//===--------------------- SemaLookup.cpp - Name Lookup ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements name lookup for C, C++, Objective-C, and // Objective-C++. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "SemaInherit.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/Parse/DeclSpec.h" #include "clang/Basic/LangOptions.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include #include #include #include #include using namespace clang; typedef llvm::SmallVector UsingDirectivesTy; typedef llvm::DenseSet NamespaceSet; typedef llvm::SmallVector LookupResultsTy; /// UsingDirAncestorCompare - Implements strict weak ordering of /// UsingDirectives. It orders them by address of its common ancestor. struct UsingDirAncestorCompare { /// @brief Compares UsingDirectiveDecl common ancestor with DeclContext. bool operator () (UsingDirectiveDecl *U, const DeclContext *Ctx) const { return U->getCommonAncestor() < Ctx; } /// @brief Compares UsingDirectiveDecl common ancestor with DeclContext. bool operator () (const DeclContext *Ctx, UsingDirectiveDecl *U) const { return Ctx < U->getCommonAncestor(); } /// @brief Compares UsingDirectiveDecl common ancestors. bool operator () (UsingDirectiveDecl *U1, UsingDirectiveDecl *U2) const { return U1->getCommonAncestor() < U2->getCommonAncestor(); } }; /// AddNamespaceUsingDirectives - Adds all UsingDirectiveDecl's to heap UDirs /// (ordered by common ancestors), found in namespace NS, /// including all found (recursively) in their nominated namespaces. void AddNamespaceUsingDirectives(DeclContext *NS, UsingDirectivesTy &UDirs, NamespaceSet &Visited) { DeclContext::udir_iterator I, End; for (llvm::tie(I, End) = NS->getUsingDirectives(); I !=End; ++I) { UDirs.push_back(*I); std::push_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare()); NamespaceDecl *Nominated = (*I)->getNominatedNamespace(); if (Visited.insert(Nominated).second) AddNamespaceUsingDirectives(Nominated, UDirs, /*ref*/ Visited); } } /// AddScopeUsingDirectives - Adds all UsingDirectiveDecl's found in Scope S, /// including all found in the namespaces they nominate. static void AddScopeUsingDirectives(Scope *S, UsingDirectivesTy &UDirs) { NamespaceSet VisitedNS; if (DeclContext *Ctx = static_cast(S->getEntity())) { if (NamespaceDecl *NS = dyn_cast(Ctx)) VisitedNS.insert(NS); AddNamespaceUsingDirectives(Ctx, UDirs, /*ref*/ VisitedNS); } else { Scope::udir_iterator I = S->using_directives_begin(), End = S->using_directives_end(); for (; I != End; ++I) { UsingDirectiveDecl * UD = static_cast(*I); UDirs.push_back(UD); std::push_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare()); NamespaceDecl *Nominated = UD->getNominatedNamespace(); if (!VisitedNS.count(Nominated)) { VisitedNS.insert(Nominated); AddNamespaceUsingDirectives(Nominated, UDirs, /*ref*/ VisitedNS); } } } } /// MaybeConstructOverloadSet - Name lookup has determined that the /// elements in [I, IEnd) have the name that we are looking for, and /// *I is a match for the namespace. This routine returns an /// appropriate Decl for name lookup, which may either be *I or an /// OverloadedFunctionDecl that represents the overloaded functions in /// [I, IEnd). /// /// The existance of this routine is temporary; users of LookupResult /// should be able to handle multiple results, to deal with cases of /// ambiguity and overloaded functions without needing to create a /// Decl node. template static Decl * MaybeConstructOverloadSet(ASTContext &Context, DeclIterator I, DeclIterator IEnd) { assert(I != IEnd && "Iterator range cannot be empty"); assert(!isa(*I) && "Cannot have an overloaded function"); if (isa(*I)) { // If we found a function, there might be more functions. If // so, collect them into an overload set. DeclIterator Last = I; OverloadedFunctionDecl *Ovl = 0; for (++Last; Last != IEnd && isa(*Last); ++Last) { if (!Ovl) { // FIXME: We leak this overload set. Eventually, we want to // stop building the declarations for these overload sets, so // there will be nothing to leak. Ovl = OverloadedFunctionDecl::Create(Context, (*I)->getDeclContext(), (*I)->getDeclName()); Ovl->addOverload(cast(*I)); } Ovl->addOverload(cast(*Last)); } // If we had more than one function, we built an overload // set. Return it. if (Ovl) return Ovl; } return *I; } /// Merges together multiple LookupResults dealing with duplicated Decl's. static Sema::LookupResult MergeLookupResults(ASTContext &Context, LookupResultsTy &Results) { typedef Sema::LookupResult LResult; typedef llvm::SmallVector DeclsVecTy; DeclsVecTy FoundDecls; OverloadedFunctionDecl *FoundOverloaded = 0; LookupResultsTy::iterator I = Results.begin(), End = Results.end(); for (; I != End; ++I) { switch (I->getKind()) { case LResult::NotFound: assert(false && "Should be always successful name lookup result here."); break; case LResult::AmbiguousReference: assert(false && "Shouldn't get ambiguous reference here."); break; case LResult::Found: FoundDecls.push_back(cast(I->getAsDecl())); break; case LResult::AmbiguousBaseSubobjectTypes: case LResult::AmbiguousBaseSubobjects: { LResult Ambig = *I; // Free rest of OverloadedFunctionDecl, and other BasePaths // stored in LookupResults. #if 0 // FIXME: // It should not happen, when we look start in each DeclContext only once. // See FIXME in CppLookupName. assert(Results.size() == 1 && "Multiple LookupResults should be not case " "here, since using-directives can't occur at class scope."); #else if (FoundOverloaded) FoundOverloaded->Destroy(Context); for (++I; I != End; ++I) { if (I->getKind() == LResult::FoundOverloaded) cast(I->getAsDecl())->Destroy(Context); else