//===--- Format.cpp - Format C++ code -------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief This file implements functions declared in Format.h. This will be /// split into separate files as we go. /// /// This is EXPERIMENTAL code under heavy development. It is not in a state yet, /// where it can be used to format real code. /// //===----------------------------------------------------------------------===// #include "clang/Format/Format.h" #include "UnwrappedLineParser.h" #include "clang/Basic/OperatorPrecedence.h" #include "clang/Basic/SourceManager.h" #include "clang/Lex/Lexer.h" #include namespace clang { namespace format { // FIXME: Move somewhere sane. struct TokenAnnotation { enum TokenType { TT_Unknown, TT_TemplateOpener, TT_TemplateCloser, TT_BinaryOperator, TT_UnaryOperator, TT_TrailingUnaryOperator, TT_OverloadedOperator, TT_PointerOrReference, TT_ConditionalExpr, TT_CtorInitializerColon, TT_LineComment, TT_BlockComment, TT_DirectorySeparator, TT_ObjCMethodSpecifier }; TokenType Type; bool SpaceRequiredBefore; bool CanBreakBefore; bool MustBreakBefore; bool ClosesTemplateDeclaration; }; static prec::Level getPrecedence(const FormatToken &Tok) { return getBinOpPrecedence(Tok.Tok.getKind(), true, true); } using llvm::MutableArrayRef; FormatStyle getLLVMStyle() { FormatStyle LLVMStyle; LLVMStyle.ColumnLimit = 80; LLVMStyle.MaxEmptyLinesToKeep = 1; LLVMStyle.PointerAndReferenceBindToType = false; LLVMStyle.AccessModifierOffset = -2; LLVMStyle.SplitTemplateClosingGreater = true; LLVMStyle.IndentCaseLabels = false; return LLVMStyle; } FormatStyle getGoogleStyle() { FormatStyle GoogleStyle; GoogleStyle.ColumnLimit = 80; GoogleStyle.MaxEmptyLinesToKeep = 1; GoogleStyle.PointerAndReferenceBindToType = true; GoogleStyle.AccessModifierOffset = -1; GoogleStyle.SplitTemplateClosingGreater = false; GoogleStyle.IndentCaseLabels = true; return GoogleStyle; } struct OptimizationParameters { unsigned PenaltyIndentLevel; unsigned PenaltyLevelDecrease; }; class UnwrappedLineFormatter { public: UnwrappedLineFormatter(const FormatStyle &Style, SourceManager &SourceMgr, const UnwrappedLine &Line, unsigned PreviousEndOfLineColumn, const std::vector &Annotations, tooling::Replacements &Replaces, bool StructuralError) : Style(Style), SourceMgr(SourceMgr), Line(Line), PreviousEndOfLineColumn(PreviousEndOfLineColumn), Annotations(Annotations), Replaces(Replaces), StructuralError(StructuralError) { Parameters.PenaltyIndentLevel = 15; Parameters.PenaltyLevelDecrease = 30; } /// \brief Formats an \c UnwrappedLine. /// /// \returns The column after the last token in the last line of the /// \c UnwrappedLine. unsigned format() { // Format first token and initialize indent. unsigned Indent = formatFirstToken(); // Initialize state dependent on indent. IndentState State; State.Column = Indent; State.ConsumedTokens = 0; State.Indent.push_back(Indent + 4); State.LastSpace.push_back(Indent); State.FirstLessLess.push_back(0); State.ForLoopVariablePos = 0; State.LineContainsContinuedForLoopSection = false; State.StartOfLineLevel = 1; // The first token has already been indented and thus consumed. moveStateToNextToken(State); // Check whether the UnwrappedLine can be put onto a single line. If so, // this is bound to be the optimal solution (by definition) and we don't // need to analyze the entire solution space. unsigned Columns = State.Column; bool FitsOnALine = true; for (unsigned i = 1, n = Line.Tokens.size(); i != n; ++i) { Columns += (Annotations[i].SpaceRequiredBefore ? 1 : 0) + Line.Tokens[i].TokenLength; // A special case for the colon of a constructor initializer as this only // needs to be put on a new line if the line needs to be split. if (Columns > Style.ColumnLimit - (Line.InPPDirective ? 1 : 0) || (Annotations[i].MustBreakBefore && Annotations[i].Type != TokenAnnotation::TT_CtorInitializerColon)) { FitsOnALine = false; break; } } // Start iterating at 1 as we have correctly formatted of Token #0 above. for (unsigned i = 1, n = Line.Tokens.size(); i != n; ++i) { if (FitsOnALine) { addTokenToState(false, false, State); } else { unsigned NoBreak = calcPenalty(State, false, UINT_MAX); unsigned Break = calcPenalty(State, true, NoBreak); addTokenToState(Break < NoBreak, false, State); } } return State.Column; } private: /// \brief The current state when indenting a unwrapped line. /// /// As the indenting tries different combinations this is copied by value. struct IndentState { /// \brief The number of used columns in the current line. unsigned Column; /// \brief The number of tokens already consumed. unsigned ConsumedTokens; /// \brief The parenthesis level of the first token on the current line. unsigned StartOfLineLevel; /// \brief The position to which a specific parenthesis level needs to be /// indented. std::vector Indent; /// \brief The position of the last space on each level. /// /// Used e.g. to break like: /// functionCall(Parameter, otherCall( /// OtherParameter)); std::vector LastSpace; /// \brief The position the first "<<" operator encountered on each level. /// /// Used to align "<<" operators. 