//===---- CodeCompleteConsumer.h - Code Completion Interface ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the CodeCompleteConsumer class. // //===----------------------------------------------------------------------===// #include "clang/Sema/CodeCompleteConsumer.h" #include "clang/AST/DeclCXX.h" #include "clang/Parse/Scope.h" #include "clang/Lex/Preprocessor.h" #include "Sema.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace clang; //===----------------------------------------------------------------------===// // Code completion string implementation //===----------------------------------------------------------------------===// CodeCompletionString::Chunk CodeCompletionString::Chunk::CreateText(const char *Text) { Chunk Result; Result.Kind = CK_Text; char *New = new char [std::strlen(Text) + 1]; std::strcpy(New, Text); Result.Text = New; return Result; } CodeCompletionString::Chunk CodeCompletionString::Chunk::CreateOptional( std::auto_ptr Optional) { Chunk Result; Result.Kind = CK_Optional; Result.Optional = Optional.release(); return Result; } CodeCompletionString::Chunk CodeCompletionString::Chunk::CreatePlaceholder(const char *Placeholder) { Chunk Result; Result.Kind = CK_Placeholder; char *New = new char [std::strlen(Placeholder) + 1]; std::strcpy(New, Placeholder); Result.Placeholder = New; return Result; } void CodeCompletionString::Chunk::Destroy() { switch (Kind) { case CK_Text: delete [] Text; break; case CK_Optional: delete Optional; break; case CK_Placeholder: delete [] Placeholder; break; } } CodeCompletionString::~CodeCompletionString() { std::for_each(Chunks.begin(), Chunks.end(), std::mem_fun_ref(&Chunk::Destroy)); } std::string CodeCompletionString::getAsString() const { std::string Result; llvm::raw_string_ostream OS(Result); for (iterator C = begin(), CEnd = end(); C != CEnd; ++C) { switch (C->Kind) { case CK_Text: OS << C->Text; break; case CK_Optional: OS << "{#" << C->Optional->getAsString() << "#}"; break; case CK_Placeholder: OS << "<#" << C->Placeholder << "#>"; break; } } return Result; } //===----------------------------------------------------------------------===// // Code completion consumer implementation //===----------------------------------------------------------------------===// CodeCompleteConsumer::CodeCompleteConsumer(Sema &S) : SemaRef(S) { SemaRef.setCodeCompleteConsumer(this); } CodeCompleteConsumer::~CodeCompleteConsumer() { SemaRef.setCodeCompleteConsumer(0); } void CodeCompleteConsumer::CodeCompleteMemberReferenceExpr(Scope *S, QualType BaseType, bool IsArrow) { if (IsArrow) { if (const PointerType *Ptr = BaseType->getAs()) BaseType = Ptr->getPointeeType(); else if (BaseType->isObjCObjectPointerType()) /*Do nothing*/ ; else return; } ResultSet Results(*this); unsigned NextRank = 0; if (const RecordType *Record = BaseType->getAs()) { NextRank = CollectMemberLookupResults(Record->getDecl(), NextRank, Results); if (getSema().getLangOptions().CPlusPlus) { if (!Results.empty()) { // The "template" keyword can follow "->" or "." in the grammar. // However, we only want to suggest the template keyword if something // is dependent. bool IsDependent = BaseType->isDependentType(); if (!IsDependent) { for (Scope *DepScope = S; DepScope; DepScope = DepScope->getParent()) if (DeclContext *Ctx = (DeclContext *)DepScope->getEntity()) { IsDependent = Ctx->isDependentContext(); break; } } if (IsDependent) Results.MaybeAddResult(Result("template", NextRank++)); } // We could have the start of a nested-name-specifier. Add those // results as well. Results.setFilter(&CodeCompleteConsumer::IsNestedNameSpecifier); CollectLookupResults(S, NextRank, Results); } // Hand