aboutsummaryrefslogtreecommitdiff
path: root/CodeGen/CodeGenTypes.cpp
blob: 678733e6faa7da9440f076f56c1176482a812415 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the code that handles AST -> LLVM type lowering. 
//
//===----------------------------------------------------------------------===//

#include "CodeGenTypes.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/AST/AST.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Target/TargetData.h"

using namespace clang;
using namespace CodeGen;

namespace {
  /// RecordOrganizer - This helper class, used by CGRecordLayout, layouts 
  /// structs and unions. It manages transient information used during layout.
  /// FIXME : At the moment assume 
  ///    - one to one mapping between AST FieldDecls and 
  ///      llvm::StructType elements.
  ///    - Ignore bit fields
  ///    - Ignore field aligments
  ///    - Ignore packed structs
  class RecordOrganizer {
  public:
    explicit RecordOrganizer(CodeGenTypes &Types) : 
      CGT(Types), STy(NULL), llvmFieldNo(0), Cursor(0),
      llvmSize(0) {}
    
    /// addField - Add new field.
    void addField(const FieldDecl *FD);

    /// addLLVMField - Add llvm struct field that corresponds to llvm type Ty. 
    /// Increment field count.
    void addLLVMField(const llvm::Type *Ty, bool isPaddingField = false);

    /// addPaddingFields - Current cursor is not suitable place to add next 
    /// field. Add required padding fields.
    void addPaddingFields(unsigned WaterMark);

    /// layoutStructFields - Do the actual work and lay out all fields. Create
    /// corresponding llvm struct type.  This should be invoked only after
    /// all fields are added.
    void layoutStructFields(const ASTRecordLayout &RL);

    /// layoutUnionFields - Do the actual work and lay out all fields. Create
    /// corresponding llvm struct type.  This should be invoked only after
    /// all fields are added.
    void layoutUnionFields();

    /// getLLVMType - Return associated llvm struct type. This may be NULL
    /// if fields are not laid out.
    llvm::Type *getLLVMType() const {
      return STy;
    }

    /// placeBitField - Find a place for FD, which is a bit-field. 
    void placeBitField(const FieldDecl *FD);

    llvm::SmallSet<unsigned, 8> &getPaddingFields() {
      return PaddingFields;
    }

  private:
    CodeGenTypes &CGT;
    llvm::Type *STy;
    unsigned llvmFieldNo;
    uint64_t Cursor; 
    uint64_t llvmSize;
    llvm::SmallVector<const FieldDecl *, 8> FieldDecls;
    std::vector<const llvm::Type*> LLVMFields;
    llvm::SmallVector<uint64_t, 8> Offsets;
    llvm::SmallSet<unsigned, 8> PaddingFields;
  };
}

CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
                           const llvm::TargetData &TD)
  : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD) {
}

CodeGenTypes::~CodeGenTypes() {
  for(llvm::DenseMap<const llvm::Type *, CGRecordLayout *>::iterator
        I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
      I != E; ++I)
    delete I->second;
  CGRecordLayouts.clear();
}

/// isOpaqueTypeDefinition - Return true if LT is a llvm::OpaqueType
/// and T is tag definition. This helper routine does not check
/// relationship between T and LT.
static bool isOpaqueTypeDefinition(QualType T, const llvm::Type *LT) {
  if (const PointerType* PTy = T->getAsPointerType()) {
    return
      isOpaqueTypeDefinition(PTy->getPointeeType(),
                             cast<llvm::PointerType>(LT)->getElementType());
  }
  if (!isa<llvm::OpaqueType>(LT))
    return false;

  const clang::Type &Ty = *T.getCanonicalType();
  if (Ty.getTypeClass() == Type::Tagged) {
    const TagType &TT = cast<TagType>(Ty);
    const TagDecl *TD = TT.getDecl();
    if (TD->isDefinition())
      return true;
  }

  return false;
}

/// ConvertType - Convert the specified type to its LLVM form.
const llvm::Type *CodeGenTypes::ConvertType(QualType T) {
  // See if type is already cached.
  llvm::DenseMap<Type *, llvm::PATypeHolder>::iterator
    I = TypeHolderMap.find(T.getTypePtr());
  // If type is found in map and this is not a definition for a opaque
  // place holder type then use it. Otherwise convert type T.
  if (I != TypeHolderMap.end() && !isOpaqueTypeDefinition(T, I->second.get()))
    return I->second.get();

  const llvm::Type *ResultType = ConvertNewType(T);
  TypeHolderMap.insert(std::make_pair(T.getTypePtr(), 
                                      llvm::PATypeHolder(ResultType)));
  return ResultType;
}