0 if no such operator has been encountered /// on a level. std::vector FirstLessLess; /// \brief The column of the first variable in a for-loop declaration. /// /// Used to align the second variable if necessary. unsigned ForLoopVariablePos; /// \brief \c true if this line contains a continued for-loop section. bool LineContainsContinuedForLoopSection; /// \brief Comparison operator to be able to used \c IndentState in \c map. bool operator<(const IndentState &Other) const { if (Other.ConsumedTokens != ConsumedTokens) return Other.ConsumedTokens > ConsumedTokens; if (Other.Column != Column) return Other.Column > Column; if (Other.StartOfLineLevel != StartOfLineLevel) return Other.StartOfLineLevel > StartOfLineLevel; if (Other.Indent.size() != Indent.size()) return Other.Indent.size() > Indent.size(); for (int i = 0, e = Indent.size(); i != e; ++i) { if (Other.Indent[i] != Indent[i]) return Other.Indent[i] > Indent[i]; } if (Other.LastSpace.size() != LastSpace.size()) return Other.LastSpace.size() > LastSpace.size(); for (int i = 0, e = LastSpace.size(); i != e; ++i) { if (Other.LastSpace[i] != LastSpace[i]) return Other.LastSpace[i] > LastSpace[i]; } if (Other.FirstLessLess.size() != FirstLessLess.size()) return Other.FirstLessLess.size() > FirstLessLess.size(); for (int i = 0, e = FirstLessLess.size(); i != e; ++i) { if (Other.FirstLessLess[i] != FirstLessLess[i]) return Other.FirstLessLess[i] > FirstLessLess[i]; } if (Other.ForLoopVariablePos != ForLoopVariablePos) return Other.ForLoopVariablePos < ForLoopVariablePos; if (Other.LineContainsContinuedForLoopSection != LineContainsContinuedForLoopSection) return LineContainsContinuedForLoopSection; return false; } }; /// \brief Appends the next token to \p State and updates information /// necessary for indentation. /// /// Puts the token on the current line if \p Newline is \c true and adds a /// line break and necessary indentation otherwise. /// /// If \p DryRun is \c false, also creates and stores the required /// \c Replacement. void addTokenToState(bool Newline, bool DryRun, IndentState &State) { unsigned Index = State.ConsumedTokens; const FormatToken &Current = Line.Tokens[Index]; const FormatToken &Previous = Line.Tokens[Index - 1]; unsigned ParenLevel = State.Indent.size() - 1; if (Newline) { unsigned WhitespaceStartColumn = State.Column; if (Current.Tok.is(tok::string_literal) && Previous.Tok.is(tok::string_literal)) { State.Column = State.Column - Previous.TokenLength; } else if (Current.Tok.is(tok::lessless) && State.FirstLessLess[ParenLevel] != 0) { State.Column = State.FirstLessLess[ParenLevel]; } else if (ParenLevel != 0 && (Previous.Tok.is(tok::equal) || Current.Tok.is(tok::arrow) || Current.Tok.is(tok::period))) { // Indent and extra 4 spaces after '=' as it continues an expression. // Don't do that on the top level, as we already indent 4 there. State.Column = State.Indent[ParenLevel] + 4; } else if ( Line.Tokens[0].Tok.is(tok::kw_for) && Previous.Tok.is(tok::comma)) { State.Column = State.ForLoopVariablePos; } else if (Annotations[Index - 1].ClosesTemplateDeclaration) { State.Column = State.Indent[ParenLevel] - 4; } else { State.Column = State.Indent[ParenLevel]; } State.StartOfLineLevel = ParenLevel + 1; if (Line.Tokens[0].Tok.is(tok::kw_for)) State.LineContainsContinuedForLoopSection = Previous.Tok.isNot(tok::semi); if (!DryRun) { if (!Line.InPPDirective) replaceWhitespace(Current, 1, State.Column); else replacePPWhitespace(Current, 1, State.Column, WhitespaceStartColumn); } State.LastSpace[ParenLevel] = State.Indent[ParenLevel]; if (Current.Tok.is(tok::colon) && Annotations[Index].Type != TokenAnnotation::TT_ConditionalExpr && Annotations[0].Type != TokenAnnotation::TT_ObjCMethodSpecifier) State.Indent[ParenLevel] += 2; } else { if (Current.Tok.is(tok::equal) && Line.Tokens[0].Tok.is(tok::kw_for)) State.ForLoopVariablePos = State.Column - Previous.TokenLength; unsigned Spaces = Annotations[Index].SpaceRequiredBefore ? 