off the results found for code completion. ProcessCodeCompleteResults(Results.data(), Results.size()); // We're done! return; } } void CodeCompleteConsumer::CodeCompleteTag(Scope *S, ElaboratedType::TagKind TK) { ResultSet::LookupFilter Filter = 0; switch (TK) { case ElaboratedType::TK_enum: Filter = &CodeCompleteConsumer::IsEnum; break; case ElaboratedType::TK_class: case ElaboratedType::TK_struct: Filter = &CodeCompleteConsumer::IsClassOrStruct; break; case ElaboratedType::TK_union: Filter = &CodeCompleteConsumer::IsUnion; break; } ResultSet Results(*this, Filter); unsigned NextRank = CollectLookupResults(S, 0, Results); if (getSema().getLangOptions().CPlusPlus) { // We could have the start of a nested-name-specifier. Add those // results as well. Results.setFilter(&CodeCompleteConsumer::IsNestedNameSpecifier); CollectLookupResults(S, NextRank, Results); } ProcessCodeCompleteResults(Results.data(), Results.size()); } void CodeCompleteConsumer::CodeCompleteQualifiedId(Scope *S, NestedNameSpecifier *NNS, bool EnteringContext) { CXXScopeSpec SS; SS.setScopeRep(NNS); DeclContext *Ctx = getSema().computeDeclContext(SS, EnteringContext); if (!Ctx) return; ResultSet Results(*this); unsigned NextRank = CollectMemberLookupResults(Ctx, 0, Results); // The "template" keyword can follow "::" in the grammar, but only // put it into the grammar if the nested-name-specifier is dependent. if (!Results.empty() && NNS->isDependent()) Results.MaybeAddResult(Result("template", NextRank)); ProcessCodeCompleteResults(Results.data(), Results.size()); } void CodeCompleteConsumer::CodeCompleteUsing(Scope *S) { ResultSet Results(*this, &CodeCompleteConsumer::IsNestedNameSpecifier); // If we aren't in class scope, we could see the "namespace" keyword. if (!S->isClassScope()) Results.MaybeAddResult(Result("namespace", 0)); // After "using", we can see anything that would start a // nested-name-specifier. CollectLookupResults(S, 0, Results); ProcessCodeCompleteResults(Results.data(), Results.size()); } void CodeCompleteConsumer::CodeCompleteUsingDirective(Scope *S) { // After "using namespace", we expect to see a namespace name or namespace // alias. ResultSet Results(*this, &CodeCompleteConsumer::IsNamespaceOrAlias); CollectLookupResults(S, 0, Results); ProcessCodeCompleteResults(Results.data(), Results.size()); } void CodeCompleteConsumer::CodeCompleteNamespaceDecl(Scope *S) { ResultSet Results(*this, &CodeCompleteConsumer::IsNamespace); DeclContext *Ctx = (DeclContext *)S->getEntity(); if (!S->getParent()) Ctx = getSema().Context.getTranslationUnitDecl(); if (Ctx && Ctx->isFileContext()) { // We only want to see those namespaces that have already been defined // within this scope, because its likely that the user is creating an // extended namespace declaration. Keep track of the most recent // definition of each namespace. std::map OrigToLatest; for (DeclContext::specific_decl_iterator NS(Ctx->decls_begin()), NSEnd(Ctx->decls_end()); NS != NSEnd; ++NS) OrigToLatest[NS->getOriginalNamespace()] = *NS; // Add the most recent definition (or extended definition) of each // namespace to the list of results. for (std::map::iterator NS = OrigToLatest.begin(), NSEnd = OrigToLatest.end(); NS != NSEnd; ++NS) Results.MaybeAddResult(Result(NS->second, 0)); } ProcessCodeCompleteResults(Results.data(), Results.size()); } void CodeCompleteConsumer::CodeCompleteNamespaceAliasDecl(Scope *S) { // After "namespace", we expect to see a namespace or alias. ResultSet Results(*this, &CodeCompleteConsumer::IsNamespaceOrAlias); CollectLookupResults(S, 0, Results); ProcessCodeCompleteResults(Results.data(), Results.size()); } void