock(getBasicBlockForLabel(&S));
}


void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
  EmitLabel(S);
  EmitStmt(S.getSubStmt());
}

void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
  // If this code is reachable then emit a stop point (if generating
  // debug info). We have to do this ourselves because we are on the
  // "simple" statement path.
  if (HaveInsertPoint())
    EmitStopPoint(&S);

  EmitBranchThroughCleanup(getBasicBlockForLabel(S.getLabel()));
}


void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
  // Ensure that we have an i8* for our PHI node.
  llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
                                         llvm::Type::getInt8PtrTy(VMContext),
                                          "addr");
  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
  

  // Get the basic block for the indirect goto.
  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
  
  // The first instruction in the block has to be the PHI for the switch dest,
  // add an entry for this branch.
  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
  
  EmitBranch(IndGotoBB);
}

void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
  // C99 6.8.4.1: The first substatement is executed if the expression compares
  // unequal to 0.  The condition must be a scalar type.
  CleanupScope ConditionScope(*this);

  if (S.getConditionVariable())
    EmitLocalBlockVarDecl(*S.getConditionVariable());

  // If the condition constant folds and can be elided, try to avoid emitting
  // the condition and the dead arm of the if/else.
  if (int Cond = ConstantFoldsToSimpleInteger(S.getCond())) {
    // Figure out which block (then or else) is executed.
    const Stmt *Executed = S.getThen(), *Skipped  = S.getElse();
    if (Cond == -1)  // Condition false?
      std::swap(Executed, Skipped);

    // If the skipped block has no labels in it, just emit the executed block.
    // This avoids emitting dead code and simplifies the CFG substantially.
    if (!ContainsLabel(Skipped)) {
      if (Executed) {
        CleanupScope ExecutedScope(*this);
        EmitStmt(Executed);
      }
      return;
    }
  }

  // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
  // the conditional branch.
  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
  llvm::BasicBlock *ElseBlock = ContBlock;
  if (S.getElse())
    ElseBlock = createBasicBlock("if.else");
  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);

  // Emit the 'then' code.
  EmitBlock(ThenBlock); 
  {
    CleanupScope ThenScope(*this);
    EmitStmt(S.getThen());
  }
  EmitBranch(ContBlock);

  // Emit the 'else' code if present.
  if (const Stmt *Else = S.getElse()) {
    EmitBlock(ElseBlock);
    {
      CleanupScope ElseScope(*this);
      EmitStmt(Else);
    }
    EmitBranch(ContBlock);
  }

  // Emit the continuation block for code after the if.
  EmitBlock(ContBlock, true);
}

void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
  // Emit the header for the loop, insert it, which will create an uncond br to
  // it.
  llvm::BasicBlock *LoopHeader = createBasicBlock("while.cond");
  EmitBlock(LoopHeader);

  // Create an exit block for when the condition fails, create a block for the
  // body of the loop.
  llvm::BasicBlock *ExitBlock = createBasicBlock("while.end");
  llvm::BasicBlock *LoopBody  = createBasicBlock("while.body");
  llvm::BasicBlock *CleanupBlock = 0;
  llvm::BasicBlock *EffectiveExitBlock = ExitBlock;

  // Store the blocks to use for break and continue.
  BreakContinueStack.push_back(BreakContinue(ExitBlock, LoopHeader));

  // C++ [stmt.while]p2:
  //   When the condition of a while statement is a declaration, the
  //   scope of the variable that is declared extends from its point
  //   of declaration (3.3.2) to the end of the while statement.
  //   [...]
  //   The object created in a condition is destroyed and created
  //   with each iteration of the loop.
  CleanupScope ConditionScope(*this);

  if (S.getConditionVariable()) {
    EmitLocalBlockVarDecl(*S.getConditionVariable());

    // If this condition variable requires cleanups, create a basic
    // block to handle those cleanups.
    if (ConditionScope.requiresCleanups()) {
      CleanupBlock = createBasicBlock("while.cleanup");
      EffectiveExitBlock = CleanupBlock;
    }
  }
  
