//==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a generic engine for intraprocedural, path-sensitive, // dataflow analysis via graph reachability engine. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "clang/Index/TranslationUnit.h" #include "clang/AST/Expr.h" #include "clang/AST/StmtCXX.h" #include "llvm/Support/Casting.h" #include "llvm/ADT/DenseMap.h" using namespace clang; using namespace ento; //===----------------------------------------------------------------------===// // Worklist classes for exploration of reachable states. //===----------------------------------------------------------------------===// WorkList::Visitor::~Visitor() {} namespace { class DFS : public WorkList { SmallVector Stack; public: virtual bool hasWork() const { return !Stack.empty(); } virtual void enqueue(const WorkListUnit& U) { Stack.push_back(U); } virtual WorkListUnit dequeue() { assert (!Stack.empty()); const WorkListUnit& U = Stack.back(); Stack.pop_back(); // This technically "invalidates" U, but we are fine. return U; } virtual bool visitItemsInWorkList(Visitor &V) { for (SmallVectorImpl::iterator I = Stack.begin(), E = Stack.end(); I != E; ++I) { if (V.visit(*I)) return true; } return false; } }; class BFS : public WorkList { std::deque Queue; public: virtual bool hasWork() const { return !Queue.empty(); } virtual void enqueue(const WorkListUnit& U) { Queue.push_front(U); } virtual WorkListUnit dequeue() { WorkListUnit U = Queue.front(); Queue.pop_front(); return U; } virtual bool visitItemsInWorkList(Visitor &V) { for (std::deque::iterator I = Queue.begin(), E = Queue.end(); I != E; ++I) { if (V.visit(*I)) return true; } return false; } }; } // end anonymous namespace // Place the dstor for WorkList here because it contains virtual member // functions, and we the code for the dstor generated in one compilation unit. WorkList::~WorkList() {} WorkList *WorkList::makeDFS() { return new DFS(); } WorkList *WorkList::makeBFS() { return new BFS(); } namespace { class BFSBlockDFSContents : public WorkList { std::deque Queue; SmallVector Stack; public: virtual bool hasWork() const { return !Queue.empty() || !Stack.empty(); } virtual void enqueue(const WorkListUnit& U) { if (isa(U.getNode()->getLocation())) Queue.push_front(U); else Stack.push_back(U); } virtual WorkListUnit dequeue() { // Process all basic blocks to completion. if (!Stack.empty()) { const WorkListUnit& U = Stack.back(); Stack.pop_back(); // This technically "invalidates" U, but we are fine. return U; } assert(!Queue.empty()); // Don't use const reference. The subsequent pop_back() might make it // unsafe. WorkListUnit U = Queue.front(); Queue.pop_front(); return U; } virtual bool visitItemsInWorkList(Visitor &V) { for (SmallVectorImpl::iterator I = Stack.begin(), E = Stack.end(); I != E; ++I) { if (V.visit(*I)) return true; } for (std::deque::iterator I = Queue.begin(), E = Queue.end(); I != E; ++I) { if (V.visit(*I)) return true; } return false; } }; } // end anonymous namespace WorkList* WorkList::makeBFSBlockDFSContents() { return new BFSBlockDFSContents(); } //===----------------------------------------------------------------------===// // Core analysis engine. //===----------------------------------------------------------------------===// /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps. bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps, const ProgramState *InitState) { if (G->num_roots() == 0) { // Initialize the analysis by constructing // the root if none exists. const CFGBlock *Entry = &(L->getCFG()->getEntry()); assert (Entry->empty() && "Entry block must be empty."); assert (Entry->succ_size() == 1 && "Entry block must have 1 successor."); // Get the solitary successor. const CFGBlock *Succ = *(Entry->succ_begin()); // Construct