//===--- PTHLexer.cpp - Lex from a token stream ---------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the PTHLexer interface. // //===----------------------------------------------------------------------===// #include "clang/Basic/TokenKinds.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Lex/PTHLexer.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/PTHManager.h" #include "clang/Lex/Token.h" #include "clang/Lex/Preprocessor.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/System/Host.h" using namespace clang; #define DISK_TOKEN_SIZE (1+1+2+4+4) //===----------------------------------------------------------------------===// // Utility methods for reading from the mmap'ed PTH file. //===----------------------------------------------------------------------===// static inline uint16_t ReadUnalignedLE16(const unsigned char *&Data) { uint16_t V = ((uint16_t)Data[0]) | ((uint16_t)Data[1] << 8); Data += 2; return V; } static inline uint32_t ReadUnalignedLE32(const unsigned char *&Data) { uint32_t V = ((uint32_t)Data[0]) | ((uint32_t)Data[1] << 8) | ((uint32_t)Data[2] << 16) | ((uint32_t)Data[3] << 24); Data += 4; return V; } static inline uint32_t ReadLE32(const unsigned char *&Data) { // Hosts that directly support little-endian 32-bit loads can just // use them. Big-endian hosts need a bswap. uint32_t V = *((uint32_t*)Data); if (llvm::sys::isBigEndianHost()) V = llvm::ByteSwap_32(V); Data += 4; return V; } //===----------------------------------------------------------------------===// // PTHLexer methods. //===----------------------------------------------------------------------===// PTHLexer::PTHLexer(Preprocessor &PP, FileID FID, const unsigned char *D, const unsigned char *ppcond, PTHManager &PM) : PreprocessorLexer(&PP, FID), TokBuf(D), CurPtr(D), LastHashTokPtr(0), PPCond(ppcond), CurPPCondPtr(ppcond), PTHMgr(PM) { FileStartLoc = PP.getSourceManager().getLocForStartOfFile(FID); } void PTHLexer::Lex(Token& Tok) { LexNextToken: //===--------------------------------------==// // Read the raw token data. //===--------------------------------------==// // Shadow CurPtr into an automatic variable. const unsigned char *CurPtrShadow = CurPtr; // Read in the data for the token. unsigned Word0 = ReadLE32(CurPtrShadow); uint32_t IdentifierID = ReadLE32(CurPtrShadow); uint32_t FileOffset = ReadLE32(CurPtrShadow); tok::TokenKind TKind = (tok::TokenKind) (Word0 & 0xFF); Token::TokenFlags TFlags = (Token::TokenFlags) ((Word0 >> 8) & 0xFF); uint32_t Len = Word0 >> 16; CurPtr = CurPtrShadow; //===--------------------------------------==// // Construct the token itself. //===--------------------------------------==// Tok.startToken(); Tok.setKind(TKind); Tok.setFlag(TFlags); assert(!LexingRawMode); Tok.setLocation(FileStartLoc.getFileLocWithOffset(FileOffset)); Tok.setLength(Len); // Handle identifiers. if (Tok.isLiteral()) { Tok.setLiteralData((const char*) (PTHMgr.SpellingBase + IdentifierID)); } else if (IdentifierID) { MIOpt.ReadToken(); IdentifierInfo *II = PTHMgr.GetIdentifierInfo(IdentifierID-1); Tok.setIdentifierInfo(II); // Change the kind of this identifier to the appropriate token kind, e.g. // turning "for" into a keyword. Tok.setKind(II->getTokenID()); if (II->isHandleIdentifierCase()) PP->HandleIdentifier(Tok); return; } //===--------------------------------------==// // Process the token. //===--------------------------------------==// #if 0 SourceManager& SM = PP->getSourceManager(); llvm::cerr << SM.getFileEntryForID(FileID)->getName() << ':' << SM.getLogicalLineNumber(Tok.getLocation()) << ':' << SM.getLogicalColumnNumber(Tok.getLocation()) << '\n'; #endif if (TKind == tok::eof) { // Save the end-of-file token. EofToken = Tok; Preprocessor *PPCache = PP; assert(!ParsingPreprocessorDirective); assert(!LexingRawMode); // FIXME: Issue diagnostics similar to Lexer. if (PP->HandleEndOfFile(Tok, false)) return; assert(PPCache && "Raw buffer::LexEndOfFile should return a token"); return PPCache->Lex(Tok); } if (TKind == tok::hash && Tok.isAtStartOfLine()) { LastHashTokPtr = CurPtr - DISK_TOKEN_SIZE; assert(!LexingRawMode); PP->HandleDirective(Tok); if (PP->isCurrentLexer(this)) goto LexNextToken; return PP->Lex(Tok); } if (TKind == tok::eom) { assert(ParsingPreprocessorDirective); ParsingPreprocessorDirective = false; return; } MIOpt.ReadToken(); } // FIXME: We can just grab the last token instead of storing a copy // into EofToken. void PTHLexer::getEOF(Token& Tok) { assert(EofToken.is(tok::eof)); Tok = EofToken; } void PTHLexer::DiscardToEndOfLine() { assert(ParsingPreprocessorDirective && ParsingFilename == false && "Must be in a preprocessing directive!"); // We assume that if the preprocessor wishes to discard to the end of // the line that it also means to end the current preprocessor directive. ParsingPreprocessorDirective = false; // Skip tokens by only peeking at their token kind and the flags. // We don't need to actually reconstruct full tokens from the token buffer. // This saves some copies and it also reduces IdentifierInfo* lookup. const unsigned char* p = CurPtr; while (1) { // Read the token kind. Are we at the end of the file? tok::TokenKind x = (tok::TokenKind) (uint8_t) *p; if (x == tok::eof) break; // Read the token flags. Are we at the start of the next line? Token::TokenFlags y = (Token::TokenFlags) (uint8_t) p[1]; if (y & Token::StartOfLine) break; // Skip to the next token. p += DISK_TOKEN_SIZE; } CurPtr = p; } /// SkipBlock - Used by Preprocessor to skip the current conditional block. bool PTHLexer::SkipBlock() { assert(CurPPCondPtr && "No cached PP conditional information."); assert(LastHashTokPtr && "No known '#' token."); const unsigned char* HashEntryI = 0; uint32_t Offset; uint32_t TableIdx; do { // Read the token offset from the side-table. Offset = ReadLE32(CurPPCondPtr); // Read the target table index from the side-table. TableIdx = ReadLE32(CurPPCondPtr); // Compute the actual memory address of the '#' token data for this entry. HashEntryI = TokBuf + Offset; // Optmization: "Sibling jumping". #if...#else...#endif blocks can // contain nested blocks. In the side-table we can jump over these // nested blocks instead of doing a linear search if the next "sibling" // entry is not at a location greater than LastHashTokPtr. if (HashEntryI < LastHashTokPtr && TableIdx) { // In the side-table we are still at an entry for a '#' token that // is earlier than the last one we saw. Check if the location we would // stride gets us closer. const unsigned char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2); assert(NextPPCondPtr >= CurPPCondPtr); // Read where we should jump to. uint32_t TmpOffset = ReadLE32(NextPPCondPtr); const unsigned char* HashEntryJ = TokBuf + TmpOffset; if (HashEntryJ <= LastHashTokPtr) { // Jump directly to the next entry in the side table. HashEntryI = HashEntryJ; Offset = TmpOffset; TableIdx = ReadLE32(NextPPCondPtr); CurPPCondPtr = NextPPCondPtr; } } } while (HashEntryI < LastHashTokPtr); assert(HashEntryI == LastHashTokPtr && "No PP-cond entry found for '#'"); assert(TableIdx && "No jumping from #endifs."); // Update our side-table iterator. const unsigned char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2); assert(NextPPCondPtr >= CurPPCondPtr); CurPPCondPtr = NextPPCondPtr; // Read where we should jump to. HashEntryI = TokBuf + ReadLE32(NextPPCondPtr); uint32_t NextIdx = ReadLE32(NextPPCondPtr); // By construction NextIdx will be zero if this is a #endif. This is useful // to know to obviate lexing another token. bool isEndif = NextIdx == 0; // This case can occur when we see something like this: // // #if ... // /* a comment or nothing */ // #elif // // If we are skipping the first #if block it will be the case that CurPtr // already points 'elif'. Just return. if (CurPtr > HashEntryI) { assert(CurPtr == HashEntryI + DISK_TOKEN_SIZE); // Did we reach a #endif? If so, go ahead and consume that token as well. if (isEndif) CurPtr += DISK_TOKEN_SIZE*2; else LastHashTokPtr = HashEntryI; return isEndif; } // Otherwise, we need to advance. Update CurPtr to point to the '#' token. CurPtr = HashEntryI; // Update