//===--- PCHReader.cpp - Precompiled Headers Reader -------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the PCHReader class, which reads a precompiled header. // //===----------------------------------------------------------------------===// #include "clang/Frontend/PCHReader.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/Type.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/Preprocessor.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/TargetInfo.h" #include "llvm/Bitcode/BitstreamReader.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/MemoryBuffer.h" #include #include using namespace clang; //===----------------------------------------------------------------------===// // Declaration deserialization //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN PCHDeclReader { PCHReader &Reader; const PCHReader::RecordData &Record; unsigned &Idx; public: PCHDeclReader(PCHReader &Reader, const PCHReader::RecordData &Record, unsigned &Idx) : Reader(Reader), Record(Record), Idx(Idx) { } void VisitDecl(Decl *D); void VisitTranslationUnitDecl(TranslationUnitDecl *TU); void VisitNamedDecl(NamedDecl *ND); void VisitTypeDecl(TypeDecl *TD); void VisitTypedefDecl(TypedefDecl *TD); void VisitValueDecl(ValueDecl *VD); void VisitVarDecl(VarDecl *VD); std::pair VisitDeclContext(DeclContext *DC); }; } void PCHDeclReader::VisitDecl(Decl *D) { D->setDeclContext(cast_or_null(Reader.GetDecl(Record[Idx++]))); D->setLexicalDeclContext( cast_or_null(Reader.GetDecl(Record[Idx++]))); D->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++])); D->setInvalidDecl(Record[Idx++]); // FIXME: hasAttrs D->setImplicit(Record[Idx++]); D->setAccess((AccessSpecifier)Record[Idx++]); } void PCHDeclReader::VisitTranslationUnitDecl(TranslationUnitDecl *TU) { VisitDecl(TU); } void PCHDeclReader::VisitNamedDecl(NamedDecl *ND) { VisitDecl(ND); ND->setDeclName(Reader.ReadDeclarationName(Record, Idx)); } void PCHDeclReader::VisitTypeDecl(TypeDecl *TD) { VisitNamedDecl(TD); // FIXME: circular dependencies here? TD->setTypeForDecl(Reader.GetType(Record[Idx++]).getTypePtr()); } void PCHDeclReader::VisitTypedefDecl(TypedefDecl *TD) { VisitTypeDecl(TD); TD->setUnderlyingType(Reader.GetType(Record[Idx++])); } void PCHDeclReader::VisitValueDecl(ValueDecl *VD) { VisitNamedDecl(VD); VD->setType(Reader.GetType(Record[Idx++])); } void PCHDeclReader::VisitVarDecl(VarDecl *VD) { VisitValueDecl(VD); VD->setStorageClass((VarDecl::StorageClass)Record[Idx++]); VD->setThreadSpecified(Record[Idx++]); VD->setCXXDirectInitializer(Record[Idx++]); VD->setDeclaredInCondition(Record[Idx++]); VD->setPreviousDeclaration( cast_or_null(Reader.GetDecl(Record[Idx++]))); VD->setTypeSpecStartLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } std::pair PCHDeclReader::VisitDeclContext(DeclContext *DC) { uint64_t LexicalOffset = Record[Idx++]; uint64_t VisibleOffset = 0; if (DC->getPrimaryContext() == DC) VisibleOffset = Record[Idx++]; return std::make_pair(LexicalOffset, VisibleOffset); } // FIXME: use the diagnostics machinery static bool Error(const char *Str) { std::fprintf(stderr, "%s\n", Str); return true; } /// \brief Check the contents of the predefines buffer against the /// contents of the predefines buffer used to build the PCH file. /// /// The contents of the two predefines buffers should be the same. If /// not, then some command-line option changed the preprocessor state /// and we must reject the PCH file. /// /// \param PCHPredef The start of the predefines buffer in the PCH /// file. /// /// \param PCHPredefLen The length of the predefines buffer in the PCH /// file. /// /// \param PCHBufferID The FileID for the PCH predefines