if (BasePaths *Paths = I->getBasePaths()) delete Paths; assert(I->getKind() != LResult::AmbiguousReference && "Shouldn't get ambiguous reference here."); } #endif return Ambig; } case LResult::FoundOverloaded: if (FoundOverloaded) { // We have one spare OverloadedFunctionDecl already, so we store // its function decls. #if 0 FIXME: As soon as, stop call MaybeConstructOverloadSet here, which requires iterator::reference of type NamedDecl*, FoundDecls can be SmallVector or when Lookup*Name() starts return NamedDecl's* instead of Decl's this will work: std::copy(I->begin(), I->end(), std::back_inserter(FoundDecls)); #else Sema::LookupResult::iterator OI = I->begin(), OEnd = I->end(); for (; OI != OEnd; ++OI) FoundDecls.push_back(cast(*OI)); #endif } else { // First time we found OverloadedFunctionDecl, we want to conserve // it, and possibly add other found Decls later. FoundOverloaded = cast(I->getAsDecl()); } break; } } // Remove duplicated Decl pointing at same Decl, this might be case // for code like: // // namespace A { int i; } // namespace B { using namespace A; } // namespace C { using namespace A; } // // void foo() { // using namespace B; // using namespace C; // ++i; // finds A::i, from both namespace B and C at global scope // } // // C++ [namespace.qual].p3: // The same declaration found more than once is not an ambiguity // (because it is still a unique declaration). // // FIXME: At this point happens too, because we are doing redundant lookups. // DeclsVecTy::iterator DI = FoundDecls.begin(), DEnd = FoundDecls.end(); // FIXME: Using SmallPtrSet instead would be better, once OverloadedFunctionDecl // dies. std::sort(DI, DEnd); DEnd = std::unique(DI, DEnd); if (FoundOverloaded) { // We found overloaded functions result. We want to add any other // found decls, that are not already in FoundOverloaded, and are functions // or methods. OverloadedFunctionDecl::function_iterator FBegin = FoundOverloaded->function_begin(), FEnd = FoundOverloaded->function_end(); // FIXME: This is O(n^2)! for (; DI < DEnd; ++DI) { FunctionDecl *Fun = dyn_cast(*DI); if (Fun && (std::find(FBegin, FEnd, Fun) != FEnd)) { /* Skip.*/ } else DEnd = std::remove(DI, DEnd, *DI); } for (DI = FoundDecls.begin(); DI != DEnd; ++DI) FoundOverloaded->addOverload(cast(*DI)); return LResult::CreateLookupResult(Context, FoundOverloaded); } else if (std::size_t FoundLen = std::distance(FoundDecls.begin(), DEnd)) { // We might found multiple TagDecls pointing at same definition. if (TagDecl *R = dyn_cast(*FoundDecls.begin())) { TagDecl *Canonical = Context.getCanonicalDecl(R); DeclsVecTy::iterator RI = FoundDecls.begin(), REnd = DEnd; for (;;) { ++RI; if (RI == REnd) { FoundLen = 1; break; } R = dyn_cast(*RI); if (R && Canonical == Context.getCanonicalDecl(R)) { /* Skip */} else break; } } // We might find FunctionDecls in two (or more) distinct DeclContexts. // 3.4.1.p1 ... Name lookup may associate more than one declaration with // a name if it finds the name to be a function name; the declarations // are said to form a set of overloaded functions (13.1). // Overload resolution (13.3) takes place after name lookup has succeeded. Decl *D = MaybeConstructOverloadSet(Context, DI, DEnd); if ((FoundLen == 1) || isa(D)) return LResult::CreateLookupResult(Context, D); // Found multiple Decls, it is ambiguous reference. return LResult::CreateLookupResult(Context, FoundDecls.begin(), FoundLen); } LResult Result = LResult::CreateLookupResult(Context, 0); return Result; } // Retrieve the set of identifier namespaces that correspond to a // specific kind of name lookup. inline unsigned getIdentifierNamespacesFromLookupNameKind(Sema::LookupNameKind NameKind, bool CPlusPlus) { unsigned IDNS = 0; switch (NameKind) { case Sema::LookupOrdinaryName: case Sema::LookupOperatorName: IDNS = Decl::IDNS_Ordinary; if (CPlusPlus) IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member; break; case Sema::LookupTagName: IDNS = Decl::IDNS_Tag; break; case Sema::LookupMemberName: IDNS = Decl::IDNS_Member; if (CPlusPlus) IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; break; case Sema::LookupNestedNameSpecifierName: case Sema::LookupNamespaceName: IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member; break; } return IDNS; } // Return qualified name for Decl D, like A::B::i, for i being member of // namespace A::B. std::string getQualifiedName(Decl *D) { std::vector Names; std::string QualName; DeclContext *Ctx = D->getDeclContext(); if (Ctx->isFunctionOrMethod()) return cast(D)->getNameAsString(); while (Ctx) { if (Ctx->isFunctionOrMethod()) { // FIXME: That probably is happend, because D was member of local // scope class/struct/union. How do we handle this case? break; } if (NamedDecl *ND = dyn_cast(Ctx)) { Names.push_back(ND->getNameAsString()); } else { break; } Ctx = Ctx->getParent(); } for (std::vector::reverse_iterator I= Names.rbegin(), End =Names.rend(); I!