1 : 0; if (Annotations[Index].Type == TokenAnnotation::TT_LineComment) Spaces = 2; if (!DryRun) replaceWhitespace(Current, 0, Spaces); // FIXME: Look into using this alignment at other ParenLevels. if (ParenLevel == 0 && (getPrecedence(Previous) == prec::Assignment || Previous.Tok.is(tok::kw_return))) State.Indent[ParenLevel] = State.Column + Spaces; if (Previous.Tok.is(tok::l_paren) || Annotations[Index - 1].Type == TokenAnnotation::TT_TemplateOpener) State.Indent[ParenLevel] = State.Column; // Top-level spaces are exempt as that mostly leads to better results. State.Column += Spaces; if (Spaces > 0 && ParenLevel != 0) State.LastSpace[ParenLevel] = State.Column; } moveStateToNextToken(State); } /// \brief Mark the next token as consumed in \p State and modify its stacks /// accordingly. void moveStateToNextToken(IndentState &State) { unsigned Index = State.ConsumedTokens; const FormatToken &Current = Line.Tokens[Index]; unsigned ParenLevel = State.Indent.size() - 1; if (Current.Tok.is(tok::lessless) && State.FirstLessLess[ParenLevel] == 0) State.FirstLessLess[ParenLevel] = State.Column; State.Column += Current.TokenLength; // If we encounter an opening (, [, { or <, we add a level to our stacks to // prepare for the following tokens. if (Current.Tok.is(tok::l_paren) || Current.Tok.is(tok::l_square) || Current.Tok.is(tok::l_brace) || Annotations[Index].Type == TokenAnnotation::TT_TemplateOpener) { State.Indent.push_back(4 + State.LastSpace.back()); State.LastSpace.push_back(State.LastSpace.back()); State.FirstLessLess.push_back(0); } // If we encounter a closing ), ], } or >, we can remove a level from our // stacks. if (Current.Tok.is(tok::r_paren) || Current.Tok.is(tok::r_square) || (Current.Tok.is(tok::r_brace) && State.ConsumedTokens > 0) || Annotations[Index].Type == TokenAnnotation::TT_TemplateCloser) { State.Indent.pop_back(); State.LastSpace.pop_back(); State.FirstLessLess.pop_back(); } ++State.ConsumedTokens; } /// \brief Calculate the panelty for splitting after the token at \p Index. unsigned splitPenalty(unsigned Index) { assert(Index < Line.Tokens.size() && "Tried to calculate penalty for splitting after the last token"); const FormatToken &Left = Line.Tokens[Index]; const FormatToken &Right = Line.Tokens[Index + 1]; // In for-loops, prefer breaking at ',' and ';'. if (Line.Tokens[0].Tok.is(tok::kw_for) && (Left.Tok.isNot(tok::comma) && Left.Tok.isNot(tok::semi))) return 20; if (Left.Tok.is(tok::semi) || Left.Tok.is(tok::comma) || Annotations[Index].ClosesTemplateDeclaration) return 0; if (Left.Tok.is(tok::l_paren)) return 20; prec::Level Level = getPrecedence(Line.Tokens[Index]); if (Level != prec::Unknown) return Level; if (Right.Tok.is(tok::arrow) || Right.Tok.is(tok::period)) return 150; return 3; } /// \brief Calculate the number of lines needed to format the remaining part /// of the unwrapped line. /// /// Assumes the formatting so far has led to /// the \c IndentState \p State. If \p NewLine is set, a new line will be /// added after the previous token. /// /// \param StopAt is used for optimization. If we can determine that we'll /// definitely need at least \p StopAt additional lines, we already know of a /// better solution. unsigned calcPenalty(IndentState State, bool NewLine, unsigned StopAt) { // We are at the end of the unwrapped line, so we don't need any more lines. if (State.ConsumedTokens >= Line.Tokens.size()) return 0; if (!NewLine && Annotations[State.ConsumedTokens].MustBreakBefore) return UINT_MAX; if (NewLine && !Annotations[State.ConsumedTokens].CanBreakBefore) return UINT_MAX; if (!NewLine && Line.Tokens[State.ConsumedTokens - 1].Tok.is(tok::semi) && State.LineContainsContinuedForLoopSection) return UINT_MAX; unsigned CurrentPenalty = 0; if (NewLine) { CurrentPenalty += Parameters.PenaltyIndentLevel * State.Indent.size() + splitPenalty(State.ConsumedTokens - 1); } else { if (State.Indent.size() < State.StartOfLineLevel) CurrentPenalty += Parameters.PenaltyLevelDecrease * (State.StartOfLineLevel - State.Indent.size()); } addTokenToState(NewLine, true, State); // Exceeding column limit is bad. if (State.Column > Style.ColumnLimit - (Line.InPPDirective ? 