CodeCompleteConsumer::CodeCompleteOperatorName(Scope *S) { ResultSet Results(*this, &CodeCompleteConsumer::IsType); // Add the names of overloadable operators. #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ if (std::strcmp(Spelling, "?")) \ Results.MaybeAddResult(Result(Spelling, 0)); #include "clang/Basic/OperatorKinds.def" // Add any type names visible from the current scope unsigned NextRank = CollectLookupResults(S, 0, Results); // Add any type specifiers AddTypeSpecifierResults(0, Results); // Add any nested-name-specifiers Results.setFilter(&CodeCompleteConsumer::IsNestedNameSpecifier); CollectLookupResults(S, NextRank + 1, Results); ProcessCodeCompleteResults(Results.data(), Results.size()); } void CodeCompleteConsumer::ResultSet::MaybeAddResult(Result R) { if (R.Kind != Result::RK_Declaration) { // For non-declaration results, just add the result. Results.push_back(R); return; } // Look through using declarations. if (UsingDecl *Using = dyn_cast(R.Declaration)) return MaybeAddResult(Result(Using->getTargetDecl(), R.Rank)); // Handle each declaration in an overload set separately. if (OverloadedFunctionDecl *Ovl = dyn_cast(R.Declaration)) { for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(), FEnd = Ovl->function_end(); F != FEnd; ++F) MaybeAddResult(Result(*F, R.Rank)); return; } Decl *CanonDecl = R.Declaration->getCanonicalDecl(); unsigned IDNS = CanonDecl->getIdentifierNamespace(); // Friend declarations and declarations introduced due to friends are never // added as results. if (isa(CanonDecl) || (IDNS & (Decl::IDNS_OrdinaryFriend | Decl::IDNS_TagFriend))) return; if (const IdentifierInfo *Id = R.Declaration->getIdentifier()) { // __va_list_tag is a freak of nature. Find it and skip it. if (Id->isStr("__va_list_tag") || Id->isStr("__builtin_va_list")) return; // FIXME: Should we filter out other names in the implementation's // namespace, e.g., those containing a __ or that start with _[A-Z]? } // C++ constructors are never found by name lookup. if (isa(CanonDecl)) return; // Filter out any unwanted results. if (Filter && !(Completer.*Filter)(R.Declaration)) return; ShadowMap &SMap = ShadowMaps.back(); ShadowMap::iterator I, IEnd; for (llvm::tie(I, IEnd) = SMap.equal_range(R.Declaration->getDeclName()); I != IEnd; ++I) { NamedDecl *ND = I->second.first; unsigned Index = I->second.second; if (ND->getCanonicalDecl() == CanonDecl) { // This is a redeclaration. Always pick the newer declaration. I->second.first = R.Declaration; Results[Index].Declaration = R.Declaration; // Pick the best rank of the two. Results[Index].Rank = std::min(Results[Index].Rank, R.Rank); // We're done. return; } } // This is a new declaration in this scope. However, check whether this // declaration name is hidden by a similarly-named declaration in an outer // scope. std::list::iterator SM, SMEnd = ShadowMaps.end(); --SMEnd; for (SM = ShadowMaps.begin(); SM != SMEnd; ++SM) { for (llvm::tie(I, IEnd) = SM->equal_range(R.Declaration->getDeclName()); I != IEnd; ++I) { // A tag declaration does not hide a non-tag declaration. if (I->second.first->getIdentifierNamespace() == Decl::IDNS_Tag && (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | Decl::IDNS_ObjCProtocol))) continue; // Protocols are in distinct namespaces from everything else. if (((I->second.first->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) || (IDNS & Decl::IDNS_ObjCProtocol)) && I->second.first->getIdentifierNamespace() != IDNS) continue; // The newly-added result is hidden by an entry in the shadow map. if (Completer.canHiddenResultBeFound(R.Declaration, I->second.first)) { // Note