=End; ++I) QualName += *I + "::"; QualName += cast(D)->getNameAsString(); return QualName; } Sema::LookupResult Sema::LookupResult::CreateLookupResult(ASTContext &Context, Decl *D) { LookupResult Result; Result.StoredKind = (D && isa(D))? OverloadedDeclSingleDecl : SingleDecl; Result.First = reinterpret_cast(D); Result.Last = 0; Result.Context = &Context; return Result; } /// @brief Moves the name-lookup results from Other to this LookupResult. Sema::LookupResult Sema::LookupResult::CreateLookupResult(ASTContext &Context, IdentifierResolver::iterator F, IdentifierResolver::iterator L) { LookupResult Result; Result.Context = &Context; if (F != L && isa(*F)) { IdentifierResolver::iterator Next = F; ++Next; if (Next != L && isa(*Next)) { Result.StoredKind = OverloadedDeclFromIdResolver; Result.First = F.getAsOpaqueValue(); Result.Last = L.getAsOpaqueValue(); return Result; } } Result.StoredKind = SingleDecl; Result.First = reinterpret_cast(*F); Result.Last = 0; return Result; } Sema::LookupResult Sema::LookupResult::CreateLookupResult(ASTContext &Context, DeclContext::lookup_iterator F, DeclContext::lookup_iterator L) { LookupResult Result; Result.Context = &Context; if (F != L && isa(*F)) { DeclContext::lookup_iterator Next = F; ++Next; if (Next != L && isa(*Next)) { Result.StoredKind = OverloadedDeclFromDeclContext; Result.First = reinterpret_cast(F); Result.Last = reinterpret_cast(L); return Result; } } Result.StoredKind = SingleDecl; Result.First = reinterpret_cast(*F); Result.Last = 0; return Result; } /// @brief Determine the result of name lookup. Sema::LookupResult::LookupKind Sema::LookupResult::getKind() const { switch (StoredKind) { case SingleDecl: return (reinterpret_cast(First) != 0)? Found : NotFound; case OverloadedDeclSingleDecl: case OverloadedDeclFromIdResolver: case OverloadedDeclFromDeclContext: return FoundOverloaded; case AmbiguousLookupStoresBasePaths: return Last? AmbiguousBaseSubobjectTypes : AmbiguousBaseSubobjects; case AmbiguousLookupStoresDecls: return AmbiguousReference; } // We can't ever get here. return NotFound; } /// @brief Converts the result of name lookup into a single (possible /// NULL) pointer to a declaration. /// /// The resulting declaration will either be the declaration we found /// (if only a single declaration was found), an /// OverloadedFunctionDecl (if an overloaded function was found), or /// NULL (if no declaration was found). This conversion must not be /// used anywhere where name lookup could result in an ambiguity. /// /// The OverloadedFunctionDecl conversion is meant as a stop-gap /// solution, since it causes the OverloadedFunctionDecl to be /// leaked. FIXME: Eventually, there will be a better way to iterate /// over the set of overloaded functions returned by name lookup. Decl *Sema::LookupResult::getAsDecl() const { switch (StoredKind) { case SingleDecl: return reinterpret_cast(First); case OverloadedDeclFromIdResolver: return MaybeConstructOverloadSet(*Context, IdentifierResolver::iterator::getFromOpaqueValue(First), IdentifierResolver::iterator::getFromOpaqueValue(Last)); case OverloadedDeclFromDeclContext: return MaybeConstructOverloadSet(*Context, reinterpret_cast(First), reinterpret_cast(Last)); case OverloadedDeclSingleDecl: return reinterpret_cast(First); case AmbiguousLookupStoresDecls: case AmbiguousLookupStoresBasePaths: assert(false && "Name lookup returned an ambiguity that could not be handled"); break; } return 0; } /// @brief Retrieves the BasePaths structure describing an ambiguous /// name lookup, or null. BasePaths *Sema::LookupResult::getBasePaths() const { if (StoredKind == AmbiguousLookupStoresBasePaths) return reinterpret_cast(First); return 0; } Sema::LookupResult::iterator::reference Sema::LookupResult::iterator::operator*() const { switch (Result->StoredKind) { case SingleDecl: return reinterpret_cast(Current); case OverloadedDeclSingleDecl: return *reinterpret_cast(Current); case OverloadedDeclFromIdResolver: return *IdentifierResolver::iterator::getFromOpaqueValue(Current); case OverloadedDeclFromDeclContext: return *reinterpret_cast(Current); case AmbiguousLookupStoresDecls: case AmbiguousLookupStoresBasePaths: assert(false && "Cannot look into ambiguous lookup results"); break; } return 0; } Sema::LookupResult::iterator& Sema::LookupResult::iterator::operator++() { switch (Result->StoredKind) { case SingleDecl: Current = reinterpret_cast((Decl*)0); break; case OverloadedDeclSingleDecl: { Decl ** I = reinterpret_cast(Current); ++I; Current = reinterpret_cast(I); break; } case OverloadedDeclFromIdResolver: { IdentifierResolver::iterator I = IdentifierResolver::iterator::getFromOpaqueValue(Current); ++I; Current = I.getAsOpaqueValue(); break; } case OverloadedDeclFromDeclContext: { DeclContext::lookup_iterator I = reinterpret_cast(Current); ++I; Current = reinterpret_cast(I); break; } case AmbiguousLookupStoresDecls: case AmbiguousLookupStoresBasePaths: assert(false && "Cannot look into ambiguous lookup results"); break; } return *this; } Sema::LookupResult::iterator Sema::LookupResult::begin() { assert(!isAmbiguous() && "Lookup into an ambiguous result"); if (StoredKind != OverloadedDeclSingleDecl) return iterator(this, First); OverloadedFunctionDecl * Ovl = reinterpret_cast(First); return iterator(this, reinterpret_cast(&(*Ovl->function_begin()))); } Sema::LookupResult::iterator Sema::LookupResult::end() { assert(!isAmbiguous() && "Lookup into an ambiguous result"); if (StoredKind != OverloadedDeclSingleDecl) return iterator(this, Last); OverloadedFunctionDecl * Ovl = reinterpret_cast(First); return iterator(this, reinterpret_cast(&(*Ovl->function_end()))); } static bool isFunctionLocalScope(Scope *S) { if (DeclContext *Ctx = static_cast(S->getEntity())) return Ctx->isFunctionOrMethod(); return true; } std::pair Sema::CppLookupName(Scope *S, DeclarationName Name, LookupNameKind NameKind, bool RedeclarationOnly) { assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup"); unsigned IDNS = getIdentifierNamespacesFromLookupNameKind(NameKind, /*CPlusPlus*/ true); Scope *Initial = S; IdentifierResolver::iterator I = IdResolver.begin(Name), IEnd = IdResolver.end(); // First we lookup local scope. // We don't consider using-dirctives, as per 7.3.4.p1 [namespace.udir] // ...During unqualified name