/// ConvertTypeForMem - Convert type T into a llvm::Type. Maintain and use
/// type cache through TypeHolderMap.  This differs from ConvertType in that
/// it is used to convert to the memory representation for a type.  For
/// example, the scalar representation for _Bool is i1, but the memory
/// representation is usually i8 or i32, depending on the target.
const llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
  const llvm::Type *R = ConvertType(T);
  
  // If this is a non-bool type, don't map it.
  if (R != llvm::Type::Int1Ty)
    return R;
    
  // Otherwise, return an integer of the target-specified size.
  unsigned BoolWidth = (unsigned)Context.getTypeSize(T, SourceLocation());
  return llvm::IntegerType::get(BoolWidth);
  
}


const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) {
  const clang::Type &Ty = *T.getCanonicalType();
  
  switch (Ty.getTypeClass()) {
  case Type::TypeName:        // typedef isn't canonical.
  case Type::TypeOfExp:       // typeof isn't canonical.
  case Type::TypeOfTyp:       // typeof isn't canonical.
    assert(0 && "Non-canonical type, shouldn't happen");
  case Type::Builtin: {
    switch (cast<BuiltinType>(Ty).getKind()) {
    case BuiltinType::Void:
      // LLVM void type can only be used as the result of a function call.  Just
      // map to the same as char.
      return llvm::IntegerType::get(8);

    case BuiltinType::Bool:
      // Note that we always return bool as i1 for use as a scalar type.
      return llvm::Type::Int1Ty;
      
    case BuiltinType::Char_S:
    case BuiltinType::Char_U:
    case BuiltinType::SChar:
    case BuiltinType::UChar:
    case BuiltinType::Short:
    case BuiltinType::UShort:
    case BuiltinType::Int:
    case BuiltinType::UInt:
    case BuiltinType::Long:
    case BuiltinType::ULong:
    case BuiltinType::LongLong:
    case BuiltinType::ULongLong:
      return llvm::IntegerType::get(
        static_cast<unsigned>(Context.getTypeSize(T, SourceLocation())));
      
    case BuiltinType::Float:      return llvm::Type::FloatTy;
    case BuiltinType::Double:     return llvm::Type::DoubleTy;
    case BuiltinType::LongDouble:
      // FIXME: mapping long double onto double.
      return llvm::Type::DoubleTy;
    }
    break;
  }
  case Type::Complex: {
    std::vector<const llvm::Type*> Elts;
    Elts.push_back(ConvertType(cast<ComplexType>(Ty).getElementType()));
    Elts.push_back(Elts[0]);
    return llvm::StructType::get(Elts);
  }
  case Type::Pointer: {
    const PointerType &P = cast<PointerType>(Ty);
    QualType ETy = P.getPointeeType();
    return llvm::PointerType::get(ConvertType(ETy), ETy.getAddressSpace()); 
  }
  case Type::Reference: {
    const ReferenceType &R = cast<ReferenceType>(Ty);
    return llvm::PointerType::getUnqual(ConvertType(R.getReferenceeType()));
  }
    