the location of the last observed '#'. This is useful if we // are skipping multiple blocks. LastHashTokPtr = CurPtr; // Skip the '#' token. assert(((tok::TokenKind)*CurPtr) == tok::hash); CurPtr += DISK_TOKEN_SIZE; // Did we reach a #endif? If so, go ahead and consume that token as well. if (isEndif) { CurPtr += DISK_TOKEN_SIZE*2; } return isEndif; } SourceLocation PTHLexer::getSourceLocation() { // getSourceLocation is not on the hot path. It is used to get the location // of the next token when transitioning back to this lexer when done // handling a #included file. Just read the necessary data from the token // data buffer to construct the SourceLocation object. // NOTE: This is a virtual function; hence it is defined out-of-line. const unsigned char *OffsetPtr = CurPtr + (DISK_TOKEN_SIZE - 4); uint32_t Offset = ReadLE32(OffsetPtr); return FileStartLoc.getFileLocWithOffset(Offset); } //===----------------------------------------------------------------------===// // OnDiskChainedHashTable //===----------------------------------------------------------------------===// template class OnDiskChainedHashTable { const unsigned NumBuckets; const unsigned NumEntries; const unsigned char* const Buckets; const unsigned char* const Base; public: typedef typename Info::internal_key_type internal_key_type; typedef typename Info::external_key_type external_key_type; typedef typename Info::data_type data_type; OnDiskChainedHashTable(unsigned numBuckets, unsigned numEntries, const unsigned char* buckets, const unsigned char* base) : NumBuckets(numBuckets), NumEntries(numEntries), Buckets(buckets), Base(base) { assert((reinterpret_cast(buckets) & 0x3) == 0 && "'buckets' must have a 4-byte alignment"); } bool isEmpty() const { return NumEntries == 0; } class iterator { const unsigned char* const data; const unsigned len; public: iterator() : data(0), len(0) {} iterator(const unsigned char* d, unsigned l) : data(d), len(l) {} data_type operator*() const { return Info::ReadData(data, len); } bool operator==(const iterator& X) const { return X.data == data; } bool operator!=(const iterator& X) const { return X.data != data; } }; iterator find(const external_key_type& eKey) { const internal_key_type& iKey = Info::GetInternalKey(eKey); unsigned key_hash = Info::ComputeHash(iKey); // Each bucket is just a 32-bit offset into the PTH file. unsigned idx = key_hash & (NumBuckets - 1); const unsigned char* Bucket = Buckets + sizeof(uint32_t)*idx; unsigned offset = ReadLE32(Bucket); if (offset == 0) return iterator(); // Empty bucket. const unsigned char* Items = Base + offset; // 'Items' starts with a 16-bit unsigned integer representing the // number of items in this bucket. unsigned len = ReadUnalignedLE16(Items); for (unsigned i = 0; i < len; ++i) { // Read the hash. uint32_t item_hash = ReadUnalignedLE32(Items); // Determine the length of the key and the data. const std::pair& L = Info::ReadKeyDataLength(Items); unsigned item_len = L.first + L.second; // Compare the hashes. If they are not the same, skip the entry entirely. if (item_hash != key_hash) { Items += item_len; continue; } // Read the key. const internal_key_type& X = Info::ReadKey((const unsigned char* const) Items, L.first); // If the key doesn't match just skip reading the value. if (!Info::EqualKey(X, iKey)) { Items += item_len; continue; } // The key matches! return iterator(Items + L.first, L.second); } return iterator(); } iterator end() const { return iterator(); } static OnDiskChainedHashTable* Create(const unsigned char* buckets, const unsigned char* const base) { assert(buckets > base); assert((reinterpret_cast(buckets) & 0x3) == 0 && "buckets should be 4-byte aligned."); unsigned numBuckets = ReadLE32(buckets); unsigned numEntries = ReadLE32(buckets); return new OnDiskChainedHashTable(numBuckets, numEntries, buckets, base); } }; //===----------------------------------------------------------------------===// // PTH file lookup: map from strings to file data. //===----------------------------------------------------------------------===// /// PTHFileLookup - This internal data structure is used by the PTHManager /// to map from FileEntry objects managed by FileManager to offsets within /// the PTH file. namespace { class VISIBILITY_HIDDEN PTHFileData { const uint32_t TokenOff; const uint32_t PPCondOff; public: PTHFileData(uint32_t tokenOff, uint32_t ppCondOff) : TokenOff(tokenOff), PPCondOff(ppCondOff) {} uint32_t getTokenOffset() const { return TokenOff; } uint32_t getPPCondOffset() const { return PPCondOff; } }; class VISIBILITY_HIDDEN PTHFileLookupTrait { public: typedef PTHFileData data_type; typedef const FileEntry* external_key_type; typedef const char* internal_key_type; static bool EqualKey(const char* a, const char* b) { return strcmp(a, b) == 0; } static unsigned ComputeHash(const char* x) { // More copy-paste nonsense. Will refactor. unsigned int R = 0; for (; *x != '\0' ; ++x) R = R * 33 + *x; return R + (R >> 5); } static const char* GetInternalKey(const FileEntry* FE) { return FE->getName(); } static std::pair ReadKeyDataLength(const unsigned char*& d) { return std::make_pair((unsigned) ReadUnalignedLE16(d), 8U); } static const char* ReadKey(const unsigned char* d, unsigned) { return (const char*) d; } static PTHFileData ReadData(const unsigned char* d, unsigned) { uint32_t x = ::ReadUnalignedLE32(d); uint32_t y = ::ReadUnalignedLE32(d); return PTHFileData(x, y); } }; } // end anonymous namespace typedef OnDiskChainedHashTable PTHFileLookup; //===----------------------------------------------------------------------===// // PTHManager methods. //===----------------------------------------------------------------------===// PTHManager::PTHManager(const llvm::MemoryBuffer* buf, void* fileLookup, const unsigned char* idDataTable, IdentifierInfo** perIDCache, const unsigned char* sortedIdTable, unsigned numIds, const unsigned char* spellingBase) : Buf(buf), PerIDCache(perIDCache), FileLookup(fileLookup), IdDataTable(idDataTable), SortedIdTable(sortedIdTable), NumIds(numIds), PP(0), SpellingBase(spellingBase) {} PTHManager::~PTHManager() { delete Buf; delete (PTHFileLookup*) FileLookup; free(PerIDCache); } static void InvalidPTH(Diagnostic *Diags, const char* Msg = 0) { if (!Diags) return; if (!Msg) Msg = "Invalid or corrupted PTH file"; unsigned DiagID = Diags->getCustomDiagID(Diagnostic::Note, Msg); Diags->Report(FullSourceLoc(), DiagID); } PTHManager* PTHManager::Create(const std::string& file, Diagnostic* Diags) { // Memory map the PTH file. llvm::OwningPtr File(llvm::MemoryBuffer::getFile(file.c_str())); if (!File) { if (Diags) { unsigned DiagID = Diags->getCustomDiagID(Diagnostic::Note, "PTH file %0 could not be read"); Diags->Report(FullSourceLoc(), DiagID) << file; } return 0; } // Get the buffer ranges and check if there are at least three 32-bit // words at the end of the file. const unsigned char* BufBeg = (unsigned char*)File->getBufferStart(); const unsigned char* BufEnd = (unsigned char*)File->getBufferEnd(); // Check the prologue of the file. if ((BufEnd - BufBeg) < (signed) (sizeof("cfe-pth") + 3 + 4) || memcmp(BufBeg, "cfe-pth", sizeof("cfe-pth") - 1) != 0) { InvalidPTH(Diags); return 0; } // Read the PTH version. const unsigned char *p = BufBeg + (sizeof("cfe-pth") - 1); unsigned Version = ReadLE32(p); if (Version != PTHManager::Version) { InvalidPTH(Diags, Version < PTHManager::Version ? "PTH file uses an older PTH format that is no longer supported" : "PTH file uses a newer PTH format that cannot be read"); return 0; } // Compute the address of the index table at the end of the PTH file. const unsigned char *EndTable = BufBeg + ReadLE32(p); if (EndTable >= BufEnd) { InvalidPTH(Diags); return 0; } // Construct the file lookup table. This will be used for mapping from // FileEntry*'s to cached tokens. const unsigned char* FileTableOffset = EndTable + sizeof(uint32_t)*2; const unsigned char* FileTable = BufBeg + ReadLE32(FileTableOffset); if (!