that this result was hidden. R.Hidden = true; } else { // This result was hidden and cannot be found; don't bother adding // it. return; } break; } } // Make sure that any given declaration only shows up in the result set once. if (!AllDeclsFound.insert(CanonDecl)) return; // Insert this result into the set of results and into the current shadow // map. SMap.insert(std::make_pair(R.Declaration->getDeclName(), std::make_pair(R.Declaration, Results.size()))); Results.push_back(R); } /// \brief Enter into a new scope. void CodeCompleteConsumer::ResultSet::EnterNewScope() { ShadowMaps.push_back(ShadowMap()); } /// \brief Exit from the current scope. void CodeCompleteConsumer::ResultSet::ExitScope() { ShadowMaps.pop_back(); } // Find the next outer declaration context corresponding to this scope. static DeclContext *findOuterContext(Scope *S) { for (S = S->getParent(); S; S = S->getParent()) if (S->getEntity()) return static_cast(S->getEntity())->getPrimaryContext(); return 0; } /// \brief Collect the results of searching for declarations within the given /// scope and its parent scopes. /// /// \param S the scope in which we will start looking for declarations. /// /// \param InitialRank the initial rank given to results in this scope. /// Larger rank values will be used for results found in parent scopes. unsigned CodeCompleteConsumer::CollectLookupResults(Scope *S, unsigned InitialRank, ResultSet &Results) { if (!S) return InitialRank; // FIXME: Using directives! unsigned NextRank = InitialRank; Results.EnterNewScope(); if (S->getEntity() && !((DeclContext *)S->getEntity())->isFunctionOrMethod()) { // Look into this scope's declaration context, along with any of its // parent lookup contexts (e.g., enclosing classes), up to the point // where we hit the context stored in the next outer scope. DeclContext *Ctx = (DeclContext *)S->getEntity(); DeclContext *OuterCtx = findOuterContext(S); for (; Ctx && Ctx->getPrimaryContext() != OuterCtx; Ctx = Ctx->getLookupParent()) { if (Ctx->isFunctionOrMethod()) continue; NextRank = CollectMemberLookupResults(Ctx, NextRank + 1, Results); } } else if (!S->getParent()) { // Look into the translation unit scope. We walk through the translation // unit's declaration context, because the Scope itself won't have all of // the declarations if NextRank = CollectMemberLookupResults( getSema().Context.getTranslationUnitDecl(), NextRank + 1, Results); } else { // Walk through the declarations in this Scope. for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end(); D != DEnd; ++D) { if (NamedDecl *ND = dyn_cast((Decl *)((*D).get()))) Results.MaybeAddResult(Result(ND, NextRank)); } NextRank = NextRank + 1; } // Lookup names in the parent scope. NextRank = CollectLookupResults(S->getParent(), NextRank, Results); Results.ExitScope(); return NextRank; } /// \brief Collect the results of searching for members within the given /// declaration context. /// /// \param Ctx the declaration context from which we will gather results. /// /// \param InitialRank the initial rank given to results in this declaration /// context. Larger rank values will be used for, e.g., members found in /// base classes. /// /// \param Results the result set that will be extended with any results /// found within this declaration context (and, for a C++ class, its bases). /// /// \returns the next higher rank value, after considering all of the /// names within this declaration context. unsigned CodeCompleteConsumer::CollectMemberLookupResults(DeclContext *Ctx, unsigned InitialRank, ResultSet &Results) { llvm::SmallPtrSet Visited; return CollectMemberLookupResults(Ctx, InitialRank, Visited, Results); } /// \brief