an edge representing the // starting location in the function. BlockEdge StartLoc(Entry, Succ, L); // Set the current block counter to being empty. WList->setBlockCounter(BCounterFactory.GetEmptyCounter()); if (!InitState) // Generate the root. generateNode(StartLoc, SubEng.getInitialState(L), 0); else generateNode(StartLoc, InitState, 0); } // Check if we have a steps limit bool UnlimitedSteps = Steps == 0; while (WList->hasWork()) { if (!UnlimitedSteps) { if (Steps == 0) break; --Steps; } const WorkListUnit& WU = WList->dequeue(); // Set the current block counter. WList->setBlockCounter(WU.getBlockCounter()); // Retrieve the node. ExplodedNode *Node = WU.getNode(); // Dispatch on the location type. switch (Node->getLocation().getKind()) { case ProgramPoint::BlockEdgeKind: HandleBlockEdge(cast(Node->getLocation()), Node); break; case ProgramPoint::BlockEntranceKind: HandleBlockEntrance(cast(Node->getLocation()), Node); break; case ProgramPoint::BlockExitKind: assert (false && "BlockExit location never occur in forward analysis."); break; case ProgramPoint::CallEnterKind: HandleCallEnter(cast(Node->getLocation()), WU.getBlock(), WU.getIndex(), Node); break; case ProgramPoint::CallExitKind: HandleCallExit(cast(Node->getLocation()), Node); break; default: assert(isa(Node->getLocation()) || isa(Node->getLocation())); HandlePostStmt(WU.getBlock(), WU.getIndex(), Node); break; } } SubEng.processEndWorklist(hasWorkRemaining()); return WList->hasWork(); } void CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L, unsigned Steps, const ProgramState *InitState, ExplodedNodeSet &Dst) { ExecuteWorkList(L, Steps, InitState); for (SmallVectorImpl::iterator I = G->EndNodes.begin(), E = G->EndNodes.end(); I != E; ++I) { Dst.Add(*I); } } void CoreEngine::HandleCallEnter(const CallEnter &L, const CFGBlock *Block, unsigned Index, ExplodedNode *Pred) { CallEnterNodeBuilder Builder(*this, Pred, L.getCallExpr(), L.getCalleeContext(), Block, Index); SubEng.processCallEnter(Builder); } void CoreEngine::HandleCallExit(const CallExit &L, ExplodedNode *Pred) { CallExitNodeBuilder Builder(*this, Pred); SubEng.processCallExit(Builder); } void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) { const CFGBlock *Blk = L.getDst(); // Check if we are entering the EXIT block. if (Blk == &(L.getLocationContext()->getCFG()->getExit())) { assert (L.getLocationContext()->getCFG()->getExit().size() == 0 && "EXIT block cannot contain Stmts."); // Process the final state transition. EndOfFunctionNodeBuilder Builder(Blk, Pred, this); SubEng.processEndOfFunction(Builder); // This path is done. Don't enqueue any more nodes. return; } // Call into the subengine to process entering the CFGBlock. ExplodedNodeSet dstNodes; BlockEntrance BE(Blk, Pred->getLocationContext()); GenericNodeBuilder nodeBuilder(*this, Pred, BE); SubEng.processCFGBlockEntrance(dstNodes, nodeBuilder); if (dstNodes.empty()) { if (!nodeBuilder.hasGeneratedNode) { // Auto-generate a node and enqueue it to the worklist. generateNode(BE, Pred->State, Pred); } } else { for (ExplodedNodeSet::iterator I = dstNodes.begin(), E = dstNodes.end(); I != E; ++I) { WList->enqueue(*I); } } for (SmallVectorImpl::const_iterator I = nodeBuilder.sinks().begin(), E = nodeBuilder.sinks().end(); I != E; ++I) { blocksExhausted.push_back(std::make_pair(L, *I)); } } void CoreEngine::HandleBlockEntrance(const BlockEntrance &L, ExplodedNode *Pred) { // Increment the block counter. BlockCounter Counter = WList->getBlockCounter(); Counter = BCounterFactory.IncrementCount(Counter, Pred->getLocationContext()->getCurrentStackFrame(), L.getBlock()->getBlockID()); WList->setBlockCounter(Counter); // Process the entrance of the block. if (CFGElement E = L.getFirstElement()) { NodeBuilderContext