  // Evaluate the conditional in the while header.  C99 6.8.5.1: The
  // evaluation of the controlling expression takes place before each
  // execution of the loop body.
  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
   
  // while(1) is common, avoid extra exit blocks.  Be sure
  // to correctly handle break/continue though.
  bool EmitBoolCondBranch = true;
  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
    if (C->isOne())
      EmitBoolCondBranch = false;

  // As long as the condition is true, go to the loop body.
  if (EmitBoolCondBranch)
    Builder.CreateCondBr(BoolCondVal, LoopBody, EffectiveExitBlock);
 
  // Emit the loop body.
  {
    CleanupScope BodyScope(*this);
    EmitBlock(LoopBody);
    EmitStmt(S.getBody());
  }

  BreakContinueStack.pop_back();

  if (CleanupBlock) {
    // If we have a cleanup block, jump there to perform cleanups
    // before looping.
    EmitBranch(CleanupBlock);

    // Emit the cleanup block, performing cleanups for the condition
    // and then jumping to either the loop header or the exit block.
    EmitBlock(CleanupBlock);
    ConditionScope.ForceCleanup();
    Builder.CreateCondBr(BoolCondVal, LoopHeader, ExitBlock);
  } else {
    // Cycle to the condition.
    EmitBranch(LoopHeader);
  }

  // Emit the exit block.
  EmitBlock(ExitBlock, true);


  // The LoopHeader typically is just a branch if we skipped emitting
  // a branch, try to erase it.
  if (!EmitBoolCondBranch && !CleanupBlock)
    SimplifyForwardingBlocks(LoopHeader);
}

void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
  // Emit the body for the loop, insert it, which will create an uncond br to
  // it.
  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
  llvm::BasicBlock *AfterDo = createBasicBlock("do.end");
  EmitBlock(LoopBody);

  llvm::BasicBlock *DoCond = createBasicBlock("do.cond");

  // Store the blocks to use for break and continue.
  BreakContinueStack.push_back(BreakContinue(AfterDo, DoCond));

  // Emit the body of the loop into the block.
  EmitStmt(S.getBody());

  BreakContinueStack.pop_back();

  EmitBlock(DoCond);

  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
  // after each execution of the loop body."

  // Evaluate the conditional in the while header.
  // C99 6.8.5p2/p4: The first substatement is executed if the expression
  // compares unequal to 0.  The condition must be a scalar type.
  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());

  // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
  // to correctly handle break/continue though.
  bool EmitBoolCondBranch = true;
  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
    if (C->isZero())
      EmitBoolCondBranch = false;

  // As long as the condition is true, iterate the loop.
  if (EmitBoolCondBranch)
    Builder.CreateCondBr(BoolCondVal, LoopBody, AfterDo);

  // Emit the exit block.
  EmitBlock(AfterDo);

  // The DoCond block typically is just a branch if we skipped
  // emitting a branch, try to erase it.
  if (!EmitBoolCondBranch)
    SimplifyForwardingBlocks(DoCond);
}

void CodeGenFunction::EmitForStmt(const ForStmt &S) {
  CleanupScope ForScope(*this);

  // Evaluate the first part before the loop.
  if (S.getInit())
    EmitStmt(S.getInit());

  // Start the loop with a block that tests the condition.
  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
  llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
  llvm::BasicBlock *IncBlock = 0;
  llvm::BasicBlock *CondCleanup = 0;
  llvm::BasicBlock *EffectiveExitBlock = AfterFor;
  EmitBlock(CondBlock);

  // Create a cleanup scope for the condition variable cleanups.
  CleanupScope ConditionScope(*this);
  
  llvm::Value *BoolCondVal = 0;
  if (S.getCond()) {
    // If the for statement has a condition scope, emit the local variable
    // declaration.
    if (S.getConditionVariable()) {
      EmitLocalBlockVarDecl(*S.getConditionVariable());
      
      if (ConditionScope.requiresCleanups()) {
        CondCleanup = createBasicBlock("for.cond.cleanup");
        EffectiveExitBlock = CondCleanup;
      }
    }
    