buffer. /// /// \returns true if there was a mismatch (in which case the PCH file /// should be ignored), or false otherwise. bool PCHReader::CheckPredefinesBuffer(const char *PCHPredef, unsigned PCHPredefLen, FileID PCHBufferID) { const char *Predef = PP.getPredefines().c_str(); unsigned PredefLen = PP.getPredefines().size(); // If the two predefines buffers compare equal, we're done!. if (PredefLen == PCHPredefLen && strncmp(Predef, PCHPredef, PCHPredefLen) == 0) return false; // The predefines buffers are different. Produce a reasonable // diagnostic showing where they are different. // The source locations (potentially in the two different predefines // buffers) SourceLocation Loc1, Loc2; SourceManager &SourceMgr = PP.getSourceManager(); // Create a source buffer for our predefines string, so // that we can build a diagnostic that points into that // source buffer. FileID BufferID; if (Predef && Predef[0]) { llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBuffer(Predef, Predef + PredefLen, ""); BufferID = SourceMgr.createFileIDForMemBuffer(Buffer); } unsigned MinLen = std::min(PredefLen, PCHPredefLen); std::pair Locations = std::mismatch(Predef, Predef + MinLen, PCHPredef); if (Locations.first != Predef + MinLen) { // We found the location in the two buffers where there is a // difference. Form source locations to point there (in both // buffers). unsigned Offset = Locations.first - Predef; Loc1 = SourceMgr.getLocForStartOfFile(BufferID) .getFileLocWithOffset(Offset); Loc2 = SourceMgr.getLocForStartOfFile(PCHBufferID) .getFileLocWithOffset(Offset); } else if (PredefLen > PCHPredefLen) { Loc1 = SourceMgr.getLocForStartOfFile(BufferID) .getFileLocWithOffset(MinLen); } else { Loc1 = SourceMgr.getLocForStartOfFile(PCHBufferID) .getFileLocWithOffset(MinLen); } Diag(Loc1, diag::warn_pch_preprocessor); if (Loc2.isValid()) Diag(Loc2, diag::note_predef_in_pch); Diag(diag::note_ignoring_pch) << FileName; return true; } /// \brief Read the source manager block PCHReader::PCHReadResult PCHReader::ReadSourceManagerBlock() { using namespace SrcMgr; if (Stream.EnterSubBlock(pch::SOURCE_MANAGER_BLOCK_ID)) { Error("Malformed source manager block record"); return Failure; } SourceManager &SourceMgr = Context.getSourceManager(); RecordData Record; while (true) { unsigned Code = Stream.ReadCode(); if (Code == llvm::bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) { Error("Error at end of Source Manager block"); return Failure; } return Success; } if (Code == llvm::bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) { Error("Malformed block record"); return Failure; } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read a record. const char *BlobStart; unsigned BlobLen; Record.clear(); switch (Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: // Default behavior: ignore. break; case pch::SM_SLOC_FILE_ENTRY: { // FIXME: We would really like to delay the creation of this // FileEntry until it is actually required, e.g., when producing // a diagnostic with a source location in this file. const FileEntry *File = PP.getFileManager().getFile(BlobStart, BlobStart + BlobLen); // FIXME: Error recovery if file cannot be found. SourceMgr.createFileID(File, SourceLocation::getFromRawEncoding(Record[1]), (CharacteristicKind)Record[2]); break; } case pch::SM_SLOC_BUFFER_ENTRY: { const char *Name = BlobStart; unsigned Code = Stream.ReadCode(); Record.clear(); unsigned RecCode = Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen); assert(RecCode == pch::SM_SLOC_BUFFER_BLOB && "Ill-formed PCH file"); llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBuffer(BlobStart, BlobStart + BlobLen - 1, Name); FileID