  case Type::VariableArray: {
    const VariableArrayType &A = cast<VariableArrayType>(Ty);
    assert(A.getSizeModifier() == ArrayType::Normal &&
           A.getIndexTypeQualifier() == 0 &&
           "FIXME: We only handle trivial array types so far!");
    if (A.getSizeExpr() == 0) {
      // int X[] -> [0 x int]
      return llvm::ArrayType::get(ConvertType(A.getElementType()), 0);
    } else {
      assert(0 && "FIXME: VLAs not implemented yet!");
    }
  }
  case Type::ConstantArray: {
    const ConstantArrayType &A = cast<ConstantArrayType>(Ty);
    const llvm::Type *EltTy = ConvertType(A.getElementType());
    return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue());
  }
  case Type::OCUVector:
  case Type::Vector: {
    const VectorType &VT = cast<VectorType>(Ty);
    return llvm::VectorType::get(ConvertType(VT.getElementType()),
                                 VT.getNumElements());
  }
  case Type::FunctionNoProto:
  case Type::FunctionProto: {
    const FunctionType &FP = cast<FunctionType>(Ty);
    const llvm::Type *ResultType;
    
    if (FP.getResultType()->isVoidType())
      ResultType = llvm::Type::VoidTy;    // Result of function uses llvm void.
    else
      ResultType = ConvertType(FP.getResultType());
    
    // FIXME: Convert argument types.
    bool isVarArg;
    std::vector<const llvm::Type*> ArgTys;
    
    // Struct return passes the struct byref.
    if (!ResultType->isFirstClassType() && ResultType != llvm::Type::VoidTy) {
      const llvm::Type *RType = llvm::PointerType::get(ResultType, 
                                          FP.getResultType().getAddressSpace());
      QualType RTy = Context.getPointerType(FP.getResultType());
      TypeHolderMap.insert(std::make_pair(RTy.getTypePtr(), 
                                          llvm::PATypeHolder(RType)));
  
      ArgTys.push_back(RType);
      ResultType = llvm::Type::VoidTy;
    }
    
    if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(&FP)) {
      DecodeArgumentTypes(*FTP, ArgTys);
      isVarArg = FTP->isVariadic();
    } else {
      isVarArg = true;
    }
    
    return llvm::FunctionType::get(ResultType, ArgTys, isVarArg);
  }
  
  case Type::ASQual:
    return ConvertType(cast<ASQualType>(Ty).getBaseType());
    break;

  case Type::ObjCInterface:
    assert(0 && "FIXME: add missing functionality here");
    break;
      
  case Type::ObjCQualifiedInterface:
    assert(0 && "FIXME: add missing functionality here");
    break;

  case Type::ObjCQualifiedId:
    assert(0 && "FIXME: add missing functionality here");
    break;

  case Type::Tagged:
    const TagType &TT = cast<TagType>(Ty);
    const TagDecl *TD = TT.getDecl();
    llvm::Type *ResultType = TagDeclTypes[TD];
      
    // If corresponding llvm type is not a opaque struct type
    // then use it.
    if (ResultType && !isOpaqueTypeDefinition(T, ResultType))
      return ResultType;
    
    if (!TD->isDefinition()) {
      ResultType = TagDeclTypes[TD] = llvm::OpaqueType::get();  
    } else if (TD->getKind() == Decl::Enum) {
      return ConvertType(cast<EnumDecl>(TD)->getIntegerType());
    } else if (TD->getKind() == Decl::Struct) {
      const RecordDecl *RD = cast<const RecordDecl>(TD);
      
      // If this is nested record and this RecordDecl is already under
      // process then return associated OpaqueType for now.
      llvm::DenseMap<const RecordDecl *, llvm::Type *>::iterator 
        OpaqueI = RecordTypesToResolve.find(RD);
      if (OpaqueI != RecordTypesToResolve.end())
        return OpaqueI->second;

      llvm::OpaqueType *OpaqueTy = NULL;
      if (ResultType)
        OpaqueTy = dyn_cast<llvm::OpaqueType>(ResultType);
      if (!OpaqueTy) {
        // Create new OpaqueType now for later use.
        // FIXME: This creates a lot of opaque types, most of them are not 
        // needed. Reevaluate this when performance analyis finds tons of 
        // opaque types.
        OpaqueTy = llvm::OpaqueType::get();
        TypeHolderMap.insert(std::make_pair(T.getTypePtr(), 
                                            llvm::PATypeHolder(OpaqueTy)));
      }
      RecordTypesToResolve[RD] = OpaqueTy;