    // As long as the condition is true, iterate the loop.
    llvm::BasicBlock *ForBody = createBasicBlock("for.body");

    // C99 6.8.5p2/p4: The first substatement is executed if the expression
    // compares unequal to 0.  The condition must be a scalar type.
    BoolCondVal = EvaluateExprAsBool(S.getCond());
    Builder.CreateCondBr(BoolCondVal, ForBody, EffectiveExitBlock);

    EmitBlock(ForBody);
  } else {
    // Treat it as a non-zero constant.  Don't even create a new block for the
    // body, just fall into it.
  }

  // If the for loop doesn't have an increment we can just use the
  // condition as the continue block.
  llvm::BasicBlock *ContinueBlock;
  if (S.getInc())
    ContinueBlock = IncBlock = createBasicBlock("for.inc");
  else
    ContinueBlock = CondBlock;

  // Store the blocks to use for break and continue.
  BreakContinueStack.push_back(BreakContinue(AfterFor, ContinueBlock));

  // If the condition is true, execute the body of the for stmt.
  CGDebugInfo *DI = getDebugInfo();
  if (DI) {
    DI->setLocation(S.getSourceRange().getBegin());
    DI->EmitRegionStart(CurFn, Builder);
  }

  {
    // Create a separate cleanup scope for the body, in case it is not
    // a compound statement.
    CleanupScope BodyScope(*this);
    EmitStmt(S.getBody());
  }

  // If there is an increment, emit it next.
  if (S.getInc()) {
    EmitBlock(IncBlock);
    EmitStmt(S.getInc());
  }

  BreakContinueStack.pop_back();
  
  // Finally, branch back up to the condition for the next iteration.
  if (CondCleanup) {
    // Branch to the cleanup block.
    EmitBranch(CondCleanup);

    // Emit the cleanup block, which branches back to the loop body or
    // outside of the for statement once it is done.
    EmitBlock(CondCleanup);
    ConditionScope.ForceCleanup();
    Builder.CreateCondBr(BoolCondVal, CondBlock, AfterFor);
  } else
    EmitBranch(CondBlock);
  if (DI) {
    DI->setLocation(S.getSourceRange().getEnd());
    DI->EmitRegionEnd(CurFn, Builder);
  }

  // Emit the fall-through block.
  EmitBlock(AfterFor, true);
}

void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
  if (RV.isScalar()) {
    Builder.CreateStore(RV.getScalarVal(), ReturnValue);
  } else if (RV.isAggregate()) {
    EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
  } else {
    StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
  }
  EmitBranchThroughCleanup(ReturnBlock);
}

/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
/// if the function returns void, or may be missing one if the function returns
/// non-void.  Fun stuff :).
void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
  // Emit the result value, even if unused, to evalute the side effects.
  const Expr *RV = S.getRetValue();

  // FIXME: Clean this up by using an LValue for ReturnTemp,
  // EmitStoreThroughLValue, and EmitAnyExpr.
  if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
      !Target.useGlobalsForAutomaticVariables()) {
    // Apply the named return value optimization for this return statement,
    // which means doing nothing: the appropriate result has already been
    // constructed into the NRVO variable.
    
    // If there is an NRVO flag for this variable, set it to 1 into indicate
    // that the cleanup code should not destroy the variable.
    if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) {
      const llvm::Type *BoolTy = llvm::Type::getInt1Ty(VMContext);
      llvm::Value *One = llvm::ConstantInt::get(BoolTy, 1);
      Builder.CreateStore(One, NRVOFlag);
    }
  } else if (!ReturnValue) {
    // Make sure not to return anything, but evaluate the expression
    // for side effects.
    if (RV)
      EmitAnyExpr(RV);
  } else if (RV == 0) {
    // Do nothing (return value is left uninitialized)
  } else if (FnRetTy->isReferenceType()) {
    // If this function returns a reference, take the address of the expression
    // rather than the value.
    RValue Result = EmitReferenceBindingToExpr(RV, false);
    Builder.CreateStore(Result.getScalarVal(), ReturnValue);
  } else if (!hasAggregateLLVMType(RV->getType())) {
    Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
  } else if (RV->getType()->isAnyComplexType()) {
    EmitComplexExprIntoAddr(RV, ReturnValue, false);
  } else {
    EmitAggExpr(RV, ReturnValue, false);
  }