BufferID = SourceMgr.createFileIDForMemBuffer(Buffer); if (strcmp(Name, "") == 0 && CheckPredefinesBuffer(BlobStart, BlobLen - 1, BufferID)) return IgnorePCH; break; } case pch::SM_SLOC_INSTANTIATION_ENTRY: { SourceLocation SpellingLoc = SourceLocation::getFromRawEncoding(Record[1]); SourceMgr.createInstantiationLoc( SpellingLoc, SourceLocation::getFromRawEncoding(Record[2]), SourceLocation::getFromRawEncoding(Record[3]), Lexer::MeasureTokenLength(SpellingLoc, SourceMgr)); break; } } } } bool PCHReader::ReadPreprocessorBlock() { if (Stream.EnterSubBlock(pch::PREPROCESSOR_BLOCK_ID)) return Error("Malformed preprocessor block record"); RecordData Record; llvm::SmallVector MacroArgs; MacroInfo *LastMacro = 0; while (true) { unsigned Code = Stream.ReadCode(); switch (Code) { case llvm::bitc::END_BLOCK: if (Stream.ReadBlockEnd()) return Error("Error at end of preprocessor block"); return false; case llvm::bitc::ENTER_SUBBLOCK: // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) return Error("Malformed block record"); continue; case llvm::bitc::DEFINE_ABBREV: Stream.ReadAbbrevRecord(); continue; default: break; } // Read a record. Record.clear(); pch::PreprocessorRecordTypes RecType = (pch::PreprocessorRecordTypes)Stream.ReadRecord(Code, Record); switch (RecType) { default: // Default behavior: ignore unknown records. break; case pch::PP_COUNTER_VALUE: if (!Record.empty()) PP.setCounterValue(Record[0]); break; case pch::PP_MACRO_OBJECT_LIKE: case pch::PP_MACRO_FUNCTION_LIKE: { IdentifierInfo *II = DecodeIdentifierInfo(Record[0]); if (II == 0) return Error("Macro must have a name"); SourceLocation Loc = SourceLocation::getFromRawEncoding(Record[1]); bool isUsed = Record[2]; MacroInfo *MI = PP.AllocateMacroInfo(Loc); MI->setIsUsed(isUsed); if (RecType == pch::PP_MACRO_FUNCTION_LIKE) { // Decode function-like macro info. bool isC99VarArgs = Record[3]; bool isGNUVarArgs = Record[4]; MacroArgs.clear(); unsigned NumArgs = Record[5]; for (unsigned i = 0; i != NumArgs; ++i) MacroArgs.push_back(DecodeIdentifierInfo(Record[6+i])); // Install function-like macro info. MI->setIsFunctionLike(); if (isC99VarArgs) MI->setIsC99Varargs(); if (isGNUVarArgs) MI->setIsGNUVarargs(); MI->setArgumentList(&MacroArgs[0], MacroArgs.size(), PP.getPreprocessorAllocator()); } // Finally, install the macro. PP.setMacroInfo(II, MI); // Remember that we saw this macro last so that we add the tokens that // form its body to it. LastMacro = MI; break; } case pch::PP_TOKEN: { // If we see a TOKEN before a PP_MACRO_*, then the file is eroneous, just // pretend we didn't see this. if (LastMacro == 0) break; Token Tok; Tok.startToken(); Tok.setLocation(SourceLocation::getFromRawEncoding(Record[0])); Tok.setLength(Record[1]); if (IdentifierInfo *II = DecodeIdentifierInfo(Record[2])) Tok.setIdentifierInfo(II); Tok.setKind((tok::TokenKind)Record[3]); Tok.setFlag((Token::TokenFlags)Record[4]); LastMacro->AddTokenToBody(Tok); break; } } } } PCHReader::PCHReadResult PCHReader::ReadPCHBlock() { if (Stream.EnterSubBlock(pch::PCH_BLOCK_ID)) { Error("Malformed block record"); return Failure; } uint64_t PreprocessorBlockBit = 0; // Read all of the records and blocks for the PCH file. RecordData Record; while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code == llvm::bitc::END_BLOCK) { // If we saw the preprocessor block, read it now. if (PreprocessorBlockBit) { uint64_t SavedPos = Stream.GetCurrentBitNo(); Stream.JumpToBit(PreprocessorBlockBit); if (ReadPreprocessorBlock()) { Error("Malformed preprocessor block"); return Failure; } Stream.JumpToBit(SavedPos); } if (Stream.ReadBlockEnd()) { Error("Error at end of module block"); return Failure; } return