lookup (3.4.1), the names appear as if // they were declared in the nearest enclosing namespace which contains // both the using-directive and the nominated namespace. // [Note: in this context, “contains” means “contains directly or // indirectly”. // // For example: // namespace A { int i; } // void foo() { // int i; // { // using namespace A; // ++i; // finds local 'i', A::i appears at global scope // } // } // for (; S && isFunctionLocalScope(S); S = S->getParent()) { // Check whether the IdResolver has anything in this scope. for (; I != IEnd && S->isDeclScope(*I); ++I) { if (isAcceptableLookupResult(*I, NameKind, IDNS)) { // We found something. Look for anything else in our scope // with this same name and in an acceptable identifier // namespace, so that we can construct an overload set if we // need to. IdentifierResolver::iterator LastI = I; for (++LastI; LastI != IEnd; ++LastI) { if (!S->isDeclScope(*LastI)) break; } LookupResult Result = LookupResult::CreateLookupResult(Context, I, LastI); return std::make_pair(true, Result); } } // NB: Icky, we need to look in function scope, but we need to check its // parent DeclContext (instead S->getParent()) for member name lookup, // in case it is out of line method definition. Like in: // // class C { // int i; // void foo(); // }; // // C::foo() { // (void) i; // } // // FIXME: Maybe we should do member name lookup here instead? if (S->getEntity() && isFunctionLocalScope(S)) break; } // Collect UsingDirectiveDecls in all scopes, and recursivly all // nominated namespaces by those using-directives. // UsingDirectives are pushed to heap, in common ancestor pointer // value order. // FIXME: Cache this sorted list in Scope structure, and maybe // DeclContext, so we don't build it for each lookup! UsingDirectivesTy UDirs; for (Scope *SC = Initial; SC; SC = SC->getParent()) AddScopeUsingDirectives(SC, UDirs); // Sort heapified UsingDirectiveDecls. std::sort_heap(UDirs.begin(), UDirs.end()); // Lookup namespace scope, global scope, or possibly (CXX)Record DeclContext // for member name lookup. // Unqualified name lookup in C++ requires looking into scopes // that aren't strictly lexical, and therefore we walk through the // context as well as walking through the scopes. for (; S; S = S->getParent()) { LookupResultsTy LookupResults; bool LookedInCtx = false; // Check whether the IdResolver has anything in this scope. for (; I != IEnd && S->isDeclScope(*I); ++I) { if (isAcceptableLookupResult(*I, NameKind, IDNS)) { // We found something. Look for anything else in our scope // with this same name and in an acceptable identifier // namespace, so that we can construct an overload set if we // need to. IdentifierResolver::iterator LastI = I; for (++LastI; LastI != IEnd; ++LastI) { if (!S->isDeclScope(*LastI)) break; } // We store name lookup result, and continue trying to look into // associated context, and maybe namespaces nominated by // using-directives. LookupResults.push_back( LookupResult::CreateLookupResult(Context, I, LastI)); break; } } // If there is an entity associated with this scope, it's a // DeclContext. We might need to perform qualified lookup into // it, or namespaces nominated by using-directives. DeclContext *Ctx = static_cast(S->getEntity()); if (Ctx && isa(Ctx)) { UsingDirectivesTy::const_iterator UI, UEnd; // For each UsingDirectiveDecl, which common ancestor is equal // to Ctx, we preform qualified name lookup into namespace nominated // by it. llvm::tie(UI, UEnd) = std::equal_range(UDirs.begin(), UDirs.end(), Ctx, UsingDirAncestorCompare()); for (; UI != UEnd; ++UI) { // FIXME: We will have to ensure, that we won't consider // again using-directives during qualified name lookup! // (Once using-directives support for qualified name lookup gets // implemented). if (LookupResult R = LookupQualifiedName((*UI)->getNominatedNamespace(), Name, NameKind, RedeclarationOnly)) LookupResults.push_back(R); } LookupResult Result; if ((Result = MergeLookupResults(Context, LookupResults)) || RedeclarationOnly) { return std::make_pair(true, Result); } } // FIXME: We're performing redundant lookups here, where the // scope stack mirrors the semantic nested of classes and // namespaces. We can save some work by checking the lexical // scope against the semantic scope and avoiding any lookups // when they are the same. // FIXME: In some cases, we know that every name that could be // found by this qualified name lookup will also be on the // identifier chain. For example, inside a class without any // base classes, we never need to perform qualified lookup // because all of the members are on top of the identifier // chain. However, we cannot perform this optimization when the // lexical and semantic scopes don't line up, e.g., in an // out-of-line member definition. while (Ctx && Ctx->isFunctionOrMethod()) Ctx = Ctx->getParent(); while (Ctx && (Ctx->isNamespace() || Ctx->isRecord())) { LookedInCtx = true; // Look for declarations of this name in this scope. if (LookupResult R = LookupQualifiedName(Ctx, Name, NameKind, RedeclarationOnly)) // We store that, to investigate futher, wheather reference // to this Decl is no ambiguous. LookupResults.push_back(R); if (Ctx->isNamespace()) { // For each UsingDirectiveDecl, which common ancestor is equal // to Ctx, we preform qualified name lookup into namespace nominated // by it. UsingDirectivesTy::const_iterator UI, UEnd; llvm::tie(UI, UEnd) = std::equal_range(UDirs.begin(), UDirs.end(), Ctx, UsingDirAncestorCompare()); for (; UI != UEnd; ++UI) { // FIXME: We will have to ensure, that we won't consider // again using-directives during qualified name lookup! // (Once using-directives support for qualified name lookup gets // implemented). LookupResult R = LookupQualifiedName((*UI)->getNominatedNamespace(), Name, NameKind, RedeclarationOnly); if (R) LookupResults.push_back(R); } } LookupResult Result; if ((Result = MergeLookupResults(Context, LookupResults)) || (RedeclarationOnly && !Ctx->isTransparentContext())) { return std::make_pair(true, Result); } Ctx = Ctx->getParent(); } if (!