  EmitBranchThroughCleanup(ReturnBlock);
}

void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
  // As long as debug info is modeled with instructions, we have to ensure we
  // have a place to insert here and write the stop point here.
  if (getDebugInfo()) {
    EnsureInsertPoint();
    EmitStopPoint(&S);
  }

  for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
       I != E; ++I)
    EmitDecl(**I);
}

void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");

  // If this code is reachable then emit a stop point (if generating
  // debug info). We have to do this ourselves because we are on the
  // "simple" statement path.
  if (HaveInsertPoint())
    EmitStopPoint(&S);

  llvm::BasicBlock *Block = BreakContinueStack.back().BreakBlock;
  EmitBranchThroughCleanup(Block);
}

void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");

  // If this code is reachable then emit a stop point (if generating
  // debug info). We have to do this ourselves because we are on the
  // "simple" statement path.
  if (HaveInsertPoint())
    EmitStopPoint(&S);

  llvm::BasicBlock *Block = BreakContinueStack.back().ContinueBlock;
  EmitBranchThroughCleanup(Block);
}

/// EmitCaseStmtRange - If case statement range is not too big then
/// add multiple cases to switch instruction, one for each value within
/// the range. If range is too big then emit "if" condition check.
void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
  assert(S.getRHS() && "Expected RHS value in CaseStmt");

  llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext());
  llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext());

  // Emit the code for this case. We do this first to make sure it is
  // properly chained from our predecessor before generating the
  // switch machinery to enter this block.
  EmitBlock(createBasicBlock("sw.bb"));
  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
  EmitStmt(S.getSubStmt());

  // If range is empty, do nothing.
  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
    return;

  llvm::APInt Range = RHS - LHS;
  // FIXME: parameters such as this should not be hardcoded.
  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
    // Range is small enough to add multiple switch instruction cases.
    for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
      SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, LHS), CaseDest);
      LHS++;
    }
    return;
  }

  // The range is too big. Emit "if" condition into a new block,
  // making sure to save and restore the current insertion point.
  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();

  // Push this test onto the chain of range checks (which terminates
  // in the default basic block). The switch's default will be changed
  // to the top of this chain after switch emission is complete.
  llvm::BasicBlock *FalseDest = CaseRangeBlock;
  CaseRangeBlock = createBasicBlock("sw.caserange");

  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
  Builder.SetInsertPoint(CaseRangeBlock);

  // Emit range check.
  llvm::Value *Diff =
    Builder.CreateSub(SwitchInsn->getCondition(),
                      llvm::ConstantInt::get(VMContext, LHS),  "tmp");
  llvm::Value *Cond =
    Builder.CreateICmpULE(Diff,
                          llvm::ConstantInt::get(VMContext, Range), "tmp");
  Builder.CreateCondBr(Cond, CaseDest, FalseDest);

  // Restore the appropriate insertion point.
  if (RestoreBB)
    Builder.SetInsertPoint(RestoreBB);
  else
    Builder.ClearInsertionPoint();
}

void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
  if (S.getRHS()) {
    EmitCaseStmtRange(S);
    return;
  }

  EmitBlock(createBasicBlock("sw.bb"));
  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
  llvm::APSInt CaseVal = S.getLHS()->EvaluateAsInt(getContext());
  SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest);

  // Recursively emitting the statement is acceptable, but is not wonderful for
  // code where we have many case statements nested together, i.e.:
  //  case 1:
  //    case 2:
  //      case 3: etc.
  // Handling this recursively will create a new block for each case statement
  // that falls through to the next case which is IR intensive.  It also causes
  // deep recursion which can run into stack depth limitations.  Handle
  // sequential non-range case statements specially.
  const CaseStmt *CurCase = &S;
  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());