Success; } if (Code == llvm::bitc::ENTER_SUBBLOCK) { switch (Stream.ReadSubBlockID()) { case pch::DECLS_BLOCK_ID: // Skip decls block (lazily loaded) case pch::TYPES_BLOCK_ID: // Skip types block (lazily loaded) default: // Skip unknown content. if (Stream.SkipBlock()) { Error("Malformed block record"); return Failure; } break; case pch::PREPROCESSOR_BLOCK_ID: // Skip the preprocessor block for now, but remember where it is. We // want to read it in after the identifier table. if (PreprocessorBlockBit) { Error("Multiple preprocessor blocks found."); return Failure; } PreprocessorBlockBit = Stream.GetCurrentBitNo(); if (Stream.SkipBlock()) { Error("Malformed block record"); return Failure; } break; case pch::SOURCE_MANAGER_BLOCK_ID: switch (ReadSourceManagerBlock()) { case Success: break; case Failure: Error("Malformed source manager block"); return Failure; case IgnorePCH: return IgnorePCH; } break; } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read and process a record. Record.clear(); const char *BlobStart = 0; unsigned BlobLen = 0; switch ((pch::PCHRecordTypes)Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: // Default behavior: ignore. break; case pch::TYPE_OFFSET: if (!TypeOffsets.empty()) { Error("Duplicate TYPE_OFFSET record in PCH file"); return Failure; } TypeOffsets.swap(Record); TypeAlreadyLoaded.resize(TypeOffsets.size(), false); break; case pch::DECL_OFFSET: if (!DeclOffsets.empty()) { Error("Duplicate DECL_OFFSET record in PCH file"); return Failure; } DeclOffsets.swap(Record); DeclAlreadyLoaded.resize(DeclOffsets.size(), false); break; case pch::LANGUAGE_OPTIONS: if (ParseLanguageOptions(Record)) return IgnorePCH; break; case pch::TARGET_TRIPLE: { std::string TargetTriple(BlobStart, BlobLen); if (TargetTriple != Context.Target.getTargetTriple()) { Diag(diag::warn_pch_target_triple) << TargetTriple << Context.Target.getTargetTriple(); Diag(diag::note_ignoring_pch) << FileName; return IgnorePCH; } break; } case pch::IDENTIFIER_TABLE: IdentifierTable = BlobStart; break; case pch::IDENTIFIER_OFFSET: if (!IdentifierData.empty()) { Error("Duplicate IDENTIFIER_OFFSET record in PCH file"); return Failure; } IdentifierData.swap(Record); #ifndef NDEBUG for (unsigned I = 0, N = IdentifierData.size(); I != N; ++I) { if ((IdentifierData[I] & 0x01) == 0) { Error("Malformed identifier table in the precompiled header"); return Failure; } } #endif break; } } Error("Premature end of bitstream"); return Failure; } PCHReader::PCHReadResult PCHReader::ReadPCH(const std::string &FileName) { // Set the PCH file name. this->FileName = FileName; // Open the PCH file. std::string ErrStr; Buffer.reset(llvm::MemoryBuffer::getFile(FileName.c_str(), &ErrStr)); if (!Buffer) { Error(ErrStr.c_str()); return IgnorePCH; } // Initialize the stream Stream.init((const unsigned char *)Buffer->getBufferStart(), (const unsigned char *)Buffer->getBufferEnd()); // Sniff for the signature. if (Stream.Read(8) != 'C' || Stream.Read(8) != 'P' || Stream.Read(8) != 'C' || Stream.Read(8) != 'H') { Error("Not a PCH file"); return IgnorePCH; } // We expect a number of well-defined blocks, though we don't necessarily // need to understand them all. while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code != llvm::bitc::ENTER_SUBBLOCK) { Error("Invalid record at top-level"); return Failure; } unsigned BlockID = Stream.ReadSubBlockID(); // We only know the PCH subblock ID. switch (BlockID) { case llvm::bitc::BLOCKINFO_BLOCK_ID: if (Stream.ReadBlockInfoBlock()) { Error("Malformed BlockInfoBlock"); return Failure; } break; case pch::PCH_BLOCK_ID: switch (ReadPCHBlock()) { case Success: break; case Failure: return