1 : 0)) return UINT_MAX; if (StopAt <= CurrentPenalty) return UINT_MAX; StopAt -= CurrentPenalty; StateMap::iterator I = Memory.find(State); if (I != Memory.end()) { // If this state has already been examined, we can safely return the // previous result if we // - have not hit the optimatization (and thus returned UINT_MAX) OR // - are now computing for a smaller or equal StopAt. unsigned SavedResult = I->second.first; unsigned SavedStopAt = I->second.second; if (SavedResult != UINT_MAX) return SavedResult + CurrentPenalty; else if (StopAt <= SavedStopAt) return UINT_MAX; } unsigned NoBreak = calcPenalty(State, false, StopAt); unsigned WithBreak = calcPenalty(State, true, std::min(StopAt, NoBreak)); unsigned Result = std::min(NoBreak, WithBreak); // We have to store 'Result' without adding 'CurrentPenalty' as the latter // can depend on 'NewLine'. Memory[State] = std::pair(Result, StopAt); return Result == UINT_MAX ? UINT_MAX : Result + CurrentPenalty; } /// \brief Replaces the whitespace in front of \p Tok. Only call once for /// each \c FormatToken. void replaceWhitespace(const FormatToken &Tok, unsigned NewLines, unsigned Spaces) { Replaces.insert(tooling::Replacement( SourceMgr, Tok.WhiteSpaceStart, Tok.WhiteSpaceLength, std::string(NewLines, '\n') + std::string(Spaces, ' '))); } /// \brief Like \c replaceWhitespace, but additionally adds right-aligned /// backslashes to escape newlines inside a preprocessor directive. /// /// This function and \c replaceWhitespace have the same behavior if /// \c Newlines == 0. void replacePPWhitespace(const FormatToken &Tok, unsigned NewLines, unsigned Spaces, unsigned WhitespaceStartColumn) { std::string NewLineText; if (NewLines > 0) { unsigned Offset = std::min(Style.ColumnLimit - 1, WhitespaceStartColumn); for (unsigned i = 0; i < NewLines; ++i) { NewLineText += std::string(Style.ColumnLimit - Offset - 1, ' '); NewLineText += "\\\n"; Offset = 0; } } Replaces.insert(tooling::Replacement( SourceMgr, Tok.WhiteSpaceStart, Tok.WhiteSpaceLength, NewLineText + std::string(Spaces, ' '))); } /// \brief Add a new line and the required indent before the first Token /// of the \c UnwrappedLine if there was no structural parsing error. /// Returns the indent level of the \c UnwrappedLine. unsigned formatFirstToken() { const FormatToken &Token = Line.Tokens[0]; if (!Token.WhiteSpaceStart.isValid() || StructuralError) return SourceMgr.getSpellingColumnNumber(Token.Tok.getLocation()) - 1; unsigned Newlines = std::min(Token.NewlinesBefore, Style.MaxEmptyLinesToKeep + 1); if (Newlines == 0 && !Token.IsFirst) Newlines = 1; unsigned Indent = Line.Level * 2; if ((Token.Tok.is(tok::kw_public) || Token.Tok.is(tok::kw_protected) || Token.Tok.is(tok::kw_private)) && static_cast(Indent) + Style.AccessModifierOffset >= 0) Indent += Style.AccessModifierOffset; if (!Line.InPPDirective || Token.HasUnescapedNewline) replaceWhitespace(Token, Newlines, Indent); else replacePPWhitespace(Token, Newlines, Indent, PreviousEndOfLineColumn); return Indent; } FormatStyle Style; SourceManager &SourceMgr; const UnwrappedLine &Line; const unsigned PreviousEndOfLineColumn; const std::vector &Annotations; tooling::Replacements &Replaces; bool StructuralError; // A map from an indent state to a pair (Result, Used-StopAt). typedef std::map > StateMap; StateMap Memory; OptimizationParameters Parameters; }; /// \brief Determines extra information about the tokens comprising an /// \c UnwrappedLine. class TokenAnnotator { public: TokenAnnotator(const UnwrappedLine &Line, const FormatStyle &Style, SourceManager &SourceMgr, Lexer &Lex) : Line(Line), Style(Style), SourceMgr(SourceMgr), Lex(Lex) { } /// \brief A parser that gathers additional information about tokens. /// /// The \c TokenAnnotator tries to matches parenthesis and square brakets and /// store a parenthesis levels. It also tries to resolve matching "<" and ">" /// into template parameter lists. class AnnotatingParser { public: AnnotatingParser(const SmallVector &Tokens, std::vector &Annotations) : Tokens(Tokens), Annotations(Annotations), Index(0) { } bool parseAngle() { while (Index < Tokens.size()) { if (Tokens[Index].Tok.is(tok::greater)) { Annotations[Index].Type = TokenAnnotation::TT_TemplateCloser; next(); return true; } if (Tokens[Index].Tok.is(tok::r_paren) || Tokens[Index].Tok.is(tok::r_square) || Tokens[Index].Tok.is(tok::r_brace)) return false; if (Tokens[Index].Tok.is(tok::pipepipe) || Tokens[Index].Tok.is(tok::ampamp) || Tokens[Index].Tok.is(tok::question) || Tokens[Index].Tok.is(tok::colon)) return false; if (!consumeToken()) return false; } return false; } bool parseParens() { while (Index < Tokens.size()) { if (Tokens[Index].Tok.is(tok::r_paren)) { next(); return true; } if (Tokens[Index].Tok.is(tok::r_square) || Tokens[Index].Tok.is(tok::r_brace)) return false; if (!consumeToken()) return false; } return false; } bool parseSquare() { while (Index < Tokens.size()) { if (Tokens[Index].Tok.is(tok::r_square)) { next(); return true; } if (Tokens[Index].Tok.is(tok::r_paren) || Tokens[Index].Tok.is(tok::r_brace)) return false; if (!consumeToken()) return false; } return false; } bool