Ctx(*this, L.getBlock(), Pred); StmtNodeBuilder Builder(Pred, 0, Ctx); SubEng.processCFGElement(E, Builder, Pred); } else HandleBlockExit(L.getBlock(), Pred); } void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) { if (const Stmt *Term = B->getTerminator()) { switch (Term->getStmtClass()) { default: llvm_unreachable("Analysis for this terminator not implemented."); case Stmt::BinaryOperatorClass: // '&&' and '||' HandleBranch(cast(Term)->getLHS(), Term, B, Pred); return; case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: HandleBranch(cast(Term)->getCond(), Term, B, Pred); return; // FIXME: Use constant-folding in CFG construction to simplify this // case. case Stmt::ChooseExprClass: HandleBranch(cast(Term)->getCond(), Term, B, Pred); return; case Stmt::DoStmtClass: HandleBranch(cast(Term)->getCond(), Term, B, Pred); return; case Stmt::CXXForRangeStmtClass: HandleBranch(cast(Term)->getCond(), Term, B, Pred); return; case Stmt::ForStmtClass: HandleBranch(cast(Term)->getCond(), Term, B, Pred); return; case Stmt::ContinueStmtClass: case Stmt::BreakStmtClass: case Stmt::GotoStmtClass: break; case Stmt::IfStmtClass: HandleBranch(cast(Term)->getCond(), Term, B, Pred); return; case Stmt::IndirectGotoStmtClass: { // Only 1 successor: the indirect goto dispatch block. assert (B->succ_size() == 1); IndirectGotoNodeBuilder builder(Pred, B, cast(Term)->getTarget(), *(B->succ_begin()), this); SubEng.processIndirectGoto(builder); return; } case Stmt::ObjCForCollectionStmtClass: { // In the case of ObjCForCollectionStmt, it appears twice in a CFG: // // (1) inside a basic block, which represents the binding of the // 'element' variable to a value. // (2) in a terminator, which represents the branch. // // For (1), subengines will bind a value (i.e., 0 or 1) indicating // whether or not collection contains any more elements. We cannot // just test to see if the element is nil because a container can // contain nil elements. HandleBranch(Term, Term, B, Pred); return; } case Stmt::SwitchStmtClass: { SwitchNodeBuilder builder(Pred, B, cast(Term)->getCond(), this); SubEng.processSwitch(builder); return; } case Stmt::WhileStmtClass: HandleBranch(cast(Term)->getCond(), Term, B, Pred); return; } } assert (B->succ_size() == 1 && "Blocks with no terminator should have at most 1 successor."); generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()), Pred->State, Pred); } void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term, const CFGBlock * B, ExplodedNode *Pred) { assert(B->succ_size() == 2); NodeBuilderContext Ctx(*this, B, Pred); SubEng.processBranch(Cond, Term, Ctx, Pred, *(B->succ_begin()), *(B->succ_begin()+1)); } void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx, ExplodedNode *Pred) { assert(B); assert(!B->empty()); if (StmtIdx == B->size()) HandleBlockExit(B, Pred); else { NodeBuilderContext Ctx(*this, B, Pred); StmtNodeBuilder Builder(Pred, StmtIdx, Ctx); SubEng.processCFGElement((*B)[StmtIdx], Builder, Pred); } } /// generateNode - Utility method to generate nodes, hook up successors, /// and add nodes to the worklist. void CoreEngine::generateNode(const ProgramPoint &Loc, const ProgramState *State, ExplodedNode *Pred) { bool IsNew; ExplodedNode *Node = G->getNode(Loc, State, &IsNew); if (Pred) Node->addPredecessor(Pred, *G); // Link 'Node' with its predecessor. else { assert (IsNew); G->addRoot(Node); // 'Node' has no predecessor. Make it a root. } // Only add 'Node' to the worklist if it was freshly generated. if (IsNew) WList->enqueue(Node); } void CoreEngine::enqueue(NodeBuilder &NB) { for (NodeBuilder::iterator I = NB.results_begin(), E = NB.results_end(); I != E; ++I) { WList->enqueue(*I); } } ExplodedNode * GenericNodeBuilderImpl::generateNodeImpl(const ProgramState *state, ExplodedNode *pred, ProgramPoint