      // Layout fields.
      RecordOrganizer RO(*this);
      for (unsigned i = 0, e = RD->getNumMembers(); i != e; ++i)
        RO.addField(RD->getMember(i));
      const ASTRecordLayout &RL = Context.getASTRecordLayout(RD, 
                                                             SourceLocation());
      RO.layoutStructFields(RL);

      // Get llvm::StructType.
      CGRecordLayout *RLI = new CGRecordLayout(RO.getLLVMType(), 
                                               RO.getPaddingFields());
      ResultType = TagDeclTypes[TD] = RLI->getLLVMType();
      CGRecordLayouts[ResultType] = RLI;

      // Refine any OpaqueType associated with this RecordDecl.
      OpaqueTy->refineAbstractTypeTo(ResultType);
      OpaqueI = RecordTypesToResolve.find(RD);
      assert (OpaqueI != RecordTypesToResolve.end() 
              && "Expected RecordDecl in RecordTypesToResolve");
      RecordTypesToResolve.erase(OpaqueI);

    } else if (TD->getKind() == Decl::Union) {
      const RecordDecl *RD = cast<const RecordDecl>(TD);
      // Just use the largest element of the union, breaking ties with the
      // highest aligned member.

      if (RD->getNumMembers() != 0) {
        RecordOrganizer RO(*this);
        for (unsigned i = 0, e = RD->getNumMembers(); i != e; ++i)
          RO.addField(RD->getMember(i));
        RO.layoutUnionFields();

        // Get llvm::StructType.
        CGRecordLayout *RLI = new CGRecordLayout(RO.getLLVMType(),
                                                 RO.getPaddingFields());
        ResultType = TagDeclTypes[TD] = RLI->getLLVMType();
        CGRecordLayouts[ResultType] = RLI;
      } else {       
        std::vector<const llvm::Type*> Fields;
        ResultType = TagDeclTypes[TD] = llvm::StructType::get(Fields);
      }
    } else {
      assert(0 && "FIXME: Implement tag decl kind!");
    }
          
    std::string TypeName(TD->getKindName());
    TypeName += '.';
    
    // Name the codegen type after the typedef name
    // if there is no tag type name available
    if (TD->getIdentifier() == 0) {
      if (T->getTypeClass() == Type::TypeName) {
        const TypedefType *TdT = cast<TypedefType>(T);
        TypeName += TdT->getDecl()->getName();
      } else
        TypeName += "anon";
    } else 
      TypeName += TD->getName();
          
    TheModule.addTypeName(TypeName, ResultType);  
    return ResultType;
  }
  
  // FIXME: implement.
  return llvm::OpaqueType::get();
}

void CodeGenTypes::DecodeArgumentTypes(const FunctionTypeProto &FTP, 
                                       std::vector<const llvm::Type*> &ArgTys) {
  for (unsigned i = 0, e = FTP.getNumArgs(); i != e; ++i) {
    const llvm::Type *Ty = ConvertType(FTP.getArgType(i));
    if (Ty->isFirstClassType())
      ArgTys.push_back(Ty);
    else {
      QualType ATy = FTP.getArgType(i);
      QualType PTy = Context.getPointerType(ATy);
      unsigned AS = ATy.getAddressSpace();
      const llvm::Type *PtrTy = llvm::PointerType::get(Ty, AS);
      TypeHolderMap.insert(std::make_pair(PTy.getTypePtr(), 
                                          llvm::PATypeHolder(PtrTy)));

      ArgTys.push_back(PtrTy);
    }
  }
}

/// getLLVMFieldNo - Return llvm::StructType element number
/// that corresponds to the field FD.
unsigned CodeGenTypes::getLLVMFieldNo(const FieldDecl *FD) {
  llvm::DenseMap<const FieldDecl *, unsigned>::iterator
    I = FieldInfo.find(FD);
  assert (I != FieldInfo.end()  && "Unable to find field info");
  return I->second;
}

/// addFieldInfo - Assign field number to field FD.
void CodeGenTypes::addFieldInfo(const FieldDecl *FD, unsigned No) {
  FieldInfo[FD] = No;
}