parseConditional() { while (Index < Tokens.size()) { if (Tokens[Index].Tok.is(tok::colon)) { Annotations[Index].Type = TokenAnnotation::TT_ConditionalExpr; next(); return true; } if (!consumeToken()) return false; } return false; } bool parseTemplateDeclaration() { if (Index < Tokens.size() && Tokens[Index].Tok.is(tok::less)) { Annotations[Index].Type = TokenAnnotation::TT_TemplateOpener; next(); if (!parseAngle()) return false; Annotations[Index - 1].ClosesTemplateDeclaration = true; parseLine(); return true; } return false; } bool consumeToken() { unsigned CurrentIndex = Index; next(); switch (Tokens[CurrentIndex].Tok.getKind()) { case tok::l_paren: if (!parseParens()) return false; if (Index < Tokens.size() && Tokens[Index].Tok.is(tok::colon)) { Annotations[Index].Type = TokenAnnotation::TT_CtorInitializerColon; next(); } break; case tok::l_square: if (!parseSquare()) return false; break; case tok::less: if (parseAngle()) Annotations[CurrentIndex].Type = TokenAnnotation::TT_TemplateOpener; else { Annotations[CurrentIndex].Type = TokenAnnotation::TT_BinaryOperator; Index = CurrentIndex + 1; } break; case tok::r_paren: case tok::r_square: return false; case tok::greater: Annotations[CurrentIndex].Type = TokenAnnotation::TT_BinaryOperator; break; case tok::kw_operator: if (Tokens[Index].Tok.is(tok::l_paren)) { Annotations[Index].Type = TokenAnnotation::TT_OverloadedOperator; next(); if (Index < Tokens.size() && Tokens[Index].Tok.is(tok::r_paren)) { Annotations[Index].Type = TokenAnnotation::TT_OverloadedOperator; next(); } } else { while (Index < Tokens.size() && !Tokens[Index].Tok.is(tok::l_paren)) { Annotations[Index].Type = TokenAnnotation::TT_OverloadedOperator; next(); } } break; case tok::question: parseConditional(); break; case tok::kw_template: parseTemplateDeclaration(); break; default: break; } return true; } void parseIncludeDirective() { while (Index < Tokens.size()) { if (Tokens[Index].Tok.is(tok::slash)) Annotations[Index].Type = TokenAnnotation::TT_DirectorySeparator; else if (Tokens[Index].Tok.is(tok::less)) Annotations[Index].Type = TokenAnnotation::TT_TemplateOpener; else if (Tokens[Index].Tok.is(tok::greater)) Annotations[Index].Type = TokenAnnotation::TT_TemplateCloser; next(); } } void parsePreprocessorDirective() { next(); if (Index >= Tokens.size()) return; // Hashes in the middle of a line can lead to any strange token // sequence. if (Tokens[Index].Tok.getIdentifierInfo() == NULL) return; switch (Tokens[Index].Tok.getIdentifierInfo()->getPPKeywordID()) { case tok::pp_include: case tok::pp_import: parseIncludeDirective(); break; default: break; } } bool parseLine() { if (Tokens[Index].Tok.is(tok::hash)) { parsePreprocessorDirective(); return true; } while (Index < Tokens.size()) { if (!consumeToken()) return false; } return true; } void next() { ++Index; } private: const SmallVector &Tokens; std::vector &Annotations; unsigned Index; }; bool annotate() { Annotations.clear(); for (int i = 0, e = Line.Tokens.size(); i != e; ++i) { Annotations.push_back(TokenAnnotation()); } AnnotatingParser Parser(Line.Tokens, Annotations); if (!Parser.parseLine()) return false; determineTokenTypes(); bool IsObjCMethodDecl = (Line.Tokens.size() > 0 && (Annotations[0].Type == TokenAnnotation::TT_ObjCMethodSpecifier)); for (int i = 1, e = Line.Tokens.size(); i != e; ++i) { TokenAnnotation &Annotation = Annotations[i]; Annotation.CanBreakBefore = canBreakBefore(i); if (Annotation.Type == TokenAnnotation::TT_CtorInitializerColon) { Annotation.MustBreakBefore = true; Annotation.SpaceRequiredBefore = true; } else if (Annotation.Type == TokenAnnotation::TT_OverloadedOperator) { Annotation.SpaceRequiredBefore = Line.Tokens[i].Tok.is(tok::identifier) || Line.Tokens[i].Tok.is(tok::kw_new) || Line.Tokens[i].Tok.is(tok::kw_delete); } else if ( Annotations[i - 1].Type == TokenAnnotation::TT_OverloadedOperator) { Annotation.SpaceRequiredBefore = false; } else if (IsObjCMethodDecl && Line.Tokens[i].Tok.is(tok::identifier) && (i != e - 1) && Line.Tokens[i + 1].Tok.is(tok::colon) && Line.Tokens[i - 1].Tok.is(tok::identifier)) { Annotation.CanBreakBefore = true; Annotation.SpaceRequiredBefore = true; } else if (IsObjCMethodDecl && Line.Tokens[i].Tok.is(tok::identifier) && Line.Tokens[i - 1].Tok.is(tok::l_paren) && Line.Tokens[i - 2].Tok.is(tok::colon)) { // Don't break this identifier as ':' or identifier // before it will break. Annotation.CanBreakBefore = false; } else if (Line.Tokens[i].Tok.is(tok::at) && Line.Tokens[i - 2].Tok.is(tok::at)) { // Don't put two objc's '@' on the same line. This could happen, // as in, @optional @property ... Annotation.MustBreakBefore = true; } else if (Line.Tokens[i].Tok.is(tok::colon)) { Annotation.SpaceRequiredBefore = Line.Tokens[0].Tok.isNot(tok::kw_case) && !IsObjCMethodDecl && (i != e - 1); // Don't break at ':' if identifier before it can beak. if (IsObjCMethodDecl && Line.Tokens[i - 1].Tok.is(tok::identifier) && Annotations[i - 1].CanBreakBefore) Annotation.CanBreakBefore = false; } else if ( Annotations[i - 1].Type == TokenAnnotation::TT_ObjCMethodSpecifier) { Annotation.SpaceRequiredBefore = true; } else if (Annotations[i - 1].Type == TokenAnnotation::TT_UnaryOperator) { Annotation.SpaceRequiredBefore = false; } else if (Annotation.Type == TokenAnnotation::TT_UnaryOperator) { Annotation.SpaceRequiredBefore = Line.Tokens[i - 1].Tok.isNot(tok::l_paren) && Line.Tokens[i - 1].Tok.isNot(tok::l_square); } else if (Line.Tokens[i - 1].Tok.is(tok::greater) && Line.Tokens[i].Tok.is(tok::greater)) { if (Annotation.Type == TokenAnnotation::TT_TemplateCloser && Annotations[i - 1].Type == TokenAnnotation::TT_TemplateCloser) Annotation.SpaceRequiredBefore = Style.SplitTemplateClosingGreater; else Annotation.SpaceRequiredBefore = false; } else if ( Annotation.Type == TokenAnnotation::TT_DirectorySeparator || Annotations[i - 1].Type == TokenAnnotation::TT_DirectorySeparator) { Annotation.SpaceRequiredBefore = false; } else if ( Annotation.Type == TokenAnnotation::TT_BinaryOperator || Annotations[i - 1].Type == TokenAnnotation::TT_BinaryOperator) { Annotation.SpaceRequiredBefore = true; } else if ( Annotations[i - 1].Type == TokenAnnotation::TT_TemplateCloser && Line.Tokens[i].Tok.is(tok::l_paren)) { Annotation.SpaceRequiredBefore = false; } else if (Line.Tokens[i].Tok.is(tok::less) && Line.Tokens[0].Tok.is(tok::hash)) { Annotation.SpaceRequiredBefore = true; } else if (IsObjCMethodDecl && Line.Tokens[i - 1].Tok.is(tok::r_paren) && Line.Tokens[i].Tok.is(tok::identifier)) { // Don't space between ')' and Annotation.SpaceRequiredBefore = false; } else if (IsObjCMethodDecl && Line.Tokens[i - 1].Tok.is(tok::colon) && Line.Tokens[i].Tok.is(tok::l_paren)) { // Don't space between ':' and '(' Annotation.SpaceRequiredBefore = false; } else if (Annotation.Type == TokenAnnotation::TT_TrailingUnaryOperator) { Annotation.SpaceRequiredBefore = false; } else { Annotation.SpaceRequiredBefore = spaceRequiredBetween(Line.Tokens[i - 1].Tok, Line.Tokens[i].Tok); } if (Annotations[i - 1].Type == TokenAnnotation::TT_LineComment || (Line.Tokens[i].Tok.is(tok::string_literal) && Line.Tokens[i - 1].Tok.is(tok::string_literal))) { Annotation.MustBreakBefore = true; } if (Annotation.MustBreakBefore) Annotation.CanBreakBefore = true; } return true; } const std::vector &getAnnotations() { return Annotations; } private: void determineTokenTypes() { bool IsRHS = false; for (int i = 0, e = Line.Tokens.size(); i != e; ++i) { TokenAnnotation &Annotation = Annotations[i]; const FormatToken &Tok = Line.Tokens[i]; if (getPrecedence(Tok) == prec::Assignment) IsRHS = true; else if (Tok.Tok.is(tok::kw_return)) IsRHS = true; if (Annotation.Type != TokenAnnotation::TT_Unknown) continue; if (Tok.Tok.is(tok::star) || Tok.Tok.is(tok::amp)) { Annotation.Type = determineStarAmpUsage(i, IsRHS); } else if (Tok.Tok.is(tok::minus) || Tok.Tok.is(tok::plus)) { Annotation.Type = determinePlusMinusUsage(i); } else if (Tok.Tok.is(tok::minusminus) || Tok.Tok.is(tok::plusplus)) { Annotation.Type = determineIncrementUsage(i); } else if (Tok.Tok.is(tok::exclaim)) { Annotation.Type = TokenAnnotation::TT_UnaryOperator; } else if (isBinaryOperator(Line.Tokens[i])) { Annotation.Type = TokenAnnotation::TT_BinaryOperator; } else if (Tok.Tok.is(tok::comment)) { std::string Data( Lexer::getSpelling(Tok.Tok, SourceMgr, Lex.getLangOpts())); if (StringRef(Data).startswith("//")) Annotation.Type = TokenAnnotation::TT_LineComment; else Annotation.Type = TokenAnnotation::TT_BlockComment; } } } bool isBinaryOperator(const FormatToken &Tok) { // Comma is a binary operator, but does not behave as such wrt. formatting. return getPrecedence(Tok) > prec::Comma; } TokenAnnotation::TokenType determineStarAmpUsage(unsigned Index, bool IsRHS) { if (Index == 0) return TokenAnnotation::TT_UnaryOperator; if (Index == Annotations.size()) return TokenAnnotation::TT_Unknown; const FormatToken &PrevToken = Line.Tokens[Index - 1]; const FormatToken &NextToken = Line.Tokens[Index + 1]; if (PrevToken.Tok.is(tok::l_paren) || PrevToken.Tok.is(tok::l_square) || PrevToken.Tok.is(tok::comma) || PrevToken.Tok.is(tok::kw_return) || PrevToken.Tok.is(tok::colon) || Annotations[Index - 1].Type == TokenAnnotation::TT_BinaryOperator) return TokenAnnotation::TT_UnaryOperator; if (PrevToken.Tok.isLiteral() || NextToken.Tok.isLiteral() || NextToken.Tok.is(tok::plus) || NextToken.Tok.is(tok::minus) || NextToken.Tok.is(tok::plusplus) || NextToken.Tok.is(tok::minusminus) || NextToken.Tok.is(tok::tilde) || NextToken.Tok.is(tok::exclaim) || NextToken.Tok.is(tok::kw_alignof) || NextToken.Tok.is(tok::kw_sizeof)) return TokenAnnotation::TT_BinaryOperator; if (NextToken.Tok.is(tok::comma) || NextToken.Tok.is(tok::r_paren) || NextToken.Tok.is(tok::greater)) return TokenAnnotation::TT_PointerOrReference; // It is very unlikely that we are going to find a pointer or reference type // definition on the RHS of an assignment. if (IsRHS) return TokenAnnotation::TT_BinaryOperator; return TokenAnnotation::TT_PointerOrReference; } TokenAnnotation::TokenType determinePlusMinusUsage(unsigned Index) { // At the start of the line, +/- specific ObjectiveC method declarations. if (Index == 0) return TokenAnnotation::TT_ObjCMethodSpecifier; // Use heuristics to recognize unary operators. const Token &PreviousTok = Line.Tokens[Index - 1].Tok; if (PreviousTok.is(tok::equal) || PreviousTok.is(tok::l_paren) || PreviousTok.is(tok::comma) || PreviousTok.is(tok::l_square) || PreviousTok.is(tok::question) || PreviousTok.is(tok::colon) || PreviousTok.is(tok::kw_return) || PreviousTok.is(tok::kw_case)) return TokenAnnotation::TT_UnaryOperator; // There can't be to consecutive binary operators. if (Annotations[Index - 1].Type == TokenAnnotation::TT_BinaryOperator) return TokenAnnotation::TT_UnaryOperator; // Fall back to marking the token as binary operator. return TokenAnnotation::TT_BinaryOperator; } /// \brief Determine whether ++/-- are pre- or post-increments/-decrements. TokenAnnotation::TokenType determineIncrementUsage(unsigned Index) { if (Index != 0 && Line.Tokens[Index - 1].Tok.is(tok::identifier)) return TokenAnnotation::TT_TrailingUnaryOperator; return TokenAnnotation::TT_UnaryOperator; } bool spaceRequiredBetween(Token Left, Token Right) { if (Right.is(tok::r_paren) || Right.is(tok::semi) || Right.is(tok::comma)) return false; if (Left.is(tok::kw_template) && Right.is(tok::less)) return true; if (Left.is(tok::arrow) || Right.is(tok::arrow)) return false; if (Left.is(tok::exclaim) || Left.is(tok::tilde)) return false; if (Left.is(tok::at) && Right.is(tok::identifier)) return false; if (Left.is(tok::less) || Right.is(tok::greater) || Right.is(tok::less)) return false; if (Right.is(tok::amp) || Right.is(tok::star)) return Left.isLiteral() || (Left.isNot(tok::star) && Left.isNot(tok::amp) && !Style.PointerAndReferenceBindToType); if (Left.is(tok::amp) || Left.is(tok::star)) return Right.isLiteral() || Style.PointerAndReferenceBindToType; if (Right.is(tok::star) && Left.is(tok::l_paren)) return false; if (Left.is(tok::l_square) || Right.is(tok::l_square) || Right.is(tok::r_square)) return false; if (Left.is(tok::coloncolon) || (Right.is(tok::coloncolon) && (Left.is(tok::identifier) || Left.is(tok::greater)))) return false; if (Left.is(tok::period) || Right.is(tok::period)) return false; if (Left.is(tok::colon) || Right.is(tok::colon)) return true; if (Left.is(tok::l_paren)) return false; if (Left.is(tok::hash)) return false; if (Right.is(tok::l_paren)) { return Left.is(tok::kw_if) || Left.is(tok::kw_for) || Left.is(tok::kw_while) || Left.is(tok::kw_switch) || (Left.isNot(tok::identifier) && Left.isNot(tok::kw_sizeof) && Left.isNot(tok::kw_typeof) && Left.isNot(tok::kw_alignof)); } return true; } bool canBreakBefore(unsigned i) { if (Annotations[i - 1].ClosesTemplateDeclaration) return true; if (Annotations[i - 1].Type == TokenAnnotation::TT_PointerOrReference || Annotations[i - 1].Type == TokenAnnotation::TT_TemplateCloser || Annotations[i].Type == TokenAnnotation::TT_ConditionalExpr) { return false; } const FormatToken &Left = Line.Tokens[i - 1]; const FormatToken &Right = Line.Tokens[i]; if (Right.Tok.is(tok::r_paren) || Right.Tok.is(tok::l_brace) || Right.Tok.is(tok::comment) || Right.Tok.is(tok::greater)) return false; return (isBinaryOperator(Left) && Left.Tok.isNot(tok::lessless)) || Left.Tok.is(tok::comma) || Right.Tok.is(tok::lessless) || Right.Tok.is(tok::arrow) || Right.Tok.is(tok::period) || Right.Tok.is(tok::colon) || Left.Tok.is(tok::semi) || Left.Tok.is(tok::l_brace) || (Left.Tok.is(tok::l_paren) && !Right.Tok.is(tok::r_paren)); } const UnwrappedLine &Line; FormatStyle Style; SourceManager &SourceMgr; Lexer &Lex; std::vector Annotations; }; class LexerBasedFormatTokenSource : public FormatTokenSource { public: LexerBasedFormatTokenSource(Lexer &Lex, SourceManager &SourceMgr) : GreaterStashed(false), Lex(Lex), SourceMgr(SourceMgr), IdentTable(Lex.getLangOpts()) { Lex.SetKeepWhitespaceMode(true); } virtual FormatToken getNextToken() { if (GreaterStashed) { FormatTok.NewlinesBefore = 0; FormatTok.WhiteSpaceStart = FormatTok.Tok.getLocation().getLocWithOffset(1); FormatTok.WhiteSpaceLength = 0; GreaterStashed = false; return FormatTok; } FormatTok = FormatToken(); Lex.LexFromRawLexer(FormatTok.Tok); StringRef Text = rawTokenText(FormatTok.Tok); FormatTok.WhiteSpaceStart = FormatTok.Tok.getLocation(); if (SourceMgr.getFileOffset(FormatTok.WhiteSpaceStart) == 0) FormatTok.IsFirst = true; // Consume and record whitespace until we find a significant token. while (FormatTok.Tok.is(tok::unknown)) { FormatTok.NewlinesBefore += Text.count('\n'); FormatTok.HasUnescapedNewline = Text.count("\\\n") != FormatTok.NewlinesBefore; FormatTok.WhiteSpaceLength += FormatTok.Tok.getLength(); if (FormatTok.Tok.is(tok::eof)) return FormatTok; Lex.LexFromRawLexer(FormatTok.Tok); Text = rawTokenText(FormatTok.Tok); } // Now FormatTok is the next non-whitespace token. FormatTok.TokenLength = Text.size(); // In case the token starts with escaped newlines, we want to // take them into account as whitespace - this pattern is quite frequent // in macro definitions. // FIXME: What do we want to do with other escaped spaces, and escaped // spaces or newlines in the middle of tokens? // FIXME: Add a more explicit test. unsigned i = 0; while (i + 1 < Text.size() && Text[i] == '\\' && Text[i+1] == '\n') { FormatTok.WhiteSpaceLength += 2; FormatTok.TokenLength -= 2; i += 2; } if (FormatTok.Tok.is(tok::raw_identifier)) { IdentifierInfo &Info = IdentTable.get(Text); FormatTok.Tok.setIdentifierInfo(&Info); FormatTok.Tok.setKind(Info.getTokenID()); } if (FormatTok.Tok.is(tok::greatergreater)) { FormatTok.Tok.setKind(tok::greater); GreaterStashed = true; } return FormatTok; } private: FormatToken FormatTok; bool GreaterStashed; Lexer &Lex; SourceManager &SourceMgr; IdentifierTable IdentTable; /// Returns the text of \c FormatTok. StringRef rawTokenText(Token &Tok) { return StringRef(SourceMgr.getCharacterData(Tok.getLocation()), Tok.getLength()); } }; class Formatter : public UnwrappedLineConsumer { public: Formatter(const FormatStyle &Style, Lexer &Lex, SourceManager &SourceMgr, const std::vector &Ranges) : Style(Style), Lex(Lex), SourceMgr(SourceMgr), Ranges(Ranges), StructuralError(false) { } virtual ~Formatter() { } tooling::Replacements format() { LexerBasedFormatTokenSource Tokens(Lex, SourceMgr); UnwrappedLineParser Parser(Style, Tokens, *this); StructuralError = Parser.parse(); unsigned PreviousEndOfLineColumn = 0; for (std::vector::iterator I = UnwrappedLines.begin(), E = UnwrappedLines.end(); I != E; ++I) PreviousEndOfLineColumn = formatUnwrappedLine(*I, PreviousEndOfLineColumn); return Replaces; } private: virtual void consumeUnwrappedLine(const UnwrappedLine &TheLine) { UnwrappedLines.push_back(TheLine); } unsigned formatUnwrappedLine(const UnwrappedLine &TheLine, unsigned PreviousEndOfLineColumn) { if (TheLine.Tokens.empty()) return 0; // FIXME: Find out how this can ever happen. CharSourceRange LineRange = CharSourceRange::getTokenRange(TheLine.Tokens.front().Tok.getLocation(), TheLine.Tokens.back().Tok.getLocation()); for (unsigned i = 0, e = Ranges.size(); i != e; ++i) { if (SourceMgr.isBeforeInTranslationUnit(LineRange.getEnd(), Ranges[i].getBegin()) || SourceMgr.isBeforeInTranslationUnit(Ranges[i].getEnd(), LineRange.getBegin())) continue; TokenAnnotator Annotator(TheLine, Style, SourceMgr, Lex); if (!Annotator.annotate()) break; UnwrappedLineFormatter Formatter( Style, SourceMgr, TheLine, PreviousEndOfLineColumn, Annotator.getAnnotations(), Replaces, StructuralError); return Formatter.format(); } // If we did not reformat this unwrapped line, the column at the end of the // last token is unchanged - thus, we can calculate the end of the last // token, and return the result. const FormatToken &Token = TheLine.Tokens.back(); return SourceMgr.getSpellingColumnNumber(Token.Tok.getLocation()) + Lex.MeasureTokenLength(Token.Tok.getLocation(), SourceMgr, Lex.getLangOpts()) - 1; } FormatStyle Style; Lexer &Lex; SourceManager &SourceMgr; tooling::Replacements Replaces; std::vector Ranges; std::vector UnwrappedLines; bool StructuralError; }; tooling::Replacements reformat(const FormatStyle &Style, Lexer &Lex, SourceManager &SourceMgr, std::vector Ranges) { Formatter formatter(Style, Lex, SourceMgr, Ranges); return formatter.format(); } } // namespace format } // namespace clang