1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
//===------- MicrosoftCXXABI.cpp - AST support for the Microsoft C++ ABI --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This provides C++ AST support targeting the Microsoft Visual C++
// ABI.
//
//===----------------------------------------------------------------------===//
#include "CXXABI.h"
#include "clang/AST/Attr.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Type.h"
#include "clang/Basic/TargetInfo.h"
using namespace clang;
namespace {
class MicrosoftCXXABI : public CXXABI {
ASTContext &Context;
public:
MicrosoftCXXABI(ASTContext &Ctx) : Context(Ctx) { }
std::pair<uint64_t, unsigned>
getMemberPointerWidthAndAlign(const MemberPointerType *MPT) const;
CallingConv getDefaultMethodCallConv(bool isVariadic) const {
if (!isVariadic &&
Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
return CC_X86ThisCall;
return CC_C;
}
bool isNearlyEmpty(const CXXRecordDecl *RD) const {
// FIXME: Audit the corners
if (!RD->isDynamicClass())
return false;
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
// In the Microsoft ABI, classes can have one or two vtable pointers.
CharUnits PointerSize =
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
return Layout.getNonVirtualSize() == PointerSize ||
Layout.getNonVirtualSize() == PointerSize * 2;
}
};
}
// getNumBases() seems to only give us the number of direct bases, and not the
// total. This function tells us if we inherit from anybody that uses MI, or if
// we have a non-primary base class, which uses the multiple inheritance model.
static bool usesMultipleInheritanceModel(const CXXRecordDecl *RD) {
while (RD->getNumBases() > 0) {
if (RD->getNumBases() > 1)
return true;
assert(RD->getNumBases() == 1);
const CXXRecordDecl *Base =
RD->bases_begin()->getType()->getAsCXXRecordDecl();
if (RD->isPolymorphic() && !Base->isPolymorphic())
return true;
RD = Base;
}
return false;
}
static MSInheritanceModel MSInheritanceAttrToModel(attr::Kind Kind) {
switch (Kind) {
default: llvm_unreachable("expected MS inheritance attribute");
case attr::SingleInheritance: return MSIM_Single;
case attr::MultipleInheritance: return MSIM_Multiple;
case attr::VirtualInheritance: return MSIM_Virtual;
case attr::UnspecifiedInheritance: return MSIM_Unspecified;
}
}
MSInheritanceModel CXXRecordDecl::getMSInheritanceModel() const {
if (Attr *IA = this->getAttr<MSInheritanceAttr>())
return MSInheritanceAttrToModel(IA->getKind());
// If there was no explicit attribute, the record must be defined already, and
// we can figure out the inheritance model from its other properties.
if (this->getNumVBases() > 0)
return MSIM_Virtual;
if (usesMultipleInheritanceModel(this))
return this->isPolymorphic() ? MSIM_MultiplePolymorphic : MSIM_Multiple;
return this->isPolymorphic() ? MSIM_SinglePolymorphic : MSIM_Single;
}
// Returns the number of pointer and integer slots used to represent a member
// pointer in the MS C++ ABI.
//
// Member function pointers have the following general form; however, fields
// are dropped as permitted (under the MSVC interpretation) by the inheritance
// model of the actual class.
//
// struct {
// // A pointer to the member function to call. If the member function is
// // virtual, this will be a thunk that forwards to the appropriate vftable
// // slot.
// void *FunctionPointerOrVirtualThunk;
//
// // An offset to add to the address of the vbtable pointer after (possibly)
// // selecting the virtual base but before resolving and calling the function.
// // Only needed if the class has any virtual bases or bases at a non-zero
// // offset.
// int NonVirtualBaseAdjustment;
//
// // An offset within the vb-table that selects the virtual base containing
// // the member. Loading from this offset produces a new offset that is
// // added to the address of the vb-table pointer to produce the base.
// int VirtualBaseAdjustmentOffset;
//
// // The offset of the vb-table pointer within the object. Only needed for
// // incomplete types.
// int VBPtrOffset;
// };
static std::pair<unsigned, unsigned>
getMSMemberPointerSlots(const MemberPointerType *MPT) {
const CXXRecordDecl *RD = MPT->getClass()->getAsCXXRecordDecl();
MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
unsigned Ptrs;
unsigned Ints = 0;
if (MPT->isMemberFunctionPointer()) {
// Member function pointers are a struct of a function pointer followed by a
// variable number of ints depending on the inheritance model used. The
// function pointer is a real function if it is non-virtual and a vftable
// slot thunk if it is virtual. The ints select the object base passed for
// the 'this' pointer.
Ptrs = 1; // First slot is always a function pointer.
switch (Inheritance) {
case MSIM_Unspecified: ++Ints; // VBTableOffset
case MSIM_Virtual: ++Ints; // VirtualBaseAdjustmentOffset
case MSIM_MultiplePolymorphic:
case MSIM_Multiple: ++Ints; // NonVirtualBaseAdjustment
case MSIM_SinglePolymorphic:
case MSIM_Single: break; // Nothing
}
} else {
// Data pointers are an aggregate of ints. The first int is an offset
// followed by vbtable-related offsets.
Ptrs = 0;
switch (Inheritance) {
case MSIM_Unspecified: ++Ints; // VBTableOffset
case MSIM_Virtual: ++Ints; // VirtualBaseAdjustmentOffset
case MSIM_MultiplePolymorphic:
case MSIM_Multiple: // Nothing
case MSIM_SinglePolymorphic:
case MSIM_Single: ++Ints; // Field offset
}
}
return std::make_pair(Ptrs, Ints);
}
std::pair<uint64_t, unsigned> MicrosoftCXXABI::getMemberPointerWidthAndAlign(
const MemberPointerType *MPT) const {
const TargetInfo &Target = Context.getTargetInfo();
assert(Target.getTriple().getArch() == llvm::Triple::x86 ||
Target.getTriple().getArch() == llvm::Triple::x86_64);
unsigned Ptrs, Ints;
llvm::tie(Ptrs, Ints) = getMSMemberPointerSlots(MPT);
// The nominal struct is laid out with pointers followed by ints and aligned
// to a pointer width if any are present and an int width otherwise.
unsigned PtrSize = Target.getPointerWidth(0);
unsigned IntSize = Target.getIntWidth();
uint64_t Width = Ptrs * PtrSize + Ints * IntSize;
unsigned Align = Ptrs > 0 ? Target.getPointerAlign(0) : Target.getIntAlign();
Width = llvm::RoundUpToAlignment(Width, Align);
return std::make_pair(Width, Align);
}
CXXABI *clang::CreateMicrosoftCXXABI(ASTContext &Ctx) {
return new MicrosoftCXXABI(Ctx);
}
|