(FileTable > BufBeg && FileTable < BufEnd)) { InvalidPTH(Diags); return 0; // FIXME: Proper error diagnostic? } llvm::OwningPtr FL(PTHFileLookup::Create(FileTable, BufBeg)); if (FL->isEmpty()) { InvalidPTH(Diags, "PTH file contains no cached source data"); return 0; } // Get the location of the table mapping from persistent ids to the // data needed to reconstruct identifiers. const unsigned char* IDTableOffset = EndTable + sizeof(uint32_t)*0; const unsigned char* IData = BufBeg + ReadLE32(IDTableOffset); if (!(IData >= BufBeg && IData < BufEnd)) { InvalidPTH(Diags); return 0; } // Get the location of the lexigraphically-sorted table of persistent IDs. const unsigned char* SortedIdTableOffset = EndTable + sizeof(uint32_t)*1; const unsigned char* SortedIdTable = BufBeg + ReadLE32(SortedIdTableOffset); if (!(SortedIdTable >= BufBeg && SortedIdTable < BufEnd)) { InvalidPTH(Diags); return 0; } // Get the location of the spelling cache. const unsigned char* spellingBaseOffset = EndTable + sizeof(uint32_t)*3; const unsigned char* spellingBase = BufBeg + ReadLE32(spellingBaseOffset); if (!(spellingBase >= BufBeg && spellingBase < BufEnd)) { InvalidPTH(Diags); return 0; } // Get the number of IdentifierInfos and pre-allocate the identifier cache. uint32_t NumIds = ReadLE32(IData); // Pre-allocate the peristent ID -> IdentifierInfo* cache. We use calloc() // so that we in the best case only zero out memory once when the OS returns // us new pages. IdentifierInfo** PerIDCache = 0; if (NumIds) { PerIDCache = (IdentifierInfo**)calloc(NumIds, sizeof(*PerIDCache)); if (!PerIDCache) { InvalidPTH(Diags, "Could not allocate memory for processing PTH file"); return 0; } } // Create the new PTHManager. return new PTHManager(File.take(), FL.take(), IData, PerIDCache, SortedIdTable, NumIds, spellingBase); } IdentifierInfo* PTHManager::LazilyCreateIdentifierInfo(unsigned PersistentID) { // Look in the PTH file for the string data for the IdentifierInfo object. const unsigned char* TableEntry = IdDataTable + sizeof(uint32_t)*PersistentID; const unsigned char* IDData = (const unsigned char*)Buf->getBufferStart() + ReadLE32(TableEntry); assert(IDData < (const unsigned char*)Buf->getBufferEnd()); // Allocate the object. std::pair *Mem = Alloc.Allocate >(); Mem->second = IDData; IdentifierInfo *II = new ((void*) Mem) IdentifierInfo(); // Store the new IdentifierInfo in the cache. PerIDCache[PersistentID] = II; return II; } IdentifierInfo* PTHManager::get(const char *NameStart, const char *NameEnd) { unsigned min = 0; unsigned max = NumIds; unsigned Len = NameEnd - NameStart; do { unsigned i = (max - min) / 2 + min; const unsigned char *Ptr = SortedIdTable + (i * 4); // Read the persistentID. unsigned perID = ReadLE32(Ptr); // Get the IdentifierInfo. IdentifierInfo* II = GetIdentifierInfo(perID); // First compare the lengths. unsigned IILen = II->getLength(); if (Len < IILen) goto IsLess; if (Len > IILen) goto IsGreater; // Now compare the strings! { signed comp = strncmp(NameStart, II->getName(), Len); if (comp < 0) goto IsLess; if (comp > 0) goto IsGreater; } // We found a match! return II; IsGreater: if (i == min) break; min = i; continue; IsLess: max = i; assert(!(max == min) || (min == i)); } while (min != max); return 0; } PTHLexer *PTHManager::CreateLexer(FileID FID) { const FileEntry *FE = PP->getSourceManager().getFileEntryForID(FID); if (!FE) return 0; // Lookup the FileEntry object in our file lookup data structure. It will // return a variant that indicates whether or not there is an offset within // the PTH file that contains cached tokens. PTHFileLookup& PFL = *((PTHFileLookup*)FileLookup); PTHFileLookup::iterator I = PFL.find(FE); if (I == PFL.end()) // No tokens available? return 0; const PTHFileData& FileData = *I; const unsigned char *BufStart = (const unsigned char *)Buf->getBufferStart(); // Compute the offset of the token data within the buffer. const unsigned char* data = BufStart + FileData.getTokenOffset(); // Get the location of pp-conditional table. const unsigned char* ppcond = BufStart + FileData.getPPCondOffset(); uint32_t Len = ReadLE32(ppcond); if (Len == 0) ppcond = 0; assert(PP && "No preprocessor set yet!"); return new PTHLexer(*PP, FID, data, ppcond, *this); }