  // Otherwise, iteratively add consequtive cases to this switch stmt.
  while (NextCase && NextCase->getRHS() == 0) {
    CurCase = NextCase;
    CaseVal = CurCase->getLHS()->EvaluateAsInt(getContext());
    SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest);

    NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
  }

  // Normal default recursion for non-cases.
  EmitStmt(CurCase->getSubStmt());
}

void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
  assert(DefaultBlock->empty() &&
         "EmitDefaultStmt: Default block already defined?");
  EmitBlock(DefaultBlock);
  EmitStmt(S.getSubStmt());
}

void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
  CleanupScope ConditionScope(*this);

  if (S.getConditionVariable())
    EmitLocalBlockVarDecl(*S.getConditionVariable());

  llvm::Value *CondV = EmitScalarExpr(S.getCond());

  // Handle nested switch statements.
  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;

  // Create basic block to hold stuff that comes after switch
  // statement. We also need to create a default block now so that
  // explicit case ranges tests can have a place to jump to on
  // failure.
  llvm::BasicBlock *NextBlock = createBasicBlock("sw.epilog");
  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
  CaseRangeBlock = DefaultBlock;

  // Clear the insertion point to indicate we are in unreachable code.
  Builder.ClearInsertionPoint();

  // All break statements jump to NextBlock. If BreakContinueStack is non empty
  // then reuse last ContinueBlock.
  llvm::BasicBlock *ContinueBlock = 0;
  if (!BreakContinueStack.empty())
    ContinueBlock = BreakContinueStack.back().ContinueBlock;

  // Ensure any vlas created between there and here, are undone
  BreakContinueStack.push_back(BreakContinue(NextBlock, ContinueBlock));

  // Emit switch body.
  EmitStmt(S.getBody());

  BreakContinueStack.pop_back();

  // Update the default block in case explicit case range tests have
  // been chained on top.
  SwitchInsn->setSuccessor(0, CaseRangeBlock);

  // If a default was never emitted then reroute any jumps to it and
  // discard.
  if (!DefaultBlock->getParent()) {
    DefaultBlock->replaceAllUsesWith(NextBlock);
    delete DefaultBlock;
  }

  // Emit continuation.
  EmitBlock(NextBlock, true);

  SwitchInsn = SavedSwitchInsn;
  CaseRangeBlock = SavedCRBlock;
}

static std::string
SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
                 llvm::SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
  std::string Result;

  while (*Constraint) {
    switch (*Constraint) {
    default:
      Result += Target.convertConstraint(*Constraint);
      break;
    // Ignore these
    case '*':
    case '?':
    case '!':
      break;
    case 'g':
      Result += "imr";
      break;
    case '[': {
      assert(OutCons &&
             "Must pass output names to constraints with a symbolic name");
      unsigned Index;
      bool result = Target.resolveSymbolicName(Constraint,
                                               &(*OutCons)[0],
                                               OutCons->size(), Index);
      assert(result && "Could not resolve symbolic name"); result=result;
      Result += llvm::utostr(Index);
      break;
    }
    }

    Constraint++;
  }

  return Result;
}

llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
                                         const TargetInfo::ConstraintInfo &Info,
                                           const Expr *InputExpr,
                                           std::string &ConstraintStr) {
  llvm::Value *Arg;
  if (Info.allowsRegister() || !Info.allowsMemory()) {
    if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType())) {
      Arg = EmitScalarExpr(InputExpr);
    } else {
      InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
      LValue Dest = EmitLValue(InputExpr);

      const llvm::Type *Ty = ConvertType(InputExpr->getType());
      uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
      if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
        Ty = llvm::IntegerType::get(VMContext, Size);
        Ty = llvm::PointerType::getUnqual(Ty);

        Arg = Builder.CreateLoad(Builder.CreateBitCast(Dest.getAddress(), Ty));
      } else {
        Arg = Dest.getAddress();
        ConstraintStr += '*';
      }
    }
  } else {
    InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
    LValue Dest = EmitLValue(InputExpr);
    Arg = Dest.getAddress();
    ConstraintStr += '*';
  }

  return Arg;
}

void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
  // Analyze the asm string to decompose it into its pieces.  We know that Sema
  // has already done this, so it is guaranteed to be successful.
  llvm::SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
  unsigned DiagOffs;
  S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);