Failure; case IgnorePCH: // FIXME: We could consider reading through to the end of this // PCH block, skipping subblocks, to see if there are other // PCH blocks elsewhere. return IgnorePCH; } break; default: if (Stream.SkipBlock()) { Error("Malformed block record"); return Failure; } break; } } // Load the translation unit declaration ReadDeclRecord(DeclOffsets[0], 0); return Success; } /// \brief Parse the record that corresponds to a LangOptions data /// structure. /// /// This routine compares the language options used to generate the /// PCH file against the language options set for the current /// compilation. For each option, we classify differences between the /// two compiler states as either "benign" or "important". Benign /// differences don't matter, and we accept them without complaint /// (and without modifying the language options). Differences between /// the states for important options cause the PCH file to be /// unusable, so we emit a warning and return true to indicate that /// there was an error. /// /// \returns true if the PCH file is unacceptable, false otherwise. bool PCHReader::ParseLanguageOptions( const llvm::SmallVectorImpl &Record) { const LangOptions &LangOpts = Context.getLangOptions(); #define PARSE_LANGOPT_BENIGN(Option) ++Idx #define PARSE_LANGOPT_IMPORTANT(Option, DiagID) \ if (Record[Idx] != LangOpts.Option) { \ Diag(DiagID) << (unsigned)Record[Idx] << LangOpts.Option; \ Diag(diag::note_ignoring_pch) << FileName; \ return true; \ } \ ++Idx unsigned Idx = 0; PARSE_LANGOPT_BENIGN(Trigraphs); PARSE_LANGOPT_BENIGN(BCPLComment); PARSE_LANGOPT_BENIGN(DollarIdents); PARSE_LANGOPT_BENIGN(AsmPreprocessor); PARSE_LANGOPT_IMPORTANT(GNUMode, diag::warn_pch_gnu_extensions); PARSE_LANGOPT_BENIGN(ImplicitInt); PARSE_LANGOPT_BENIGN(Digraphs); PARSE_LANGOPT_BENIGN(HexFloats); PARSE_LANGOPT_IMPORTANT(C99, diag::warn_pch_c99); PARSE_LANGOPT_IMPORTANT(Microsoft, diag::warn_pch_microsoft_extensions); PARSE_LANGOPT_IMPORTANT(CPlusPlus, diag::warn_pch_cplusplus); PARSE_LANGOPT_IMPORTANT(CPlusPlus0x, diag::warn_pch_cplusplus0x); PARSE_LANGOPT_IMPORTANT(NoExtensions, diag::warn_pch_extensions); PARSE_LANGOPT_BENIGN(CXXOperatorName); PARSE_LANGOPT_IMPORTANT(ObjC1, diag::warn_pch_objective_c); PARSE_LANGOPT_IMPORTANT(ObjC2, diag::warn_pch_objective_c2); PARSE_LANGOPT_IMPORTANT(ObjCNonFragileABI, diag::warn_pch_nonfragile_abi); PARSE_LANGOPT_BENIGN(PascalStrings); PARSE_LANGOPT_BENIGN(Boolean); PARSE_LANGOPT_BENIGN(WritableStrings); PARSE_LANGOPT_IMPORTANT(LaxVectorConversions, diag::warn_pch_lax_vector_conversions); PARSE_LANGOPT_IMPORTANT(Exceptions, diag::warn_pch_exceptions); PARSE_LANGOPT_IMPORTANT(NeXTRuntime, diag::warn_pch_objc_runtime); PARSE_LANGOPT_IMPORTANT(Freestanding, diag::warn_pch_freestanding); PARSE_LANGOPT_IMPORTANT(NoBuiltin, diag::warn_pch_builtins); PARSE_LANGOPT_IMPORTANT(ThreadsafeStatics, diag::warn_pch_thread_safe_statics); PARSE_LANGOPT_IMPORTANT(Blocks, diag::warn_pch_blocks); PARSE_LANGOPT_BENIGN(EmitAllDecls); PARSE_LANGOPT_IMPORTANT(MathErrno, diag::warn_pch_math_errno); PARSE_LANGOPT_IMPORTANT(OverflowChecking, diag::warn_pch_overflow_checking); PARSE_LANGOPT_IMPORTANT(HeinousExtensions, diag::warn_pch_heinous_extensions); // FIXME: Most of the options below are benign if the macro wasn't // used. Unfortunately, this means that a PCH compiled without // optimization can't be used with optimization turned on, even // though the only thing that changes is whether __OPTIMIZE__ was // defined... but if __OPTIMIZE__ never showed up in the header, it // doesn't matter. We could consider making this some special kind // of