programPoint, bool asSink) { hasGeneratedNode = true; bool isNew; ExplodedNode *node = engine.getGraph().getNode(programPoint, state, &isNew); if (pred) node->addPredecessor(pred, engine.getGraph()); if (isNew) { if (asSink) { node->markAsSink(); sinksGenerated.push_back(node); } return node; } return 0; } ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc, const ProgramState *State, ExplodedNode *FromN, bool MarkAsSink) { HasGeneratedNodes = true; bool IsNew; ExplodedNode *N = C.Eng.G->getNode(Loc, State, &IsNew); N->addPredecessor(FromN, *C.Eng.G); Deferred.erase(FromN); if (MarkAsSink) N->markAsSink(); if (IsNew && !N->isSink()) Deferred.insert(N); return (IsNew ? N : 0); } StmtNodeBuilder::StmtNodeBuilder(ExplodedNode *N, unsigned idx, NodeBuilderContext &Ctx) : NodeBuilder(Ctx), Idx(idx), PurgingDeadSymbols(false), BuildSinks(false), hasGeneratedNode(false), PointKind(ProgramPoint::PostStmtKind), Tag(0) { Deferred.insert(N); } StmtNodeBuilder::~StmtNodeBuilder() { for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I) if (!(*I)->isSink()) GenerateAutoTransition(*I); } void StmtNodeBuilder::GenerateAutoTransition(ExplodedNode *N) { assert (!N->isSink()); // Check if this node entered a callee. if (isa(N->getLocation())) { // Still use the index of the CallExpr. It's needed to create the callee // StackFrameContext. C.Eng.WList->enqueue(N, C.Block, Idx); return; } // Do not create extra nodes. Move to the next CFG element. if (isa(N->getLocation())) { C.Eng.WList->enqueue(N, C.Block, Idx+1); return; } PostStmt Loc(getStmt(), N->getLocationContext()); if (Loc == N->getLocation()) { // Note: 'N' should be a fresh node because otherwise it shouldn't be // a member of Deferred. C.Eng.WList->enqueue(N, C.Block, Idx+1); return; } bool IsNew; ExplodedNode *Succ = C.Eng.G->getNode(Loc, N->State, &IsNew); Succ->addPredecessor(N, *C.Eng.G); if (IsNew) C.Eng.WList->enqueue(Succ, C.Block, Idx+1); } ExplodedNode *StmtNodeBuilder::MakeNode(ExplodedNodeSet &Dst, const Stmt *S, ExplodedNode *Pred, const ProgramState *St, ProgramPoint::Kind K) { ExplodedNode *N = generateNode(S, St, Pred, K, 0, BuildSinks); if (N && !BuildSinks){ Dst.Add(N); } return N; } ExplodedNode *BranchNodeBuilder::generateNode(const ProgramState *State, bool branch, ExplodedNode *NodePred) { // If the branch has been marked infeasible we should not generate a node. if (!isFeasible(branch)) return NULL; ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF, NodePred->getLocationContext()); ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred); return Succ; } ExplodedNode* IndirectGotoNodeBuilder::generateNode(const iterator &I, const ProgramState *St, bool isSink) { bool IsNew; ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()), St, &IsNew); Succ->addPredecessor(Pred, *Eng.G); if (IsNew) { if (isSink) Succ->markAsSink(); else Eng.WList->enqueue(Succ); return Succ; } return NULL; } ExplodedNode* SwitchNodeBuilder::generateCaseStmtNode(const iterator &I, const ProgramState *St) { bool IsNew; ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()), St, &IsNew); Succ->addPredecessor(Pred, *Eng.G); if (IsNew) { Eng.WList->enqueue(Succ); return Succ; } return NULL; } ExplodedNode* SwitchNodeBuilder::generateDefaultCaseNode(const ProgramState *St, bool isSink) { // Get the block for the default case. assert(Src->succ_rbegin() != Src->succ_rend()); CFGBlock *DefaultBlock = *Src->succ_rbegin(); // Sanity check for default blocks that are unreachable and not caught // by earlier stages. if (!DefaultBlock) return NULL; bool IsNew; ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, DefaultBlock, Pred->getLocationContext()), St, &IsNew); Succ->addPredecessor(Pred, *Eng.G); if (IsNew) { if (isSink) Succ->markAsSink(); else Eng.WList->enqueue(Succ); return