Collect the results of searching for members within the given /// declaration context. /// /// \param Ctx the declaration context from which we will gather results. /// /// \param InitialRank the initial rank given to results in this declaration /// context. Larger rank values will be used for, e.g., members found in /// base classes. /// /// \param Visited the set of declaration contexts that have already been /// visited. Declaration contexts will only be visited once. /// /// \param Results the result set that will be extended with any results /// found within this declaration context (and, for a C++ class, its bases). /// /// \returns the next higher rank value, after considering all of the /// names within this declaration context. unsigned CodeCompleteConsumer::CollectMemberLookupResults(DeclContext *Ctx, unsigned InitialRank, llvm::SmallPtrSet &Visited, ResultSet &Results) { // Make sure we don't visit the same context twice. if (!Visited.insert(Ctx->getPrimaryContext())) return InitialRank; // Enumerate all of the results in this context. Results.EnterNewScope(); for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx; CurCtx = CurCtx->getNextContext()) { for (DeclContext::decl_iterator D = CurCtx->decls_begin(), DEnd = CurCtx->decls_end(); D != DEnd; ++D) { if (NamedDecl *ND = dyn_cast(*D)) Results.MaybeAddResult(Result(ND, InitialRank)); } } // Traverse the contexts of inherited classes. unsigned NextRank = InitialRank; if (CXXRecordDecl *Record = dyn_cast(Ctx)) { for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(), BEnd = Record->bases_end(); B != BEnd; ++B) { QualType BaseType = B->getType(); // Don't look into dependent bases, because name lookup can't look // there anyway. if (BaseType->isDependentType()) continue; const RecordType *Record = BaseType->getAs(); if (!Record) continue; // FIXME: It would be nice to be able to determine whether referencing // a particular member would be ambiguous. For example, given // // struct A { int member; }; // struct B { int member; }; // struct C : A, B { }; // // void f(C *c) { c->### } // accessing 'member' would result in an ambiguity. However, code // completion could be smart enough to qualify the member with the // base class, e.g., // // c->B::member // // or // // c->A::member // Collect results from this base class (and its bases). NextRank = std::max(NextRank, CollectMemberLookupResults(Record->getDecl(), InitialRank + 1, Visited, Results)); } } // FIXME: Look into base classes in Objective-C! Results.ExitScope(); return NextRank; } /// \brief Determines whether the given declaration is suitable as the /// start of a C++ nested-name-specifier, e.g., a class or namespace. bool CodeCompleteConsumer::IsNestedNameSpecifier(NamedDecl *ND) const { // Allow us to find class templates, too. if (ClassTemplateDecl *ClassTemplate = dyn_cast(ND)) ND = ClassTemplate->getTemplatedDecl(); return getSema().isAcceptableNestedNameSpecifier(ND); } /// \brief Determines whether the given declaration is an enumeration. bool CodeCompleteConsumer::IsEnum(NamedDecl *ND) const { return isa(ND); } /// \brief Determines whether the given declaration is a class or struct. bool CodeCompleteConsumer::IsClassOrStruct(NamedDecl *ND) const { // Allow us to find class templates, too. if (ClassTemplateDecl *ClassTemplate = dyn_cast(ND)) ND = ClassTemplate->getTemplatedDecl(); if (RecordDecl *RD = dyn_cast(ND)) return RD->getTagKind() == TagDecl::TK_class || RD->getTagKind() == TagDecl::TK_struct; return false; } /// \brief Determines whether the given declaration is a union. bool CodeCompleteConsumer::IsUnion(NamedDecl *ND) const { // Allow us to find class templates, too. if (ClassTemplateDecl *ClassTemplate = dyn_cast(ND)) ND = ClassTemplate->getTemplatedDecl(); if (RecordDecl *RD = dyn_cast(ND)) return RD->getTagKind() == TagDecl::TK_union; return false; } /// \brief Determines whether the given declaration is a namespace. bool CodeCompleteConsumer::IsNamespace(NamedDecl *ND) const { return isa(ND); } /// \brief Determines whether the given declaration is a namespace or /// namespace alias. bool CodeCompleteConsumer::IsNamespaceOrAlias(NamedDecl *ND) const { return isa(ND) || isa(ND); } /// \brief Brief determines whether the given declaration is a namespace or /// namespace alias. bool CodeCompleteConsumer::IsType(NamedDecl *ND) const { return isa(ND); } namespace { struct VISIBILITY_HIDDEN SortCodeCompleteResult { typedef CodeCompleteConsumer::Result Result; bool operator()(const Result &X, const Result &Y) const { // Sort first by rank. if (X.Rank < Y.Rank) return true; else if (X.Rank > Y.Rank) return false; // Result kinds are ordered by decreasing importance. if (X.Kind < Y.Kind) return true; else if (X.Kind > Y.Kind) return false; // Non-hidden names precede hidden names. if (X.Hidden != Y.Hidden) return !X.Hidden; // Ordering depends on the kind of result. switch (X.Kind) { case Result::RK_Declaration: // Order based on the declaration names. return X.Declaration->getDeclName() < Y.Declaration->getDeclName(); case Result::RK_Keyword: return strcmp(X.Keyword, Y.Keyword) == -1; } // If only our C++ compiler did control-flow warnings properly. return false; } }; } /// \brief Determines whether the given hidden result could be found with /// some extra work, e.g., by qualifying the name. /// /// \param Hidden the declaration that is hidden by the currenly \p Visible /// declaration. /// /// \param Visible the declaration with the same name that is already visible. /// /// \returns true if the hidden result can be found by some mechanism, /// false otherwise. bool CodeCompleteConsumer::canHiddenResultBeFound(NamedDecl *Hidden, NamedDecl *Visible) { // In C, there is no way to refer to a hidden name. if (!getSema().getLangOptions().CPlusPlus) return false; DeclContext *HiddenCtx = Hidden->getDeclContext()->getLookupContext(); // There is no way to qualify a name declared in a function or method. if (HiddenCtx->isFunctionOrMethod()) return false; // If the hidden and visible declarations are in different name-lookup // contexts, then we can qualify the name of the hidden declaration. // FIXME: Optionally compute the string needed to refer to the hidden // name. return HiddenCtx != Visible->getDeclContext()->getLookupContext(); } /// \brief Add type specifiers for the current language as keyword results. void CodeCompleteConsumer::AddTypeSpecifierResults(unsigned Rank, ResultSet &Results) { Results.MaybeAddResult(Result("short", Rank)); Results.MaybeAddResult(Result("long", Rank)); Results.MaybeAddResult(Result("signed", Rank)); Results.MaybeAddResult(Result("unsigned", Rank)); Results.MaybeAddResult(Result("void", Rank)); Results.MaybeAddResult(Result("char", Rank)); Results.MaybeAddResult(Result("int", Rank)); Results.MaybeAddResult(Result("float", Rank)); Results.MaybeAddResult(Result("double", Rank)); Results.MaybeAddResult(Result("enum", Rank)); Results.MaybeAddResult(Result("struct", Rank)); Results.MaybeAddResult(Result("union", Rank)); if (getSema().getLangOptions().C99) { // C99-specific Results.MaybeAddResult(Result("_Complex", Rank)); Results.MaybeAddResult(Result("_Imaginary", Rank)); Results.MaybeAddResult(Result("_Bool", Rank)); } if (getSema().getLangOptions().CPlusPlus) { // C++-specific