(LookedInCtx || LookupResults.empty())) { // We didn't Performed lookup in Scope entity, so we return // result form IdentifierResolver. assert((LookupResults.size() == 1) && "Wrong size!"); return std::make_pair(true, LookupResults.front()); } } return std::make_pair(false, LookupResult()); } /// @brief Perform unqualified name lookup starting from a given /// scope. /// /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is /// used to find names within the current scope. For example, 'x' in /// @code /// int x; /// int f() { /// return x; // unqualified name look finds 'x' in the global scope /// } /// @endcode /// /// Different lookup criteria can find different names. For example, a /// particular scope can have both a struct and a function of the same /// name, and each can be found by certain lookup criteria. For more /// information about lookup criteria, see the documentation for the /// class LookupCriteria. /// /// @param S The scope from which unqualified name lookup will /// begin. If the lookup criteria permits, name lookup may also search /// in the parent scopes. /// /// @param Name The name of the entity that we are searching for. /// /// @param Criteria The criteria that this routine will use to /// determine which names are visible and which names will be /// found. Note that name lookup will find a name that is visible by /// the given criteria, but the entity itself may not be semantically /// correct or even the kind of entity expected based on the /// lookup. For example, searching for a nested-name-specifier name /// might result in an EnumDecl, which is visible but is not permitted /// as a nested-name-specifier in C++03. /// /// @returns The result of name lookup, which includes zero or more /// declarations and possibly additional information used to diagnose /// ambiguities. Sema::LookupResult Sema::LookupName(Scope *S, DeclarationName Name, LookupNameKind NameKind, bool RedeclarationOnly) { if (!Name) return LookupResult::CreateLookupResult(Context, 0); if (!getLangOptions().CPlusPlus) { // Unqualified name lookup in C/Objective-C is purely lexical, so // search in the declarations attached to the name. unsigned IDNS = 0; switch (NameKind) { case Sema::LookupOrdinaryName: IDNS = Decl::IDNS_Ordinary; break; case Sema::LookupTagName: IDNS = Decl::IDNS_Tag; break; case Sema::LookupMemberName: IDNS = Decl::IDNS_Member; break; case Sema::LookupOperatorName: case Sema::LookupNestedNameSpecifierName: case Sema::LookupNamespaceName: assert(false && "C does not perform these kinds of name lookup"); break; } // Scan up the scope chain looking for a decl that matches this // identifier that is in the appropriate namespace. This search // should not take long, as shadowing of names is uncommon, and // deep shadowing is extremely uncommon. for (IdentifierResolver::iterator I = IdResolver.begin(Name), IEnd = IdResolver.end(); I != IEnd; ++I) if ((*I)->isInIdentifierNamespace(IDNS)) return LookupResult::CreateLookupResult(Context, *I); } else { // Perform C++ unqualified name lookup. std::pair MaybeResult = CppLookupName(S, Name, NameKind, RedeclarationOnly); if (MaybeResult.first) return MaybeResult.second; } // If we didn't find a use of this identifier, and if the identifier // corresponds to a compiler builtin, create the decl object for the builtin // now, injecting it into translation unit scope, and return it. if (NameKind == LookupOrdinaryName) { IdentifierInfo *II = Name.getAsIdentifierInfo(); if (II) { // If this is a builtin on this (or all) targets, create the decl. if (unsigned BuiltinID = II->getBuiltinID()) return LookupResult::CreateLookupResult(Context, LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S)); } if (getLangOptions().ObjC1 && II) { // @interface and @compatibility_alias introduce typedef-like names. // Unlike typedef's, they can only be introduced at file-scope (and are // therefore not scoped decls). They can, however, be shadowed by // other names in IDNS_Ordinary. ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II); if (IDI != ObjCInterfaceDecls.end()) return LookupResult::CreateLookupResult(Context, IDI->second); ObjCAliasTy::iterator I = ObjCAliasDecls.find(II); if (I != ObjCAliasDecls.end()) return LookupResult::CreateLookupResult(Context, I->second->getClassInterface()); } } return LookupResult::CreateLookupResult(Context, 0); } /// @brief Perform qualified name lookup into a given context. /// /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find /// names when the context of those names is explicit specified, e.g., /// "std::vector" or "x->member". /// /// Different lookup criteria can find different names. For example, a /// particular scope can have both a struct and a function of the same /// name, and each can be found by certain lookup criteria. For more /// information about lookup criteria, see the documentation for the /// class LookupCriteria. /// /// @param LookupCtx The context in which qualified name lookup will /// search. If the lookup criteria permits, name lookup may also search /// in the parent contexts or (for C++ classes) base classes. /// /// @param Name The