Succ; } return NULL; } EndOfFunctionNodeBuilder::~EndOfFunctionNodeBuilder() { // Auto-generate an EOP node if one has not been generated. if (!hasGeneratedNode) { // If we are in an inlined call, generate CallExit node. if (Pred->getLocationContext()->getParent()) GenerateCallExitNode(Pred->State); else generateNode(Pred->State); } } ExplodedNode* EndOfFunctionNodeBuilder::generateNode(const ProgramState *State, ExplodedNode *P, const ProgramPointTag *tag) { hasGeneratedNode = true; bool IsNew; ExplodedNode *Node = Eng.G->getNode(BlockEntrance(&B, Pred->getLocationContext(), tag ? tag : Tag), State, &IsNew); Node->addPredecessor(P ? P : Pred, *Eng.G); if (IsNew) { Eng.G->addEndOfPath(Node); return Node; } return NULL; } void EndOfFunctionNodeBuilder::GenerateCallExitNode(const ProgramState *state) { hasGeneratedNode = true; // Create a CallExit node and enqueue it. const StackFrameContext *LocCtx = cast(Pred->getLocationContext()); const Stmt *CE = LocCtx->getCallSite(); // Use the the callee location context. CallExit Loc(CE, LocCtx); bool isNew; ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew); Node->addPredecessor(Pred, *Eng.G); if (isNew) Eng.WList->enqueue(Node); } void CallEnterNodeBuilder::generateNode(const ProgramState *state) { // Check if the callee is in the same translation unit. if (CalleeCtx->getTranslationUnit() != Pred->getLocationContext()->getTranslationUnit()) { // Create a new engine. We must be careful that the new engine should not // reference data structures owned by the old engine. AnalysisManager &OldMgr = Eng.SubEng.getAnalysisManager(); // Get the callee's translation unit. idx::TranslationUnit *TU = CalleeCtx->getTranslationUnit(); // Create a new AnalysisManager with components of the callee's // TranslationUnit. // The Diagnostic is actually shared when we create ASTUnits from AST files. AnalysisManager AMgr(TU->getASTContext(), TU->getDiagnostic(), OldMgr); // Create the new engine. // FIXME: This cast isn't really safe. bool GCEnabled = static_cast(Eng.SubEng).isObjCGCEnabled(); ExprEngine NewEng(AMgr, GCEnabled); // Create the new LocationContext. AnalysisDeclContext *NewAnaCtx = AMgr.getAnalysisDeclContext(CalleeCtx->getDecl(), CalleeCtx->getTranslationUnit()); const StackFrameContext *OldLocCtx = CalleeCtx; const StackFrameContext *NewLocCtx = NewAnaCtx->getStackFrame(OldLocCtx->getParent(), OldLocCtx->getCallSite(), OldLocCtx->getCallSiteBlock(), OldLocCtx->getIndex()); // Now create an initial state for the new engine. const ProgramState *NewState = NewEng.getStateManager().MarshalState(state, NewLocCtx); ExplodedNodeSet ReturnNodes; NewEng.ExecuteWorkListWithInitialState(NewLocCtx, AMgr.getMaxNodes(), NewState, ReturnNodes); return; } // Get the callee entry block. const CFGBlock *Entry = &(CalleeCtx->getCFG()->getEntry()); assert(Entry->empty()); assert(Entry->succ_size() == 1); // Get the solitary successor. const CFGBlock *SuccB = *(Entry->succ_begin()); // Construct an edge representing the starting location in the callee. BlockEdge Loc(Entry, SuccB, CalleeCtx); bool isNew; ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew); Node->addPredecessor(const_cast(Pred), *Eng.G); if (isNew) Eng.WList->enqueue(Node); } void CallExitNodeBuilder::generateNode(const ProgramState *state) { // Get the callee's location context. const StackFrameContext *LocCtx = cast(Pred->getLocationContext()); // When exiting an implicit automatic obj dtor call, the callsite is the Stmt // that triggers the dtor. PostStmt Loc(LocCtx->getCallSite(), LocCtx->getParent()); bool isNew; ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew); Node->addPredecessor(const_cast(Pred), *Eng.G); if (isNew) Eng.WList->enqueue(Node, LocCtx->getCallSiteBlock(), LocCtx->getIndex() + 1); }