  // Assemble the pieces into the final asm string.
  std::string AsmString;
  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
    if (Pieces[i].isString())
      AsmString += Pieces[i].getString();
    else if (Pieces[i].getModifier() == '\0')
      AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
    else
      AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
                   Pieces[i].getModifier() + '}';
  }

  // Get all the output and input constraints together.
  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;

  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
    TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
                                    S.getOutputName(i));
    bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
    assert(IsValid && "Failed to parse output constraint"); 
    OutputConstraintInfos.push_back(Info);
  }

  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
    TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
                                    S.getInputName(i));
    bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
                                                  S.getNumOutputs(), Info);
    assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
    InputConstraintInfos.push_back(Info);
  }

  std::string Constraints;

  std::vector<LValue> ResultRegDests;
  std::vector<QualType> ResultRegQualTys;
  std::vector<const llvm::Type *> ResultRegTypes;
  std::vector<const llvm::Type *> ResultTruncRegTypes;
  std::vector<const llvm::Type*> ArgTypes;
  std::vector<llvm::Value*> Args;

  // Keep track of inout constraints.
  std::string InOutConstraints;
  std::vector<llvm::Value*> InOutArgs;
  std::vector<const llvm::Type*> InOutArgTypes;

  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];

    // Simplify the output constraint.
    std::string OutputConstraint(S.getOutputConstraint(i));
    OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);

    const Expr *OutExpr = S.getOutputExpr(i);
    OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());

    LValue Dest = EmitLValue(OutExpr);
    if (!Constraints.empty())
      Constraints += ',';

    // If this is a register output, then make the inline asm return it
    // by-value.  If this is a memory result, return the value by-reference.
    if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
      Constraints += "=" + OutputConstraint;
      ResultRegQualTys.push_back(OutExpr->getType());
      ResultRegDests.push_back(Dest);
      ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
      ResultTruncRegTypes.push_back(ResultRegTypes.back());

      // If this output is tied to an input, and if the input is larger, then
      // we need to set the actual result type of the inline asm node to be the
      // same as the input type.
      if (Info.hasMatchingInput()) {
        unsigned InputNo;
        for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
          TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
          if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
            break;
        }
        assert(InputNo != S.getNumInputs() && "Didn't find matching input!");

        QualType InputTy = S.getInputExpr(InputNo)->getType();
        QualType OutputType = OutExpr->getType();

        uint64_t InputSize = getContext().getTypeSize(InputTy);
        if (getContext().getTypeSize(OutputType) < InputSize) {
          // Form the asm to return the value as a larger integer or fp type.
          ResultRegTypes.back() = ConvertType(InputTy);
        }
      }
    } else {
      ArgTypes.push_back(Dest.getAddress()->getType());
      Args.push_back(Dest.getAddress());
      Constraints += "=*";
      Constraints += OutputConstraint;
    }

    if (Info.isReadWrite()) {
      InOutConstraints += ',';

      const Expr *InputExpr = S.getOutputExpr(i);
      llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, InOutConstraints);

      if (Info.allowsRegister())
        InOutConstraints += llvm::utostr(i);
      else
        InOutConstraints += OutputConstraint;

      InOutArgTypes.push_back(Arg->getType());
      InOutArgs.push_back(Arg);
    }
  }

  unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();

  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
    const Expr *InputExpr = S.getInputExpr(i);

    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];

    if (!Constraints.empty())
      Constraints += ',';

    // Simplify the input constraint.
    std::string InputConstraint(S.getInputConstraint(i));
    InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
                                         &OutputConstraintInfos);

    llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);