Results.MaybeAddResult(Result("bool", Rank)); Results.MaybeAddResult(Result("class", Rank)); Results.MaybeAddResult(Result("typename", Rank)); Results.MaybeAddResult(Result("wchar_t", Rank)); if (getSema().getLangOptions().CPlusPlus0x) { Results.MaybeAddResult(Result("char16_t", Rank)); Results.MaybeAddResult(Result("char32_t", Rank)); Results.MaybeAddResult(Result("decltype", Rank)); } } // GNU extensions if (getSema().getLangOptions().GNUMode) { // FIXME: Enable when we actually support decimal floating point. // Results.MaybeAddResult(Result("_Decimal32", Rank)); // Results.MaybeAddResult(Result("_Decimal64", Rank)); // Results.MaybeAddResult(Result("_Decimal128", Rank)); Results.MaybeAddResult(Result("typeof", Rank)); } } /// \brief Add function parameter chunks to the given code completion string. static void AddFunctionParameterChunks(ASTContext &Context, FunctionDecl *Function, CodeCompletionString *Result) { CodeCompletionString *CCStr = Result; for (unsigned P = 0, N = Function->getNumParams(); P != N; ++P) { ParmVarDecl *Param = Function->getParamDecl(P); if (Param->hasDefaultArg()) { // When we see an optional default argument, put that argument and // the remaining default arguments into a new, optional string. CodeCompletionString *Opt = new CodeCompletionString; CCStr->AddOptionalChunk(std::auto_ptr(Opt)); CCStr = Opt; } if (P != 0) CCStr->AddTextChunk(", "); // Format the placeholder string. std::string PlaceholderStr; if (Param->getIdentifier()) PlaceholderStr = Param->getIdentifier()->getName(); Param->getType().getAsStringInternal(PlaceholderStr, Context.PrintingPolicy); // Add the placeholder string. CCStr->AddPlaceholderChunk(PlaceholderStr.c_str()); } } /// \brief Add template parameter chunks to the given code completion string. static void AddTemplateParameterChunks(ASTContext &Context, TemplateDecl *Template, CodeCompletionString *Result, unsigned MaxParameters = 0) { CodeCompletionString *CCStr = Result; bool FirstParameter = true; TemplateParameterList *Params = Template->getTemplateParameters(); TemplateParameterList::iterator PEnd = Params->end(); if (MaxParameters) PEnd = Params->begin() + MaxParameters; for (TemplateParameterList::iterator P = Params->begin(); P != PEnd; ++P) { bool HasDefaultArg = false; std::string PlaceholderStr; if (TemplateTypeParmDecl *TTP = dyn_cast(*P)) { if (TTP->wasDeclaredWithTypename()) PlaceholderStr = "typename"; else PlaceholderStr = "class"; if (TTP->getIdentifier()) { PlaceholderStr += ' '; PlaceholderStr += TTP->getIdentifier()->getName(); } HasDefaultArg = TTP->hasDefaultArgument(); } else if (NonTypeTemplateParmDecl *NTTP = dyn_cast(*P)) { if (NTTP->getIdentifier()) PlaceholderStr = NTTP->getIdentifier()->getName(); NTTP->getType().getAsStringInternal(PlaceholderStr, Context.PrintingPolicy); HasDefaultArg = NTTP->hasDefaultArgument(); } else { assert(isa(*P)); TemplateTemplateParmDecl *TTP = cast(*P); // Since putting the template argument list into the placeholder would // be very, very long, we just use an abbreviation. PlaceholderStr = "template<...> class"; if (TTP->getIdentifier()) { PlaceholderStr += ' '; PlaceholderStr += TTP->getIdentifier()->getName(); } HasDefaultArg = TTP->hasDefaultArgument(); } if (HasDefaultArg) { // When we see an optional default argument, put that argument and // the remaining default arguments into a new, optional string. CodeCompletionString *Opt = new CodeCompletionString; CCStr->AddOptionalChunk(std::auto_ptr(Opt)); CCStr = Opt; } if (FirstParameter) FirstParameter = false; else CCStr->AddTextChunk(", "); // Add the placeholder string. CCStr->AddPlaceholderChunk(PlaceholderStr.c_str()); } } /// \brief