/// getBitFieldInfo - Return the BitFieldInfo  that corresponds to the field FD.
CodeGenTypes::BitFieldInfo CodeGenTypes::getBitFieldInfo(const FieldDecl *FD) {
  llvm::DenseMap<const FieldDecl *, BitFieldInfo>::iterator
    I = BitFields.find(FD);
  assert (I != BitFields.end()  && "Unable to find bitfield info");
  return I->second;
}

/// addBitFieldInfo - Assign a start bit and a size to field FD.
void CodeGenTypes::addBitFieldInfo(const FieldDecl *FD, unsigned Begin,
				   unsigned Size) {
  BitFields.insert(std::make_pair(FD, BitFieldInfo(Begin, Size)));
}

/// getCGRecordLayout - Return record layout info for the given llvm::Type.
const CGRecordLayout *
CodeGenTypes::getCGRecordLayout(const llvm::Type* Ty) const {
  llvm::DenseMap<const llvm::Type*, CGRecordLayout *>::iterator I
    = CGRecordLayouts.find(Ty);
  assert (I != CGRecordLayouts.end() 
          && "Unable to find record layout information for type");
  return I->second;
}

/// addField - Add new field.
void RecordOrganizer::addField(const FieldDecl *FD) {
  assert (!STy && "Record fields are already laid out");
  FieldDecls.push_back(FD);
}

/// layoutStructFields - Do the actual work and lay out all fields. Create
/// corresponding llvm struct type.  This should be invoked only after
/// all fields are added.
/// FIXME : At the moment assume 
///    - one to one mapping between AST FieldDecls and 
///      llvm::StructType elements.
///    - Ignore bit fields
///    - Ignore field aligments
///    - Ignore packed structs
void RecordOrganizer::layoutStructFields(const ASTRecordLayout &RL) {
  // FIXME : Use SmallVector
  llvmSize = 0;
  llvmFieldNo = 0;
  Cursor = 0;
  LLVMFields.clear();
  Offsets.clear();

  for (llvm::SmallVector<const FieldDecl *, 8>::iterator I = FieldDecls.begin(),
         E = FieldDecls.end(); I != E; ++I) {
    const FieldDecl *FD = *I;

    if (FD->isBitField()) 
      placeBitField(FD);
    else {
      const llvm::Type *Ty = CGT.ConvertType(FD->getType());
      addLLVMField(Ty);
      CGT.addFieldInfo(FD, llvmFieldNo - 1);
      Cursor = llvmSize;
    }
  }

  unsigned StructAlign = RL.getAlignment();
  if (llvmSize % StructAlign) {
    unsigned StructPadding = StructAlign - (llvmSize % StructAlign);
    addPaddingFields(llvmSize + StructPadding);
  }

  STy = llvm::StructType::get(LLVMFields);
}

/// addPaddingFields - Current cursor is not suitable place to add next field.
/// Add required padding fields.
void RecordOrganizer::addPaddingFields(unsigned WaterMark) {
  unsigned RequiredBits = WaterMark - llvmSize;
  unsigned RequiredBytes = (RequiredBits + 7) / 8;
  for (unsigned i = 0; i != RequiredBytes; ++i)
    addLLVMField(llvm::Type::Int8Ty, true);
}

/// addLLVMField - Add llvm struct field that corresponds to llvm type Ty.
/// Increment field count.
void RecordOrganizer::addLLVMField(const llvm::Type *Ty, bool isPaddingField) {

  unsigned AlignmentInBits = CGT.getTargetData().getABITypeAlignment(Ty) * 8;
  if (llvmSize % AlignmentInBits) {
    // At the moment, insert padding fields even if target specific llvm 
    // type alignment enforces implict padding fields for FD. Later on, 
    // optimize llvm fields by removing implicit padding fields and 
    // combining consequetive padding fields.
    unsigned Padding = AlignmentInBits - (llvmSize % AlignmentInBits);
    addPaddingFields(llvmSize + Padding);
  }

  unsigned TySize = CGT.getTargetData().getABITypeSizeInBits(Ty);
  Offsets.push_back(llvmSize);
  llvmSize += TySize;
  if (isPaddingField)
    PaddingFields.insert(llvmFieldNo);
  LLVMFields.push_back(Ty);
  ++llvmFieldNo;
}