    // If this input argument is tied to a larger output result, extend the
    // input to be the same size as the output.  The LLVM backend wants to see
    // the input and output of a matching constraint be the same size.  Note
    // that GCC does not define what the top bits are here.  We use zext because
    // that is usually cheaper, but LLVM IR should really get an anyext someday.
    if (Info.hasTiedOperand()) {
      unsigned Output = Info.getTiedOperand();
      QualType OutputType = S.getOutputExpr(Output)->getType();
      QualType InputTy = InputExpr->getType();

      if (getContext().getTypeSize(OutputType) >
          getContext().getTypeSize(InputTy)) {
        // Use ptrtoint as appropriate so that we can do our extension.
        if (isa<llvm::PointerType>(Arg->getType()))
          Arg = Builder.CreatePtrToInt(Arg,
                           llvm::IntegerType::get(VMContext, LLVMPointerWidth));
        const llvm::Type *OutputTy = ConvertType(OutputType);
        if (isa<llvm::IntegerType>(OutputTy))
          Arg = Builder.CreateZExt(Arg, OutputTy);
        else
          Arg = Builder.CreateFPExt(Arg, OutputTy);
      }
    }


    ArgTypes.push_back(Arg->getType());
    Args.push_back(Arg);
    Constraints += InputConstraint;
  }

  // Append the "input" part of inout constraints last.
  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
    ArgTypes.push_back(InOutArgTypes[i]);
    Args.push_back(InOutArgs[i]);
  }
  Constraints += InOutConstraints;

  // Clobbers
  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
    llvm::StringRef Clobber = S.getClobber(i)->getString();

    Clobber = Target.getNormalizedGCCRegisterName(Clobber);

    if (i != 0 || NumConstraints != 0)
      Constraints += ',';

    Constraints += "~{";
    Constraints += Clobber;
    Constraints += '}';
  }

  // Add machine specific clobbers
  std::string MachineClobbers = Target.getClobbers();
  if (!MachineClobbers.empty()) {
    if (!Constraints.empty())
      Constraints += ',';
    Constraints += MachineClobbers;
  }

  const llvm::Type *ResultType;
  if (ResultRegTypes.empty())
    ResultType = llvm::Type::getVoidTy(VMContext);
  else if (ResultRegTypes.size() == 1)
    ResultType = ResultRegTypes[0];
  else
    ResultType = llvm::StructType::get(VMContext, ResultRegTypes);

  const llvm::FunctionType *FTy =
    llvm::FunctionType::get(ResultType, ArgTypes, false);

  llvm::InlineAsm *IA =
    llvm::InlineAsm::get(FTy, AsmString, Constraints,
                         S.isVolatile() || S.getNumOutputs() == 0);
  llvm::CallInst *Result = Builder.CreateCall(IA, Args.begin(), Args.end());
  Result->addAttribute(~0, llvm::Attribute::NoUnwind);

  // Slap the source location of the inline asm into a !srcloc metadata on the
  // call.
  unsigned LocID = S.getAsmString()->getLocStart().getRawEncoding();
  llvm::Value *LocIDC =
    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LocID);
  Result->setMetadata("srcloc", llvm::MDNode::get(VMContext, &LocIDC, 1));

  // Extract all of the register value results from the asm.
  std::vector<llvm::Value*> RegResults;
  if (ResultRegTypes.size() == 1) {
    RegResults.push_back(Result);
  } else {
    for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
      llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
      RegResults.push_back(Tmp);
    }
  }

  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
    llvm::Value *Tmp = RegResults[i];

    // If the result type of the LLVM IR asm doesn't match the result type of
    // the expression, do the conversion.
    if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
      const llvm::Type *TruncTy = ResultTruncRegTypes[i];
      
      // Truncate the integer result to the right size, note that TruncTy can be
      // a pointer.
      if (TruncTy->isFloatingPointTy())
        Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
      else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
        uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
        Tmp = Builder.CreateTrunc(Tmp, llvm::IntegerType::get(VMContext,
                                                            (unsigned)ResSize));
        Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
      } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
        uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
        Tmp = Builder.CreatePtrToInt(Tmp, llvm::IntegerType::get(VMContext,
                                                            (unsigned)TmpSize));
        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
      } else if (TruncTy->isIntegerTy()) {
        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
      }
    }

    EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i],
                           ResultRegQualTys[i]);
  }
}