name of the entity that we are searching for. /// /// @param Criteria The criteria that this routine will use to /// determine which names are visible and which names will be /// found. Note that name lookup will find a name that is visible by /// the given criteria, but the entity itself may not be semantically /// correct or even the kind of entity expected based on the /// lookup. For example, searching for a nested-name-specifier name /// might result in an EnumDecl, which is visible but is not permitted /// as a nested-name-specifier in C++03. /// /// @returns The result of name lookup, which includes zero or more /// declarations and possibly additional information used to diagnose /// ambiguities. Sema::LookupResult Sema::LookupQualifiedName(DeclContext *LookupCtx, DeclarationName Name, LookupNameKind NameKind, bool RedeclarationOnly) { assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); if (!Name) return LookupResult::CreateLookupResult(Context, 0); // If we're performing qualified name lookup (e.g., lookup into a // struct), find fields as part of ordinary name lookup. unsigned IDNS = getIdentifierNamespacesFromLookupNameKind(NameKind, getLangOptions().CPlusPlus); if (NameKind == LookupOrdinaryName) IDNS |= Decl::IDNS_Member; // Perform qualified name lookup into the LookupCtx. DeclContext::lookup_iterator I, E; for (llvm::tie(I, E) = LookupCtx->lookup(Name); I != E; ++I) if (isAcceptableLookupResult(*I, NameKind, IDNS)) return LookupResult::CreateLookupResult(Context, I, E); // If this isn't a C++ class or we aren't allowed to look into base // classes, we're done. if (RedeclarationOnly || !isa(LookupCtx)) return LookupResult::CreateLookupResult(Context, 0); // Perform lookup into our base classes. BasePaths Paths; Paths.setOrigin(Context.getTypeDeclType(cast(LookupCtx))); // Look for this member in our base classes if (!LookupInBases(cast(LookupCtx), MemberLookupCriteria(Name, NameKind, IDNS), Paths)) return LookupResult::CreateLookupResult(Context, 0); // C++ [class.member.lookup]p2: // [...] If the resulting set of declarations are not all from // sub-objects of the same type, or the set has a nonstatic member // and includes members from distinct sub-objects, there is an // ambiguity and the program is ill-formed. Otherwise that set is // the result of the lookup. // FIXME: support using declarations! QualType SubobjectType; int SubobjectNumber = 0; for (BasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); Path != PathEnd; ++Path) { const BasePathElement &PathElement = Path->back(); // Determine whether we're looking at a distinct sub-object or not. if (SubobjectType.isNull()) { // This is the first subobject we've looked at. Record it's type. SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); SubobjectNumber = PathElement.SubobjectNumber; } else if (SubobjectType != Context.getCanonicalType(PathElement.Base->getType())) { // We found members of the given name in two subobjects of // different types. This lookup is ambiguous. BasePaths *PathsOnHeap = new BasePaths; PathsOnHeap->swap(Paths); return LookupResult::CreateLookupResult(Context, PathsOnHeap, true); } else if (SubobjectNumber != PathElement.SubobjectNumber) { // We have a different subobject of the same type. // C++ [class.member.lookup]p5: // A static member, a nested type or an enumerator defined in // a base class T can unambiguously be found even if an object // has more than one base class subobject of type T. Decl *FirstDecl = *Path->Decls.first; if (isa(FirstDecl) || isa(FirstDecl) || isa(FirstDecl)) continue; if (isa(FirstDecl)) { // Determine whether all of the methods are static. bool AllMethodsAreStatic = true; for (DeclContext::lookup_iterator Func = Path->Decls.first; Func != Path->Decls.second; ++Func) { if (!isa(*Func)) { assert(isa(*Func) && "Non-function must be a tag decl"); break; } if (!cast(*Func)->isStatic()) { AllMethodsAreStatic = false; break; } } if (AllMethodsAreStatic) continue; } // We have found a nonstatic member name in multiple, distinct // subobjects. Name lookup is ambiguous. BasePaths *PathsOnHeap = new BasePaths; PathsOnHeap->swap(Paths); return LookupResult::CreateLookupResult(Context, PathsOnHeap, false); } } // Lookup in a base class succeeded; return these results. // If we found a function declaration, return an overload set. if (isa(*Paths.front().Decls.first)) return LookupResult::CreateLookupResult(Context, Paths.front().Decls.first, Paths.front().Decls.second); // We found a non-function declaration; return a single declaration. return LookupResult::CreateLookupResult(Context, *Paths.front().Decls.first); } /// @brief Performs name lookup for a name that was parsed in the /// source code, and may contain a C++ scope specifier. /// /// This routine is a convenience routine meant to be called from /// contexts that receive a name and an optional C++ scope specifier /// (e.g., "N::M::x"). It will then perform either qualified or /// unqualified name lookup (with LookupQualifiedName or LookupName, /// respectively) on the given name and return those results. /// /// @param S The scope from which unqualified name lookup will /// begin. /// /// @param SS An optional C++ scope-specified, e.g., "::N::M". /// /// @param Name The name of the entity that name lookup will /// search for. /// /// @returns The result of qualified or unqualified name lookup. Sema::LookupResult Sema::LookupParsedName(Scope *S, const CXXScopeSpec *SS, DeclarationName Name, LookupNameKind NameKind, bool RedeclarationOnly) { if (SS) { if (SS->isInvalid()) return LookupResult::CreateLookupResult(Context, 0); if (SS->isSet()) return LookupQualifiedName(static_cast(SS->getScopeRep()), Name, NameKind, RedeclarationOnly); } return LookupName(S, Name, NameKind, RedeclarationOnly); } /// @brief Produce a diagnostic describing the ambiguity that resulted /// from name lookup. /// /// @param Result The ambiguous name lookup result. /// /// @param Name The name of the entity that name lookup was /// searching for. /// /// @param NameLoc The location of the name within the source code. /// /// @param LookupRange A source range that provides more /// source-location information concerning the lookup itself. For /// example, this range might highlight a nested-name-specifier that /// precedes the name. /// /// @returns true bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result, DeclarationName Name, SourceLocation NameLoc, SourceRange LookupRange) { assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); if (BasePaths *Paths = Result.getBasePaths()) { if (Result.getKind() == LookupResult::AmbiguousBaseSubobjects) { QualType SubobjectType = Paths->front().back().Base->getType(); Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) << LookupRange; DeclContext::lookup_iterator Found = Paths->front().Decls.first; while (isa(*Found) && cast(*Found)->isStatic()) ++Found; Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); return true; } assert(Result.getKind() == LookupResult::AmbiguousBaseSubobjectTypes && "Unhandled form of name lookup ambiguity"); Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) << Name << LookupRange; std::set DeclsPrinted; for (BasePaths::paths_iterator Path = Paths->begin(), PathEnd = Paths->end(); Path != PathEnd; ++Path) { Decl *D = *Path->Decls.first; if (DeclsPrinted.insert(D).second) Diag(D->getLocation(), diag::note_ambiguous_member_found); } delete Paths; return true; } else if (Result.getKind() == LookupResult::AmbiguousReference) { Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; Decl **DI = reinterpret_cast(Result.First), **DEnd = reinterpret_cast(Result.Last); for (; DI != DEnd; ++DI) Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << getQualifiedName(*DI); delete[] reinterpret_cast(Result.First); return true; } assert(false && "Unhandled form of name lookup ambiguity"); // We can't reach here. return true; } // \brief Add the associated classes and namespaces for // argument-dependent lookup with an argument of class type // (C++ [basic.lookup.koenig]p2). static void addAssociatedClassesAndNamespaces(CXXRecordDecl *Class, ASTContext &Context, Sema::AssociatedNamespaceSet &AssociatedNamespaces, Sema::AssociatedClassSet &AssociatedClasses) { // C++ [basic.lookup.koenig]p2: // [...] // -- If T is a class type (including unions), its associated // classes are: the class itself; the class of which it is a // member, if any; and its direct and indirect base // classes. Its associated namespaces are the namespaces in // which its associated classes are defined. // Add the class of which it is a member, if any. DeclContext *Ctx = Class->getDeclContext(); if (CXXRecordDecl *EnclosingClass = dyn_cast(Ctx)) AssociatedClasses.insert(EnclosingClass); // Add the associated namespace for this class. while (Ctx->isRecord()) Ctx = Ctx->getParent(); if (NamespaceDecl *EnclosingNamespace = dyn_cast(Ctx)) AssociatedNamespaces.insert(EnclosingNamespace); // Add the class itself. If we've already seen this class, we don't // need to visit base classes. if (!AssociatedClasses.insert(Class)) return; // FIXME: Handle class template specializations // Add direct and indirect base classes along with their associated // namespaces. llvm::SmallVector Bases; Bases.push_back(Class); while (!Bases.empty()) { // Pop this class off the stack. Class = Bases.back(); Bases.pop_back(); // Visit the base classes. for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(), BaseEnd = Class->bases_end(); Base != BaseEnd; ++Base) { const RecordType *BaseType = Base->getType()->getAsRecordType(); CXXRecordDecl *BaseDecl = cast(BaseType->getDecl()); if (AssociatedClasses.insert(BaseDecl)) { // Find the associated namespace for this base class. DeclContext *BaseCtx = BaseDecl->getDeclContext(); while (BaseCtx->isRecord()) BaseCtx = BaseCtx->getParent(); if (NamespaceDecl *EnclosingNamespace = dyn_cast(BaseCtx)) AssociatedNamespaces.insert(EnclosingNamespace); // Make sure we visit the bases of this base class. if (BaseDecl->bases_begin() != BaseDecl->bases_end()) Bases.push_back(BaseDecl); } } } } // \brief Add the associated classes and namespaces for // argument-dependent lookup with an argument of type T // (C++ [basic.lookup.koenig]p2). static void addAssociatedClassesAndNamespaces(QualType T, ASTContext &Context, Sema::AssociatedNamespaceSet &AssociatedNamespaces, Sema::AssociatedClassSet &AssociatedClasses) { // C++ [basic.lookup.koenig]p2: // // For each argument type T in the function call, there is a set // of zero or more associated namespaces and a set of zero or more // associated classes to be considered. The sets of namespaces and // classes is determined entirely by the types of the function // arguments (and the namespace of any template template // argument). Typedef names and using-declarations used to specify // the types do not contribute to this set. The sets of namespaces // and classes are determined in the following way: T = Context.getCanonicalType(T).getUnqualifiedType(); // -- If T is a pointer to U or an array of U, its associated // namespaces and classes are those associated with U. // // We handle this by unwrapping pointer and array types immediately, // to avoid unnecessary recursion. while (true) { if (const PointerType *Ptr = T->getAsPointerType()) T = Ptr->getPointeeType(); else if (const ArrayType *Ptr = Context.getAsArrayType(T)) T = Ptr->getElementType(); else break; } // -- If T is a fundamental type, its associated sets of // namespaces and classes are both empty. if (T->getAsBuiltinType()) return; // -- If T is a class type (including unions), its associated // classes are: the class itself; the class of which it is a // member, if any; and its direct and indirect base // classes. Its associated namespaces are the namespaces in // which its associated classes are defined. if (const CXXRecordType *ClassType = dyn_cast_or_null(T->getAsRecordType())) { addAssociatedClassesAndNamespaces(ClassType->getDecl(), Context, AssociatedNamespaces, AssociatedClasses); return; } // -- If T is an enumeration type, its associated namespace is // the namespace in which it is defined. If it is class // member, its associated class is the member’s class; else // it has no associated class. if (const EnumType *EnumT = T->getAsEnumType()) { EnumDecl *Enum = EnumT->getDecl(); DeclContext *Ctx = Enum->getDeclContext(); if (CXXRecordDecl *EnclosingClass = dyn_cast(Ctx)) AssociatedClasses.insert(EnclosingClass); // Add the associated namespace for this class. while (Ctx->isRecord()) Ctx = Ctx->getParent(); if (NamespaceDecl *EnclosingNamespace = dyn_cast(Ctx)) AssociatedNamespaces.insert(EnclosingNamespace); return; } // -- If T is a function type, its associated namespaces and // classes are those associated with the function parameter // types and those associated with the return type. if (const FunctionType *FunctionType = T->getAsFunctionType()) { // Return type addAssociatedClassesAndNamespaces(FunctionType->getResultType(), Context, AssociatedNamespaces, AssociatedClasses); const FunctionTypeProto *Proto = dyn_cast(FunctionType); if (!Proto) return; // Argument types for (FunctionTypeProto::arg_type_iterator Arg = Proto->arg_type_begin(), ArgEnd = Proto->arg_type_end(); Arg != ArgEnd; ++Arg) addAssociatedClassesAndNamespaces(*Arg, Context, AssociatedNamespaces, AssociatedClasses); return; } // -- If T is a pointer to a member function of a class X, its // associated namespaces and classes are those associated // with the function parameter types and return type, // together with those associated with X. // // -- If T is a pointer to a data member of class X, its // associated namespaces and classes are those associated // with the member type together with those associated with // X. if (const MemberPointerType *MemberPtr = T->getAsMemberPointerType()) { // Handle the type that the pointer to member points to. addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(), Context, AssociatedNamespaces, AssociatedClasses); // Handle the class type into which this points. if (const RecordType *Class = MemberPtr->getClass()->getAsRecordType()) addAssociatedClassesAndNamespaces(cast(Class->getDecl()), Context, AssociatedNamespaces, AssociatedClasses); return; } // FIXME: What about block pointers? // FIXME: What about Objective-C message sends? } /// \brief Find the associated classes and namespaces for /// argument-dependent lookup for a call with the given set of /// arguments. /// /// This routine computes the sets of associated classes and associated /// namespaces searched by argument-dependent lookup /// (C++ [basic.lookup.argdep]) for a given set of arguments. void Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs, AssociatedNamespaceSet &AssociatedNamespaces, AssociatedClassSet &AssociatedClasses) { AssociatedNamespaces.clear(); AssociatedClasses.clear(); // C++ [basic.lookup.koenig]p2: // For each argument type T in the function call, there is a set // of zero or more associated namespaces and a set of zero or more // associated classes to be considered. The sets of namespaces and // classes is determined entirely by the types of the function // arguments (and the namespace of any template template // argument). for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) { Expr *Arg = Args[ArgIdx]; if (Arg->getType() != Context.OverloadTy) { addAssociatedClassesAndNamespaces(Arg->getType(), Context, AssociatedNamespaces, AssociatedClasses); continue; } // [...] In addition, if the argument is the name or address of a // set of overloaded functions and/or function templates, its // associated classes and namespaces are the union of those // associated with each of the members of the set: the namespace // in which the function or function template is defined and the // classes and namespaces associated with its (non-dependent) // parameter types and return type. DeclRefExpr *DRE = 0; if (UnaryOperator *unaryOp = dyn_cast(Arg)) { if (unaryOp->getOpcode() == UnaryOperator::AddrOf) DRE = dyn_cast(unaryOp->getSubExpr()); } else DRE = dyn_cast(Arg); if (!DRE) continue; OverloadedFunctionDecl *Ovl = dyn_cast(DRE->getDecl()); if (!Ovl) continue; for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), FuncEnd = Ovl->function_end(); Func != FuncEnd; ++Func) { FunctionDecl *FDecl = cast(*Func); // Add the namespace in which this function was defined. Note // that, if this is a member function, we do *not* consider the // enclosing namespace of its class. DeclContext *Ctx = FDecl->getDeclContext(); if (NamespaceDecl *EnclosingNamespace = dyn_cast(Ctx)) AssociatedNamespaces.insert(EnclosingNamespace); // Add the classes and namespaces associated with the parameter // types and return type of this function. addAssociatedClassesAndNamespaces(FDecl->getType(), Context, AssociatedNamespaces, AssociatedClasses); } } }