check. PARSE_LANGOPT_IMPORTANT(Optimize, diag::warn_pch_optimize); PARSE_LANGOPT_IMPORTANT(OptimizeSize, diag::warn_pch_optimize_size); PARSE_LANGOPT_IMPORTANT(Static, diag::warn_pch_static); PARSE_LANGOPT_IMPORTANT(PICLevel, diag::warn_pch_pic_level); PARSE_LANGOPT_IMPORTANT(GNUInline, diag::warn_pch_gnu_inline); PARSE_LANGOPT_IMPORTANT(NoInline, diag::warn_pch_no_inline); if ((LangOpts.getGCMode() != 0) != (Record[Idx] != 0)) { Diag(diag::warn_pch_gc_mode) << (unsigned)Record[Idx] << LangOpts.getGCMode(); Diag(diag::note_ignoring_pch) << FileName; return true; } ++Idx; PARSE_LANGOPT_BENIGN(getVisibilityMode()); PARSE_LANGOPT_BENIGN(InstantiationDepth); #undef PARSE_LANGOPT_IRRELEVANT #undef PARSE_LANGOPT_BENIGN return false; } /// \brief Read and return the type at the given offset. /// /// This routine actually reads the record corresponding to the type /// at the given offset in the bitstream. It is a helper routine for /// GetType, which deals with reading type IDs. QualType PCHReader::ReadTypeRecord(uint64_t Offset) { Stream.JumpToBit(Offset); RecordData Record; unsigned Code = Stream.ReadCode(); switch ((pch::TypeCode)Stream.ReadRecord(Code, Record)) { case pch::TYPE_FIXED_WIDTH_INT: { assert(Record.size() == 2 && "Incorrect encoding of fixed-width int type"); return Context.getFixedWidthIntType(Record[0], Record[1]); } case pch::TYPE_COMPLEX: { assert(Record.size() == 1 && "Incorrect encoding of complex type"); QualType ElemType = GetType(Record[0]); return Context.getComplexType(ElemType); } case pch::TYPE_POINTER: { assert(Record.size() == 1 && "Incorrect encoding of pointer type"); QualType PointeeType = GetType(Record[0]); return Context.getPointerType(PointeeType); } case pch::TYPE_BLOCK_POINTER: { assert(Record.size() == 1 && "Incorrect encoding of block pointer type"); QualType PointeeType = GetType(Record[0]); return Context.getBlockPointerType(PointeeType); } case pch::TYPE_LVALUE_REFERENCE: { assert(Record.size() == 1 && "Incorrect encoding of lvalue reference type"); QualType PointeeType = GetType(Record[0]); return Context.getLValueReferenceType(PointeeType); } case pch::TYPE_RVALUE_REFERENCE: { assert(Record.size() == 1 && "Incorrect encoding of rvalue reference type"); QualType PointeeType = GetType(Record[0]); return Context.getRValueReferenceType(PointeeType); } case pch::TYPE_MEMBER_POINTER: { assert(Record.size() == 1 && "Incorrect encoding of member pointer type"); QualType PointeeType = GetType(Record[0]); QualType ClassType = GetType(Record[1]); return Context.getMemberPointerType(PointeeType, ClassType.getTypePtr()); } // FIXME: Several other kinds of types to deserialize here! default: assert(false && "Unable to deserialize this type"); break; } // Suppress a GCC warning return QualType(); } /// \brief Note that we have loaded the declaration with the given /// Index. /// /// This routine notes that this declaration has already been loaded, /// so that future GetDecl calls will return this declaration rather /// than trying to load a new declaration. inline void PCHReader::LoadedDecl(unsigned Index, Decl *D) { assert(!DeclAlreadyLoaded[Index] && "Decl loaded twice?"); DeclAlreadyLoaded[Index] = true; DeclOffsets[Index] = reinterpret_cast(D); } /// \brief Read the declaration at the given offset from the PCH file. Decl *PCHReader::ReadDeclRecord(uint64_t Offset, unsigned Index) { Decl *D = 0; Stream.JumpToBit(Offset); RecordData Record; unsigned Code = Stream.ReadCode(); unsigned Idx = 0; PCHDeclReader Reader(*this, Record, Idx); switch ((pch::DeclCode)Stream.ReadRecord(Code, Record)) { case pch::DECL_TRANSLATION_UNIT: assert(Index == 0 && "Translation unit must be at index 0"); Reader.VisitTranslationUnitDecl(Context.getTranslationUnitDecl()); D = Context.getTranslationUnitDecl(); LoadedDecl(Index, D); break; case pch::DECL_TYPEDEF: { TypedefDecl *Typedef = TypedefDecl::Create(Context, 0, SourceLocation(), 0, QualType()); LoadedDecl(Index, Typedef); Reader.VisitTypedefDecl(Typedef); D = Typedef; break; } case pch::DECL_VAR: { VarDecl *Var = VarDecl::Create(Context, 0, SourceLocation(), 0, QualType(), VarDecl::None, SourceLocation()); LoadedDecl(Index, Var); Reader.VisitVarDecl(Var); D = Var; break; } default: assert(false && "Cannot de-serialize this kind of declaration"); break; } // If this declaration is also a declaration context, get the // offsets for its tables of lexical and visible declarations. if (DeclContext *DC = dyn_cast(D)) { std::pair Offsets = Reader.VisitDeclContext(DC); if (Offsets.first || Offsets.second) { DC->setHasExternalLexicalStorage(Offsets.first != 0); DC->setHasExternalVisibleStorage(Offsets.second != 0); DeclContextOffsets[DC] = Offsets; } } assert(Idx == Record.size()); return D; } QualType PCHReader::GetType(pch::TypeID ID) { unsigned Quals = ID & 0x07; unsigned Index = ID >> 3; if (Index < pch::NUM_PREDEF_TYPE_IDS) { QualType T; switch ((pch::PredefinedTypeIDs)Index) { case pch::PREDEF_TYPE_NULL_ID: return QualType(); case pch::PREDEF_TYPE_VOID_ID: T = Context.VoidTy; break; case pch::PREDEF_TYPE_BOOL_ID: T = Context.BoolTy; break; case pch::PREDEF_TYPE_CHAR_U_ID: case pch::PREDEF_TYPE_CHAR_S_ID: // FIXME: Check that the signedness of CharTy is correct! T = Context.CharTy; break; case pch::PREDEF_TYPE_UCHAR_ID: T = Context.UnsignedCharTy; break; case pch::PREDEF_TYPE_USHORT_ID: T = Context.UnsignedShortTy; break; case pch::PREDEF_TYPE_UINT_ID: T = Context.UnsignedIntTy; break; case pch::PREDEF_TYPE_ULONG_ID: T = Context.UnsignedLongTy; break; case pch::PREDEF_TYPE_ULONGLONG_ID: T = Context.UnsignedLongLongTy; break; case pch::PREDEF_TYPE_SCHAR_ID: T = Context.SignedCharTy; break; case pch::PREDEF_TYPE_WCHAR_ID: T = Context.WCharTy; break; case pch::PREDEF_TYPE_SHORT_ID: T = Context.ShortTy; break; case pch::PREDEF_TYPE_INT_ID: T = Context.IntTy; break; case pch::PREDEF_TYPE_LONG_ID: T = Context.LongTy; break; case pch::PREDEF_TYPE_LONGLONG_ID: T = Context.LongLongTy; break; case pch::PREDEF_TYPE_FLOAT_ID: T = Context.FloatTy; break; case pch::PREDEF_TYPE_DOUBLE_ID: T = Context.DoubleTy; break; case pch::PREDEF_TYPE_LONGDOUBLE_ID: T = Context.LongDoubleTy; break; case pch::PREDEF_TYPE_OVERLOAD_ID: T = Context.OverloadTy; break; case pch::PREDEF_TYPE_DEPENDENT_ID: T = Context.DependentTy; break; } assert(!T.isNull() && "Unknown predefined type"); return T.getQualifiedType(Quals); } Index -= pch::NUM_PREDEF_TYPE_IDS; if (!TypeAlreadyLoaded[Index]) { // Load the type from the PCH file. TypeOffsets[Index] = reinterpret_cast( ReadTypeRecord(TypeOffsets[Index]).getTypePtr()); TypeAlreadyLoaded[Index] = true; } return QualType(reinterpret_cast(TypeOffsets[Index]), Quals); } Decl *PCHReader::GetDecl(pch::DeclID ID) { if (ID == 0) return 0; unsigned Index = ID - 1; if (DeclAlreadyLoaded[Index]) return reinterpret_cast(DeclOffsets[Index]); // Load the declaration from the PCH file. return ReadDeclRecord(DeclOffsets[Index], Index); } bool PCHReader::ReadDeclsLexicallyInContext(DeclContext *DC, llvm::SmallVectorImpl &Decls) { assert(DC->hasExternalLexicalStorage() && "DeclContext has no lexical decls in storage"); uint64_t Offset = DeclContextOffsets[DC].first; assert(Offset && "DeclContext has no lexical decls in storage"); // Load the record containing all of the declarations lexically in // this context. Stream.JumpToBit(Offset); RecordData Record; unsigned Code = Stream.ReadCode(); unsigned RecCode = Stream.ReadRecord(Code, Record); assert(RecCode == pch::DECL_CONTEXT_LEXICAL && "Expected lexical block"); // Load all of the declaration IDs Decls.clear(); Decls.insert(Decls.end(), Record.begin(), Record.end()); return false; } bool PCHReader::ReadDeclsVisibleInContext(DeclContext *DC, llvm::SmallVectorImpl & Decls) { assert(DC->hasExternalVisibleStorage() && "DeclContext has no visible decls in storage"); uint64_t Offset = DeclContextOffsets[DC].second; assert(Offset && "DeclContext has no visible decls in storage"); // Load the record containing all of the declarations visible in // this context. Stream.JumpToBit(Offset); RecordData Record; unsigned Code = Stream.ReadCode(); unsigned RecCode = Stream.ReadRecord(Code, Record); assert(RecCode == pch::DECL_CONTEXT_VISIBLE && "Expected visible block"); if (Record.size() == 0) return false; Decls.clear(); unsigned Idx = 0; // llvm::SmallVector DeclIDs; while (Idx < Record.size()) { Decls.push_back(VisibleDeclaration()); Decls.back().Name = ReadDeclarationName(Record, Idx); // FIXME: Don't actually read anything here! unsigned Size = Record[Idx++]; llvm::SmallVector & LoadedDecls = Decls.back().Declarations; LoadedDecls.reserve(Size); for (unsigned I = 0; I < Size; ++I) LoadedDecls.push_back(Record[Idx++]); } return false; } void PCHReader::PrintStats() { std::fprintf(stderr, "*** PCH Statistics:\n"); unsigned NumTypesLoaded = std::count(TypeAlreadyLoaded.begin(), TypeAlreadyLoaded.end(), true); unsigned NumDeclsLoaded = std::count(DeclAlreadyLoaded.begin(), DeclAlreadyLoaded.end(), true); std::fprintf(stderr, " %u/%u types read (%f%%)\n", NumTypesLoaded, (unsigned)TypeAlreadyLoaded.size(), ((float)NumTypesLoaded/(float)TypeAlreadyLoaded.size() * 100)); std::fprintf(stderr, " %u/%u declarations read (%f%%)\n", NumDeclsLoaded, (unsigned)DeclAlreadyLoaded.size(), ((float)NumDeclsLoaded/(float)DeclAlreadyLoaded.size() * 100)); std::fprintf(stderr, "\n"); } IdentifierInfo *PCHReader::DecodeIdentifierInfo(unsigned ID) { if (ID == 0) return 0; if (!IdentifierTable || IdentifierData.empty()) { Error("No identifier table in PCH file"); return 0; } if (IdentifierData[ID - 1] & 0x01) { uint64_t Offset = IdentifierData[ID - 1]; IdentifierData[ID - 1] = reinterpret_cast( &Context.Idents.get(IdentifierTable + Offset)); } return reinterpret_cast(IdentifierData[ID - 1]); } DeclarationName PCHReader::ReadDeclarationName(const RecordData &Record, unsigned &Idx) { DeclarationName::NameKind Kind = (DeclarationName::NameKind)Record[Idx++]; switch (Kind) { case DeclarationName::Identifier: return DeclarationName(GetIdentifierInfo(Record, Idx)); case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: assert(false && "Unable to de-serialize Objective-C selectors"); break; case DeclarationName::CXXConstructorName: return Context.DeclarationNames.getCXXConstructorName( GetType(Record[Idx++])); case DeclarationName::CXXDestructorName: return Context.DeclarationNames.getCXXDestructorName( GetType(Record[Idx++])); case DeclarationName::CXXConversionFunctionName: return Context.DeclarationNames.getCXXConversionFunctionName( GetType(Record[Idx++])); case DeclarationName::CXXOperatorName: return Context.DeclarationNames.getCXXOperatorName( (OverloadedOperatorKind)Record[Idx++]); case DeclarationName::CXXUsingDirective: return DeclarationName::getUsingDirectiveName(); } // Required to silence GCC warning return DeclarationName(); } DiagnosticBuilder PCHReader::Diag(unsigned DiagID) { return Diag(SourceLocation(), DiagID); } DiagnosticBuilder PCHReader::Diag(SourceLocation Loc, unsigned DiagID) { return PP.getDiagnostics().Report(FullSourceLoc(Loc, Context.getSourceManager()), DiagID); }