If possible, create a new code completion string for the given /// result. /// /// \returns Either a new, heap-allocated code completion string describing /// how to use this result, or NULL to indicate that the string or name of the /// result is all that is needed. CodeCompletionString * CodeCompleteConsumer::CreateCodeCompletionString(Result R) { if (R.Kind != Result::RK_Declaration) return 0; NamedDecl *ND = R.Declaration; if (FunctionDecl *Function = dyn_cast(ND)) { CodeCompletionString *Result = new CodeCompletionString; Result->AddTextChunk(Function->getNameAsString().c_str()); Result->AddTextChunk("("); AddFunctionParameterChunks(getSema().Context, Function, Result); Result->AddTextChunk(")"); return Result; } if (FunctionTemplateDecl *FunTmpl = dyn_cast(ND)) { CodeCompletionString *Result = new CodeCompletionString; FunctionDecl *Function = FunTmpl->getTemplatedDecl(); Result->AddTextChunk(Function->getNameAsString().c_str()); // Figure out which template parameters are deduced (or have default // arguments). llvm::SmallVector Deduced; getSema().MarkDeducedTemplateParameters(FunTmpl, Deduced); unsigned LastDeducibleArgument; for (LastDeducibleArgument = Deduced.size(); LastDeducibleArgument > 0; --LastDeducibleArgument) { if (!Deduced[LastDeducibleArgument - 1]) { // C++0x: Figure out if the template argument has a default. If so, // the user doesn't need to type this argument. // FIXME: We need to abstract template parameters better! bool HasDefaultArg = false; NamedDecl *Param = FunTmpl->getTemplateParameters()->getParam( LastDeducibleArgument - 1); if (TemplateTypeParmDecl *TTP = dyn_cast(Param)) HasDefaultArg = TTP->hasDefaultArgument(); else if (NonTypeTemplateParmDecl *NTTP = dyn_cast(Param)) HasDefaultArg = NTTP->hasDefaultArgument(); else { assert(isa(Param)); HasDefaultArg = cast(Param)->hasDefaultArgument(); } if (!HasDefaultArg) break; } } if (LastDeducibleArgument) { // Some of the function template arguments cannot be deduced from a // function call, so we introduce an explicit template argument list // containing all of the arguments up to the first deducible argument. Result->AddTextChunk("<"); AddTemplateParameterChunks(getSema().Context, FunTmpl, Result, LastDeducibleArgument); Result->AddTextChunk(">"); } // Add the function parameters Result->AddTextChunk("("); AddFunctionParameterChunks(getSema().Context, Function, Result); Result->AddTextChunk(")"); return Result; } if (TemplateDecl *Template = dyn_cast(ND)) { CodeCompletionString *Result = new CodeCompletionString; Result->AddTextChunk(Template->getNameAsString().c_str()); Result->AddTextChunk("<"); AddTemplateParameterChunks(getSema().Context, Template, Result); Result->AddTextChunk(">"); return Result; } return 0; } void PrintingCodeCompleteConsumer::ProcessCodeCompleteResults(Result *Results, unsigned NumResults) { // Sort the results by rank/kind/etc. std::stable_sort(Results, Results + NumResults, SortCodeCompleteResult()); // Print the results. for (unsigned I = 0; I != NumResults; ++I) { switch (Results[I].Kind) { case Result::RK_Declaration: OS << Results[I].Declaration->getNameAsString() << " : " << Results[I].Rank; if (Results[I].Hidden) OS << " (Hidden)"; if (CodeCompletionString *CCS = CreateCodeCompletionString(Results[I])) { OS << " : " << CCS->getAsString(); delete CCS; } OS << '\n'; break; case Result::RK_Keyword: OS << Results[I].Keyword << " : " << Results[I].Rank << '\n'; break; } } // Once we've printed the code-completion results, suppress remaining // diagnostics. // FIXME: Move this somewhere else! getSema().PP.getDiagnostics().setSuppressAllDiagnostics(); }