//===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/ // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. //===----------------------------------------------------------------------===/ // // This file implements C++ template instantiation for declarations. // //===----------------------------------------------------------------------===/ #include "Sema.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/StmtVisitor.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/Parse/DeclSpec.h" #include "clang/Lex/Preprocessor.h" // for the identifier table #include "llvm/Support/Compiler.h" using namespace clang; namespace { class VISIBILITY_HIDDEN TemplateExprInstantiator : public StmtVisitor { Sema &SemaRef; const TemplateArgument *TemplateArgs; unsigned NumTemplateArgs; public: typedef Sema::OwningExprResult OwningExprResult; TemplateExprInstantiator(Sema &SemaRef, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs) : SemaRef(SemaRef), TemplateArgs(TemplateArgs), NumTemplateArgs(NumTemplateArgs) { } // FIXME: Once we get closer to completion, replace these // manually-written declarations with automatically-generated ones // from clang/AST/StmtNodes.def. OwningExprResult VisitIntegerLiteral(IntegerLiteral *E); OwningExprResult VisitDeclRefExpr(DeclRefExpr *E); OwningExprResult VisitParenExpr(ParenExpr *E); OwningExprResult VisitUnaryOperator(UnaryOperator *E); OwningExprResult VisitBinaryOperator(BinaryOperator *E); OwningExprResult VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E); OwningExprResult VisitConditionalOperator(ConditionalOperator *E); OwningExprResult VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E); OwningExprResult VisitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *E); OwningExprResult VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *E); OwningExprResult VisitImplicitCastExpr(ImplicitCastExpr *E); // Base case. I'm supposed to ignore this. Sema::OwningExprResult VisitStmt(Stmt *S) { S->dump(); assert(false && "Cannot instantiate this kind of expression"); return SemaRef.ExprError(); } }; } Sema::OwningExprResult TemplateExprInstantiator::VisitIntegerLiteral(IntegerLiteral *E) { return SemaRef.Clone(E); } Sema::OwningExprResult TemplateExprInstantiator::VisitDeclRefExpr(DeclRefExpr *E) { Decl *D = E->getDecl(); if (NonTypeTemplateParmDecl *NTTP = dyn_cast(D)) { assert(NTTP->getDepth() == 0 && "No nested templates yet"); const TemplateArgument &Arg = TemplateArgs[NTTP->getPosition()]; QualType T = Arg.getIntegralType(); if (T->isCharType() || T->isWideCharType()) return SemaRef.Owned(new (SemaRef.Context) CharacterLiteral( Arg.getAsIntegral()->getZExtValue(), T->isWideCharType(), T, E->getSourceRange().getBegin())); else if (T->isBooleanType()) return SemaRef.Owned(new (SemaRef.Context) CXXBoolLiteralExpr( Arg.getAsIntegral()->getBoolValue(), T, E->getSourceRange().getBegin())); return SemaRef.Owned(new (SemaRef.Context) IntegerLiteral( *Arg.getAsIntegral(), T, E->getSourceRange().getBegin())); } else assert(false && "Can't handle arbitrary declaration references"); return SemaRef.ExprError(); } Sema::OwningExprResult TemplateExprInstantiator::VisitParenExpr(ParenExpr *E) { Sema::OwningExprResult SubExpr = Visit(E->getSubExpr()); if (SubExpr.isInvalid()) return SemaRef.ExprError(); return SemaRef.Owned(new (SemaRef.Context) ParenExpr( E->getLParen(), E->getRParen(), (Expr *)SubExpr.release())); } Sema::OwningExprResult TemplateExprInstantiator::VisitUnaryOperator(UnaryOperator *E) { Sema::OwningExprResult Arg = Visit(E->getSubExpr()); if (Arg.isInvalid()) return SemaRef.ExprError(); return SemaRef.CreateBuiltinUnaryOp(E->getOperatorLoc(), E->getOpcode(), move(Arg)); } Sema::OwningExprResult TemplateExprInstantiator::VisitBinaryOperator(BinaryOperator *E) { Sema::OwningExprResult LHS = Visit(E->getLHS()); if (LHS.isInvalid()) return SemaRef.ExprError(); Sema::OwningExprResult RHS = Visit(E->getRHS()); if (RHS.isInvalid()) return SemaRef.ExprError(); Sema::OwningExprResult Result = SemaRef.CreateBuiltinBinOp(E->getOperatorLoc(), E->getOpcode(), (Expr *)LHS.get(), (Expr *)RHS.get()); if (Result.isInvalid()) return SemaRef.ExprError(); LHS.release(); RHS.release(); return move(Result); } Sema::OwningExprResult TemplateExprInstantiator::VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { Sema::OwningExprResult First = Visit(E->getArg(0)); if (First.isInvalid()) return SemaRef.ExprError(); Expr *Args[2] = { (Expr *)First.get(), 0 }; Sema::OwningExprResult Second(SemaRef); if (E->getNumArgs() == 2) { Second = Visit(E->getArg(1)); if (Second.isInvalid()) return SemaRef.ExprError(); Args[1] = (Expr *)Second.get(); } if (!E->isTypeDependent()) { // Since our original expression was not type-dependent, we do not // perform lookup again at instantiation time (C++ [temp.dep]p1). // Instead, we just build the new overloaded operator call // expression. First.release(); Second.release(); // FIXME: Don't reuse the callee here. We need to instantiate it. return SemaRef.Owned(new (SemaRef.Context) CXXOperatorCallExpr( SemaRef.Context, E->getOperator(), E->getCallee(), Args, E->getNumArgs(), E->getType(), E->getOperatorLoc())); } bool isPostIncDec = E->getNumArgs() == 2 && (E->getOperator() == OO_PlusPlus || E->getOperator() == OO_MinusMinus); if (E->getNumArgs() == 1 || isPostIncDec) { if (!Args[0]->getType()->isOverloadableType()) { // The argument is not of overloadable type, so try to create a // built-in unary operation. UnaryOperator::Opcode Opc = UnaryOperator::getOverloadedOpcode(E->getOperator(), isPostIncDec); return SemaRef.CreateBuiltinUnaryOp(E->getOperatorLoc(), Opc, move(First)); } // Fall through to perform overload resolution } else { assert(E->getNumArgs() == 2 && "Expected binary operation"); Sema::OwningExprResult Result(SemaRef); if (!Args[0]->getType()->isOverloadableType() && !Args[1]->getType()->isOverloadableType()) { // Neither of the arguments is an overloadable type, so try to // create a built-in binary operation. BinaryOperator::Opcode Opc = BinaryOperator::getOverloadedOpcode(E->getOperator()); Result = SemaRef.CreateBuiltinBinOp(E->getOperatorLoc(), Opc, Args[0], Args[1]); if (Result.isInvalid()) return SemaRef.ExprError(); First.release(); Second.release(); return move(Result); } // Fall through to perform overload resolution. } // Compute the set of functions that were found at template // definition time. Sema::FunctionSet Functions; DeclRefExpr *DRE = cast(E->getCallee()); OverloadedFunctionDecl *Overloads = cast(DRE->getDecl()); // FIXME: Do we have to check // IsAcceptableNonMemberOperatorCandidate for each of these? for (OverloadedFunctionDecl::function_iterator F = Overloads->function_begin(), FEnd = Overloads->function_end(); F != FEnd; ++F) Functions.insert(*F); // Add any functions found via argument-dependent lookup. DeclarationName OpName = SemaRef.Context.DeclarationNames.getCXXOperatorName(E->getOperator()); SemaRef.ArgumentDependentLookup(OpName, Args, E->getNumArgs(), Functions); // Create the overloaded operator invocation. if (E->getNumArgs() == 1 || isPostIncDec) { UnaryOperator::Opcode Opc = UnaryOperator::getOverloadedOpcode(E->getOperator(), isPostIncDec); return SemaRef.CreateOverloadedUnaryOp(E->getOperatorLoc(), Opc, Functions, move(First)); } // FIXME: This would be far less ugly if CreateOverloadedBinOp took // in ExprArg arguments! BinaryOperator::Opcode Opc = BinaryOperator::getOverloadedOpcode(E->getOperator()); OwningExprResult Result = SemaRef.CreateOverloadedBinOp(E->getOperatorLoc(), Opc, Functions, Args[0], Args[1]); if (Result.isInvalid()) return SemaRef.ExprError(); First.release(); Second.release(); return move(Result); } Sema::OwningExprResult TemplateExprInstantiator::VisitConditionalOperator(ConditionalOperator *E) { Sema::OwningExprResult Cond = Visit(E->getCond()); if (Cond.isInvalid()) return SemaRef.ExprError(); // FIXME: use getLHS() and cope with NULLness Sema::OwningExprResult True = Visit(E->getTrueExpr()); if (True.isInvalid()) return SemaRef.ExprError(); Sema::OwningExprResult False = Visit(E->getFalseExpr()); if (False.isInvalid()) return SemaRef.ExprError(); if (!E->isTypeDependent()) { // Since our original