1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These classes wrap the information about a call or function
// definition used to handle ABI compliancy.
//
//===----------------------------------------------------------------------===//
#include "CGCall.h"
#include "CodeGenFunction.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "llvm/ParameterAttributes.h"
using namespace clang;
using namespace CodeGen;
/***/
// FIXME: Use iterator and sidestep silly type array creation.
CGFunctionInfo::CGFunctionInfo(const FunctionDecl *FD)
: TheDecl(FD)
{
const FunctionType *FTy = FD->getType()->getAsFunctionType();
const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(FTy);
ArgTypes.push_back(FTy->getResultType());
if (FTP)
for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
ArgTypes.push_back(FTP->getArgType(i));
}
CGFunctionInfo::CGFunctionInfo(const ObjCMethodDecl *MD,
const ASTContext &Context)
: TheDecl(MD)
{
ArgTypes.push_back(MD->getResultType());
ArgTypes.push_back(MD->getSelfDecl()->getType());
ArgTypes.push_back(Context.getObjCSelType());
for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
e = MD->param_end(); i != e; ++i)
ArgTypes.push_back((*i)->getType());
}
ArgTypeIterator CGFunctionInfo::argtypes_begin() const {
return ArgTypes.begin();
}
ArgTypeIterator CGFunctionInfo::argtypes_end() const {
return ArgTypes.end();
}
/***/
CGCallInfo::CGCallInfo(QualType _ResultType, const CallArgList &_Args) {
ArgTypes.push_back(_ResultType);
for (CallArgList::const_iterator i = _Args.begin(), e = _Args.end(); i!=e; ++i)
ArgTypes.push_back(i->second);
}
ArgTypeIterator CGCallInfo::argtypes_begin() const {
return ArgTypes.begin();
}
ArgTypeIterator CGCallInfo::argtypes_end() const {
return ArgTypes.end();
}
/***/
bool CodeGenFunction::ReturnTypeUsesSret(QualType RetTy) {
return hasAggregateLLVMType(RetTy);
}
void CodeGenFunction::ConstructParamAttrList(const Decl *TargetDecl,
ArgTypeIterator begin,
ArgTypeIterator end,
ParamAttrListType &PAL) {
unsigned FuncAttrs = 0;
if (TargetDecl) {
if (TargetDecl->getAttr<NoThrowAttr>())
FuncAttrs |= llvm::ParamAttr::NoUnwind;
if (TargetDecl->getAttr<NoReturnAttr>())
FuncAttrs |= llvm::ParamAttr::NoReturn;
}
QualType ResTy = *begin;
unsigned Index = 1;
if (CodeGenFunction::hasAggregateLLVMType(ResTy)) {
PAL.push_back(llvm::ParamAttrsWithIndex::get(Index,
llvm::ParamAttr::StructRet));
++Index;
} else if (ResTy->isPromotableIntegerType()) {
if (ResTy->isSignedIntegerType()) {
FuncAttrs |= llvm::ParamAttr::SExt;
} else if (ResTy->isUnsignedIntegerType()) {
FuncAttrs |= llvm::ParamAttr::ZExt;
}
}
if (FuncAttrs)
PAL.push_back(llvm::ParamAttrsWithIndex::get(0, FuncAttrs));
for (++begin; begin != end; ++begin, ++Index) {
QualType ParamType = *begin;
unsigned ParamAttrs = 0;
if (ParamType->isRecordType())
ParamAttrs |= llvm::ParamAttr::ByVal;
if (ParamType->isPromotableIntegerType()) {
if (ParamType->isSignedIntegerType()) {
ParamAttrs |= llvm::ParamAttr::SExt;
} else if (ParamType->isUnsignedIntegerType()) {
ParamAttrs |= llvm::ParamAttr::ZExt;
}
}
if (ParamAttrs)
PAL.push_back(llvm::ParamAttrsWithIndex::get(Index, ParamAttrs));
}
}
void CodeGenFunction::EmitFunctionProlog(llvm::Function *Fn,
QualType RetTy,
const FunctionArgList &Args) {
// Emit allocs for param decls. Give the LLVM Argument nodes names.
llvm::Function::arg_iterator AI = Fn->arg_begin();
// Name the struct return argument.
if (hasAggregateLLVMType(RetTy)) {
AI->setName("agg.result");
++AI;
}
for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
i != e; ++i, ++AI) {
const VarDecl *Arg = i->first;
QualType T = i->second;
assert(AI != Fn->arg_end() && "Argument mismatch!");
llvm::Value* V = AI;
if (!getContext().typesAreCompatible(T, Arg->getType())) {
// This must be a promotion, for something like
// "void a(x) short x; {..."
V = EmitScalarConversion(V, T, Arg->getType());
}
EmitParmDecl(*Arg, V);
}
assert(AI == Fn->arg_end() && "Argument mismatch!");
}
void CodeGenFunction::EmitFunctionEpilog(QualType RetTy,
llvm::Value *ReturnValue) {
if (!ReturnValue) {
Builder.CreateRetVoid();
} else {
if (!hasAggregateLLVMType(RetTy)) {
Builder.CreateRet(Builder.CreateLoad(ReturnValue));
} else if (RetTy->isAnyComplexType()) {
EmitAggregateCopy(CurFn->arg_begin(), ReturnValue, RetTy);
Builder.CreateRetVoid();
} else {
EmitAggregateCopy(CurFn->arg_begin(), ReturnValue, RetTy);
Builder.CreateRetVoid();
}
}
}
RValue CodeGenFunction::EmitCall(llvm::Value *Callee,
QualType ResultType,
const CallArgList &CallArgs) {
// FIXME: Factor out code to load from args into locals into target.
llvm::SmallVector<llvm::Value*, 16> Args;
llvm::Value *TempArg0 = 0;
// Handle struct-return functions by passing a pointer to the
// location that we would like to return into.
if (hasAggregateLLVMType(ResultType)) {
// Create a temporary alloca to hold the result of the call. :(
TempArg0 = CreateTempAlloca(ConvertType(ResultType));
Args.push_back(TempArg0);
}
for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
I != E; ++I) {
RValue RV = I->first;
if (RV.isScalar()) {
Args.push_back(RV.getScalarVal());
} else if (RV.isComplex()) {
// Make a temporary alloca to pass the argument.
Args.push_back(CreateTempAlloca(ConvertType(I->second)));
StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
} else {
Args.push_back(RV.getAggregateAddr());
}
}
llvm::CallInst *CI = Builder.CreateCall(Callee,&Args[0],&Args[0]+Args.size());
CGCallInfo CallInfo(ResultType, CallArgs);
// FIXME: Provide TargetDecl so nounwind, noreturn, etc, etc get set.
CodeGen::ParamAttrListType ParamAttrList;
ConstructParamAttrList(0, CallInfo.argtypes_begin(), CallInfo.argtypes_end(),
ParamAttrList);
CI->setParamAttrs(llvm::PAListPtr::get(ParamAttrList.begin(),
ParamAttrList.size()));
if (const llvm::Function *F = dyn_cast<llvm::Function>(Callee))
CI->setCallingConv(F->getCallingConv());
if (CI->getType() != llvm::Type::VoidTy)
CI->setName("call");
else if (ResultType->isAnyComplexType())
return RValue::getComplex(LoadComplexFromAddr(TempArg0, false));
else if (hasAggregateLLVMType(ResultType))
// Struct return.
return RValue::getAggregate(TempArg0);
else {
// void return.
assert(ResultType->isVoidType() && "Should only have a void expr here");
CI = 0;
}
return RValue::get(CI);
}
|