/// layoutUnionFields - Do the actual work and lay out all fields. Create
/// corresponding llvm struct type.  This should be invoked only after
/// all fields are added.
void RecordOrganizer::layoutUnionFields() {
 
  unsigned PrimaryEltNo = 0;
  std::pair<uint64_t, unsigned> PrimaryElt =
    CGT.getContext().getTypeInfo(FieldDecls[0]->getType(), SourceLocation());
  CGT.addFieldInfo(FieldDecls[0], 0);

  unsigned Size = FieldDecls.size();
  for(unsigned i = 1; i != Size; ++i) {
    const FieldDecl *FD = FieldDecls[i];
    assert (!FD->isBitField() && "Bit fields are not yet supported");
    std::pair<uint64_t, unsigned> EltInfo = 
      CGT.getContext().getTypeInfo(FD->getType(), SourceLocation());

    // Use largest element, breaking ties with the hightest aligned member.
    if (EltInfo.first > PrimaryElt.first ||
        (EltInfo.first == PrimaryElt.first &&
         EltInfo.second > PrimaryElt.second)) {
      PrimaryElt = EltInfo;
      PrimaryEltNo = i;
    }

    // In union, each field gets first slot.
    CGT.addFieldInfo(FD, 0);
  }

  std::vector<const llvm::Type*> Fields;
  const llvm::Type *Ty = CGT.ConvertType(FieldDecls[PrimaryEltNo]->getType());
  Fields.push_back(Ty);
  STy = llvm::StructType::get(Fields);
}

/// placeBitField - Find a place for FD, which is a bit-field.
/// This function searches for the last aligned field. If the  bit-field fits in
/// it, it is reused. Otherwise, the bit-field is placed in a new field.
void RecordOrganizer::placeBitField(const FieldDecl *FD) {

  assert (FD->isBitField() && "FD is not a bit-field");
  Expr *BitWidth = FD->getBitWidth();
  llvm::APSInt FieldSize(32);
  bool isBitField = 
    BitWidth->isIntegerConstantExpr(FieldSize, CGT.getContext());
  assert (isBitField  && "Invalid BitField size expression");
  uint64_t BitFieldSize =  FieldSize.getZExtValue();

  bool FoundPrevField = false;
  unsigned TotalOffsets = Offsets.size();
  const llvm::Type *Ty = CGT.ConvertType(FD->getType());
  uint64_t TySize = CGT.getTargetData().getABITypeSizeInBits(Ty);
  
  if (!TotalOffsets) {
    // Special case: the first field. 
    CGT.addFieldInfo(FD, llvmFieldNo);
    CGT.addBitFieldInfo(FD, 0, BitFieldSize);
    addPaddingFields(BitFieldSize);
    Cursor = BitFieldSize;
    return;
  }

  // Search for the last aligned field.
  for (unsigned i = TotalOffsets; i != 0; --i) {
    uint64_t O = Offsets[i - 1];
    if (O % TySize == 0) {
      FoundPrevField = true;
      if (TySize - (Cursor - O) >= BitFieldSize) {
	// The bitfield fits in the last aligned field.
	// This is : struct { char a; int CurrentField:10;};
	// where 'CurrentField' shares first field with 'a'.
	addPaddingFields(Cursor + BitFieldSize);
	CGT.addFieldInfo(FD, i - 1);
	CGT.addBitFieldInfo(FD, Cursor - O, BitFieldSize);
	Cursor += BitFieldSize;
      } else {
	// Place the bitfield in a new LLVM field.
	// This is : struct { char a; short CurrentField:10;};
	// where 'CurrentField' needs a new llvm field.
	addPaddingFields(O + TySize);
	CGT.addFieldInfo(FD, llvmFieldNo);
	CGT.addBitFieldInfo(FD, 0, BitFieldSize);
	addPaddingFields(O + TySize +  BitFieldSize);
	Cursor = O + TySize +  BitFieldSize;
      }
      break;
    }
  }

  assert(FoundPrevField && 
	 "Unable to find a place for bitfield in struct layout");
}