expression was not type-dependent, we do not // perform lookup again at instantiation time (C++ [temp.dep]p1). // Instead, we just build the new conditional operator call expression. return SemaRef.Owned(new (SemaRef.Context) ConditionalOperator( Cond.takeAs(), True.takeAs(), False.takeAs(), E->getType())); } return SemaRef.ActOnConditionalOp(/*FIXME*/E->getCond()->getLocEnd(), /*FIXME*/E->getFalseExpr()->getLocStart(), move(Cond), move(True), move(False)); } Sema::OwningExprResult TemplateExprInstantiator::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) { bool isSizeOf = E->isSizeOf(); if (E->isArgumentType()) { QualType T = E->getArgumentType(); if (T->isDependentType()) { T = SemaRef.InstantiateType(T, TemplateArgs, NumTemplateArgs, /*FIXME*/E->getOperatorLoc(), &SemaRef.PP.getIdentifierTable().get("sizeof")); if (T.isNull()) return SemaRef.ExprError(); } return SemaRef.CreateSizeOfAlignOfExpr(T, E->getOperatorLoc(), isSizeOf, E->getSourceRange()); } Sema::OwningExprResult Arg = Visit(E->getArgumentExpr()); if (Arg.isInvalid()) return SemaRef.ExprError(); Sema::OwningExprResult Result = SemaRef.CreateSizeOfAlignOfExpr((Expr *)Arg.get(), E->getOperatorLoc(), isSizeOf, E->getSourceRange()); if (Result.isInvalid()) return SemaRef.ExprError(); Arg.release(); return move(Result); } Sema::OwningExprResult TemplateExprInstantiator::VisitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *E) { NestedNameSpecifier *NNS = SemaRef.InstantiateNestedNameSpecifier(E->getQualifier(), E->getQualifierRange(), TemplateArgs, NumTemplateArgs); if (!NNS) return SemaRef.ExprError(); CXXScopeSpec SS; SS.setRange(E->getQualifierRange()); SS.setScopeRep(NNS); // FIXME: We're passing in a NULL scope, because // ActOnDeclarationNameExpr doesn't actually use the scope when we // give it a non-empty scope specifier. Investigate whether it would // be better to refactor ActOnDeclarationNameExpr. return SemaRef.ActOnDeclarationNameExpr(/*Scope=*/0, E->getLocation(), E->getDeclName(), /*HasTrailingLParen=*/false, &SS, /*FIXME:isAddressOfOperand=*/false); } Sema::OwningExprResult TemplateExprInstantiator::VisitCXXTemporaryObjectExpr( CXXTemporaryObjectExpr *E) { QualType T = E->getType(); if (T->isDependentType()) { T = SemaRef.InstantiateType(T, TemplateArgs, NumTemplateArgs, E->getTypeBeginLoc(), DeclarationName()); if (T.isNull()) return SemaRef.ExprError(); } llvm::SmallVector Args; Args.reserve(E->getNumArgs()); bool Invalid = false; for (CXXTemporaryObjectExpr::arg_iterator Arg = E->arg_begin(), ArgEnd = E->arg_end(); Arg != ArgEnd; ++Arg) { OwningExprResult InstantiatedArg = Visit(*Arg); if (InstantiatedArg.isInvalid()) { Invalid = true; break; } Args.push_back((Expr *)InstantiatedArg.release()); } if (!Invalid) { SourceLocation CommaLoc; // FIXME: HACK! if (Args.size() > 1) CommaLoc = SemaRef.PP.getLocForEndOfToken(Args[0]->getSourceRange().getEnd()); Sema::OwningExprResult Result( SemaRef.ActOnCXXTypeConstructExpr(SourceRange(E->getTypeBeginLoc() /*, FIXME*/), T.getAsOpaquePtr(), /*FIXME*/E->getTypeBeginLoc(), Sema::MultiExprArg(SemaRef, (void**)&Args[0], Args.size()), /*HACK*/&CommaLoc, E->getSourceRange().getEnd())); // At this point, Args no longer owns the arguments, no matter what. return move(Result); } // Clean up the instantiated arguments. // FIXME: Would rather do this with RAII. for (unsigned Idx = 0; Idx < Args.size(); ++Idx) SemaRef.DeleteExpr(Args[Idx]); return SemaRef.ExprError(); } Sema::OwningExprResult TemplateExprInstantiator::VisitImplicitCastExpr( ImplicitCastExpr *E) { assert(!E->isTypeDependent() && "Implicit casts must have known types"); Sema::OwningExprResult SubExpr = Visit(E->getSubExpr()); if (SubExpr.isInvalid()) return SemaRef.ExprError(); ImplicitCastExpr *ICE = new (SemaRef.Context) ImplicitCastExpr(E->getType(), (Expr *)SubExpr.release(), E->isLvalueCast()); return SemaRef.Owned(ICE); } Sema::OwningExprResult Sema::InstantiateExpr(Expr *E, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs) { TemplateExprInstantiator Instantiator(*this, TemplateArgs, NumTemplateArgs); return Instantiator.Visit(E); }