//===--- Format.cpp - Format C++ code -------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief This file implements functions declared in Format.h. This will be /// split into separate files as we go. /// /// This is EXPERIMENTAL code under heavy development. It is not in a state yet, /// where it can be used to format real code. /// //===----------------------------------------------------------------------===// #include "clang/Format/Format.h" #include "UnwrappedLineParser.h" #include "clang/Basic/OperatorPrecedence.h" #include "clang/Basic/SourceManager.h" #include "clang/Lex/Lexer.h" #include namespace clang { namespace format { enum TokenType { TT_BinaryOperator, TT_BlockComment, TT_CastRParen, TT_ConditionalExpr, TT_CtorInitializerColon, TT_DirectorySeparator, TT_LineComment, TT_ObjCMethodSpecifier, TT_OverloadedOperator, TT_PointerOrReference, TT_PureVirtualSpecifier, TT_TemplateCloser, TT_TemplateOpener, TT_TrailingUnaryOperator, TT_UnaryOperator, TT_Unknown }; enum LineType { LT_Invalid, LT_Other, LT_PreprocessorDirective, LT_VirtualFunctionDecl, LT_ObjCMethodDecl }; class AnnotatedToken { public: AnnotatedToken(const FormatToken &FormatTok) : FormatTok(FormatTok), Type(TT_Unknown), ClosesTemplateDeclaration(false), Parent(NULL) { } bool is(tok::TokenKind Kind) const { return FormatTok.Tok.is(Kind); } bool isNot(tok::TokenKind Kind) const { return FormatTok.Tok.isNot(Kind); } bool isObjCAtKeyword(tok::ObjCKeywordKind Kind) const { return FormatTok.Tok.isObjCAtKeyword(Kind); } FormatToken FormatTok; TokenType Type; bool SpaceRequiredBefore; bool CanBreakBefore; bool MustBreakBefore; bool ClosesTemplateDeclaration; std::vector Children; AnnotatedToken *Parent; }; static prec::Level getPrecedence(const AnnotatedToken &Tok) { return getBinOpPrecedence(Tok.FormatTok.Tok.getKind(), true, true); } using llvm::MutableArrayRef; FormatStyle getLLVMStyle() { FormatStyle LLVMStyle; LLVMStyle.ColumnLimit = 80; LLVMStyle.MaxEmptyLinesToKeep = 1; LLVMStyle.PointerAndReferenceBindToType = false; LLVMStyle.AccessModifierOffset = -2; LLVMStyle.SplitTemplateClosingGreater = true; LLVMStyle.IndentCaseLabels = false; LLVMStyle.SpacesBeforeTrailingComments = 1; return LLVMStyle; } FormatStyle getGoogleStyle() { FormatStyle GoogleStyle; GoogleStyle.ColumnLimit = 80; GoogleStyle.MaxEmptyLinesToKeep = 1; GoogleStyle.PointerAndReferenceBindToType = true; GoogleStyle.AccessModifierOffset = -1; GoogleStyle.SplitTemplateClosingGreater = false; GoogleStyle.IndentCaseLabels = true; GoogleStyle.SpacesBeforeTrailingComments = 2; return GoogleStyle; } struct OptimizationParameters { unsigned PenaltyIndentLevel; unsigned PenaltyLevelDecrease; unsigned PenaltyExcessCharacter; }; class UnwrappedLineFormatter { public: UnwrappedLineFormatter( const FormatStyle &Style, SourceManager &SourceMgr, const UnwrappedLine &Line, unsigned PreviousEndOfLineColumn, LineType CurrentLineType, const AnnotatedToken &RootToken, tooling::Replacements &Replaces, bool StructuralError) : Style(Style), SourceMgr(SourceMgr), Line(Line), PreviousEndOfLineColumn(PreviousEndOfLineColumn), CurrentLineType(CurrentLineType), RootToken(RootToken), Replaces(Replaces), StructuralError(StructuralError) { Parameters.PenaltyIndentLevel = 15; Parameters.PenaltyLevelDecrease = 30; Parameters.PenaltyExcessCharacter = 1000000; } /// \brief Formats an \c UnwrappedLine. /// /// \returns The column after the last token in the last line of the /// \c UnwrappedLine. unsigned format() { // Format first token and initialize indent. unsigned Indent = formatFirstToken(); // Initialize state dependent on indent. IndentState State; State.Column = Indent; State.NextToken = &RootToken; State.Indent.push_back(Indent + 4); State.LastSpace.push_back(Indent); State.FirstLessLess.push_back(0); State.ForLoopVariablePos = 0; State.LineContainsContinuedForLoopSection = false; State.StartOfLineLevel = 1; // The first token has already been indented and thus consumed. moveStateToNextToken(State); // Check whether the UnwrappedLine can be put onto a single line. If so, // this is bound to be the optimal solution (by definition) and we don't // need to analyze the entire solution space. unsigned Columns = State.Column; bool FitsOnALine = true; const AnnotatedToken *Tok = State.NextToken; while (Tok != NULL) { Columns += (Tok->SpaceRequiredBefore ? 1 : 0) + Tok->FormatTok.TokenLength; // A special case for the colon of a constructor initializer as this only // needs to be put on a new line if the line needs to be split. if (Columns > Style.ColumnLimit - (Line.InPPDirective ? 1 : 0) || (Tok->MustBreakBefore && Tok->Type != TT_CtorInitializerColon)) { FitsOnALine = false; break; } Tok = Tok->Children.empty() ? NULL : &Tok->Children[0]; } // Start iterating at 1 as we have correctly formatted of Token #0 above. while (State.NextToken != NULL) { if (FitsOnALine) { addTokenToState(false, false, State); } else { unsigned NoBreak = calcPenalty(State, false, UINT_MAX); unsigned Break = calcPenalty(State, true, NoBreak); addTokenToState(Break < NoBreak, false, State); } } return State.Column; } private: /// \brief The current state when indenting a unwrapped line. /// /// As the indenting tries different combinations this is copied by value. struct IndentState { /// \brief The number of used columns in the current line. unsigned Column; const AnnotatedToken *NextToken; /// \brief The parenthesis level of the first token on the current line. unsigned StartOfLineLevel; /// \brief The position to which a specific parenthesis level needs to be /// indented. std::vector Indent; /// \brief The position of the last space on each level. /// /// Used e.g. to break like: /// functionCall(Parameter, otherCall( /// OtherParameter)); std::vector LastSpace; /// \brief The position the first "<<" operator encountered on each level. /// /// Used to align "<<" operators. 0 if no such operator has been encountered /// on a level. std::vector FirstLessLess; /// \brief The column of the first variable in a for-loop declaration. /// /// Used to align the second variable if necessary. unsigned ForLoopVariablePos; /// \brief \c true if this line contains a continued for-loop section. bool LineContainsContinuedForLoopSection; /// \brief Comparison operator to be able to used \c IndentState in \c map. bool operator<(const IndentState &Other) const { if (Other.NextToken != NextToken) return Other.NextToken > NextToken; if (Other.Column != Column) return Other.Column > Column; if (Other.StartOfLineLevel != StartOfLineLevel) return Other.StartOfLineLevel > StartOfLineLevel; if (Other.Indent.size() != Indent.size()) return Other.Indent.size() > Indent.size(); for (int i = 0, e = Indent.size(); i != e; ++i) { if (Other.Indent[i] != Indent[i]) return Other.Indent[i] > Indent[i]; } if (Other.LastSpace.size() != LastSpace.size()) return Other.LastSpace.size() > LastSpace.size(); for (int i = 0, e = LastSpace.size(); i != e; ++i) { if (Other.LastSpace[i] != LastSpace[i]) return Other.LastSpace[i] > LastSpace[i]; } if (Other.FirstLessLess.size() != FirstLessLess.size()) return Other.FirstLessLess.size() > FirstLessLess.size(); for (int i = 0, e = FirstLessLess.size(); i != e; ++i) { if (Other.FirstLessLess[i] != FirstLessLess[i]) return Other.FirstLessLess[i] > FirstLessLess[i]; } if (Other.ForLoopVariablePos != ForLoopVariablePos) return Other.ForLoopVariablePos < ForLoopVariablePos; if (Other.LineContainsContinuedForLoopSection != LineContainsContinuedForLoopSection) return LineContainsContinuedForLoopSection; return false; } }; /// \brief Appends the next token to \p State and updates information /// necessary for indentation. /// /// Puts the token on the current line if \p Newline is \c true and adds a /// line break and necessary indentation otherwise. /// /// If \p DryRun is \c false, also creates and stores the required /// \c Replacement. void addTokenToState(bool Newline, bool DryRun, IndentState &State) { const AnnotatedToken &Current = *State.NextToken; const AnnotatedToken &Previous = *State.NextToken->Parent; assert(State.Indent.size()); unsigned ParenLevel = State.Indent.size() - 1; if (Newline) { unsigned WhitespaceStartColumn = State.Column; if (Current.is(tok::r_brace)) { State.Column = Line.Level * 2; } else if (Previous.is(tok::l_brace)) { // FIXME: This does not work with nested static initializers. // Implement a better handling for static initializers and similar // constructs. State.Column = Line.Level * 2 + 2; } else if (Current.is(tok::string_literal) && Previous.is(tok::string_literal)) { State.Column = State.Column - Previous.FormatTok.TokenLength; } else if (Current.is(tok::lessless) && State.FirstLessLess[ParenLevel] != 0) { State.Column = State.FirstLessLess[ParenLevel]; } else if (ParenLevel != 0 && (Previous.is(tok::equal) || Current.is(tok::arrow) || Current.is(tok::period) || Previous.is(tok::question) || Previous.Type == TT_ConditionalExpr)) { // Indent and extra 4 spaces after if we know the current expression is // continued. Don't do that on the top level, as we already indent 4 // there. State.Column = State.Indent[ParenLevel] + 4; } else if (RootToken.is(tok::kw_for) && Previous.is(tok::comma)) { State.Column = State.ForLoopVariablePos; } else if (State.NextToken->Parent->ClosesTemplateDeclaration) { State.Column = State.Indent[ParenLevel] - 4; } else { State.Column = State.Indent[ParenLevel]; } State.StartOfLineLevel = ParenLevel + 1; if (RootToken.is(tok::kw_for)) State.LineContainsContinuedForLoopSection = Previous.isNot(tok::semi); if (!DryRun) { if (!Line.InPPDirective) replaceWhitespace(Current.FormatTok, 1, State.Column); else replacePPWhitespace(Current.FormatTok, 1, State.Column, WhitespaceStartColumn); } State.LastSpace[ParenLevel] = State.Column; if (Current.is(tok::colon) && CurrentLineType != LT_ObjCMethodDecl && State.NextToken->Type != TT_ConditionalExpr) State.Indent[ParenLevel] += 2; } else { if (Current.is(tok::equal) && RootToken.is(tok::kw_for)) State.ForLoopVariablePos = State.Column - Previous.FormatTok.TokenLength; unsigned Spaces = State.NextToken->SpaceRequiredBefore ? 1 : 0; if (State.NextToken->Type == TT_LineComment) Spaces = Style.SpacesBeforeTrailingComments; if (!DryRun) replaceWhitespace(Current, 0, Spaces); // FIXME: Do we need to do this for assignments nested in other // expressions? if (RootToken.isNot(tok::kw_for) && ParenLevel == 0 && (getPrecedence(Previous) == prec::Assignment || Previous.is(tok::kw_return))) State.Indent[ParenLevel] = State.Column + Spaces; if (Previous.is(tok::l_paren) || State.NextToken->Parent->Type == TT_TemplateOpener) State.Indent[ParenLevel] = State.Column; // Top-level spaces that are not part of assignments are exempt as that // mostly leads to better results. State.Column += Spaces; if (Spaces > 0 && (ParenLevel != 0 || getPrecedence(Previous) == prec::Assignment)) State.LastSpace[ParenLevel] = State.Column; } moveStateToNextToken(State); } /// \brief Mark the next token as consumed in \p State and modify its stacks /// accordingly. void moveStateToNextToken(IndentState &State) { const AnnotatedToken &Current = *State.NextToken; assert(State.Indent.size()); unsigned ParenLevel = State.Indent.size() - 1; if (Current.is(tok::lessless) && State.FirstLessLess[ParenLevel] == 0) State.FirstLessLess[ParenLevel] = State.Column; State.Column += Current.FormatTok.TokenLength; // If we encounter an opening (, [, { or <, we add a level to our stacks to // prepare for the following tokens. if (Current.is(tok::l_paren) || Current.is(tok::l_square) || Current.is(tok::l_brace) || State.NextToken->Type == TT_TemplateOpener) { State.Indent.push_back(4 + State.LastSpace.back()); State.LastSpace.push_back(State.LastSpace.back()); State.FirstLessLess.push_back(0); } // If we encounter a closing ), ], } or >, we can remove a level from our // stacks. if (Current.is(tok::r_paren) || Current.is(tok::r_square) || (Current.is(tok::r_brace) && State.NextToken != &RootToken) || State.NextToken->Type == TT_TemplateCloser) { State.Indent.pop_back(); State.LastSpace.pop_back(); State.FirstLessLess.pop_back(); } if (State.NextToken->Children.empty()) State.NextToken = NULL; else State.NextToken = &State.NextToken->Children[0]; } /// \brief Calculate the penalty for splitting after the token at \p Index. unsigned splitPenalty(const AnnotatedToken &Tok) { const AnnotatedToken &Left = Tok; const AnnotatedToken &Right = Tok.Children[0]; // In for-loops, prefer breaking at ',' and ';'. if (RootToken.is(tok::kw_for) && (Left.isNot(tok::comma) && Left.isNot(tok::semi))) return 20; if (Left.is(tok::semi) || Left.is(tok::comma) || Left.ClosesTemplateDeclaration) return 0; if (Left.is(tok::l_paren)) return 20; if (Left.is(tok::question) || Left.Type == TT_ConditionalExpr) return prec::Assignment; prec::Level Level = getPrecedence(Left); // Breaking after an assignment leads to a bad result as the two sides of // the assignment are visually very close together. if (Level == prec::Assignment) return 50; if (Level != prec::Unknown) return Level; if (Right.is(tok::arrow) || Right.is(tok::period)) return 150; return 3; } unsigned getColumnLimit() { return Style.ColumnLimit - (Line.InPPDirective ? 1 : 0); } /// \brief Calculate the number of lines needed to format the remaining part /// of the unwrapped line. /// /// Assumes the formatting so far has led to /// the \c IndentState \p State. If \p NewLine is set, a new line will be /// added after the previous token. /// /// \param StopAt is used for optimization. If we can determine that we'll /// definitely need at least \p StopAt additional lines, we already know of a /// better solution. unsigned calcPenalty(IndentState State, bool NewLine, unsigned StopAt) { // We are at the end of the unwrapped line, so we don't need any more lines. if (State.NextToken == NULL) return 0; if (!NewLine && State.NextToken->MustBreakBefore) return UINT_MAX; if (NewLine && !State.NextToken->CanBreakBefore) return UINT_MAX; if (!NewLine && State.NextToken->Parent->is(tok::semi) && State.LineContainsContinuedForLoopSection) return UINT_MAX; unsigned CurrentPenalty = 0; if (NewLine) { CurrentPenalty += Parameters.PenaltyIndentLevel * State.Indent.size() + splitPenalty(*State.NextToken->Parent); } else { if (State.Indent.size() < State.StartOfLineLevel) CurrentPenalty += Parameters.PenaltyLevelDecrease * (State.StartOfLineLevel - State.Indent.size()); } addTokenToState(NewLine, true, State); // Exceeding column limit is bad, assign penalty. if (State.Column > getColumnLimit()) { unsigned ExcessCharacters = State.Column - getColumnLimit(); CurrentPenalty += Parameters.PenaltyExcessCharacter * ExcessCharacters; } if (StopAt <= CurrentPenalty) return UINT_MAX; StopAt -= CurrentPenalty; StateMap::iterator I = Memory.find(State); if (I != Memory.end()) { // If this state has already been examined, we can safely return the // previous result if we // - have not hit the optimatization (and thus returned UINT_MAX) OR // - are now computing for a smaller or equal StopAt. unsigned SavedResult = I->second.first; unsigned SavedStopAt = I->second.second; if (SavedResult != UINT_MAX) return SavedResult + CurrentPenalty; else if (StopAt <= SavedStopAt) return UINT_MAX; } unsigned NoBreak = calcPenalty(State, false, StopAt); unsigned WithBreak = calcPenalty(State, true, std::min(StopAt, NoBreak)); unsigned Result = std::min(NoBreak, WithBreak); // We have to store 'Result' without adding 'CurrentPenalty' as the latter // can depend on 'NewLine'. Memory[State] = std::pair(Result, StopAt); return Result == UINT_MAX ? UINT_MAX : Result + CurrentPenalty; } /// \brief Replaces the whitespace in front of \p Tok. Only call once for /// each \c FormatToken. void replaceWhitespace(const AnnotatedToken &Tok, unsigned NewLines, unsigned Spaces) { Replaces.insert(tooling::Replacement( SourceMgr, Tok.FormatTok.WhiteSpaceStart, Tok.FormatTok.WhiteSpaceLength, std::string(NewLines, '\n') + std::string(Spaces, ' '))); } /// \brief Like \c replaceWhitespace, but additionally adds right-aligned /// backslashes to escape newlines inside a preprocessor directive. /// /// This function and \c replaceWhitespace have the same behavior if /// \c Newlines == 0. void replacePPWhitespace(const AnnotatedToken &Tok, unsigned NewLines, unsigned Spaces, unsigned WhitespaceStartColumn) { std::string NewLineText; if (NewLines > 0) { unsigned Offset = std::min(Style.ColumnLimit - 1, WhitespaceStartColumn); for (unsigned i = 0; i < NewLines; ++i) { NewLineText += std::string(Style.ColumnLimit - Offset - 1, ' '); NewLineText += "\\\n"; Offset = 0; } } Replaces.insert( tooling::Replacement(SourceMgr, Tok.FormatTok.WhiteSpaceStart, Tok.FormatTok.WhiteSpaceLength, NewLineText + std::string(Spaces, ' '))); } /// \brief Add a new line and the required indent before the first Token /// of the \c UnwrappedLine if there was no structural parsing error. /// Returns the indent level of the \c UnwrappedLine. unsigned formatFirstToken() { const FormatToken &Tok = RootToken.FormatTok; if (!Tok.WhiteSpaceStart.isValid() || StructuralError) return SourceMgr.getSpellingColumnNumber(Tok.Tok.getLocation()) - 1; unsigned Newlines = std::min(Tok.NewlinesBefore, Style.MaxEmptyLinesToKeep + 1); if (Newlines == 0 && !Tok.IsFirst) Newlines = 1; unsigned Indent = Line.Level * 2; bool IsAccessModifier = false; if (RootToken.is(tok::kw_public) || RootToken.is(tok::kw_protected) || RootToken.is(tok::kw_private)) IsAccessModifier = true; else if (RootToken.is(tok::at) && !RootToken.Children.empty() && (RootToken.Children[0].isObjCAtKeyword(tok::objc_public) || RootToken.Children[0].isObjCAtKeyword(tok::objc_protected) || RootToken.Children[0].isObjCAtKeyword(tok::objc_package) || RootToken.Children[0].isObjCAtKeyword(tok::objc_private))) IsAccessModifier = true; if (IsAccessModifier && static_cast(Indent) + Style.AccessModifierOffset >= 0) Indent += Style.AccessModifierOffset; if (!Line.InPPDirective || Tok.HasUnescapedNewline) replaceWhitespace(Tok, Newlines, Indent); else replacePPWhitespace(Tok, Newlines, Indent, PreviousEndOfLineColumn); return Indent; } FormatStyle Style; SourceManager &SourceMgr; const UnwrappedLine &Line; const unsigned PreviousEndOfLineColumn; const LineType CurrentLineType; const AnnotatedToken &RootToken; tooling::Replacements &Replaces; bool StructuralError; // A map from an indent state to a pair (Result, Used-StopAt). typedef std::map > StateMap; StateMap Memory; OptimizationParameters Parameters; }; /// \brief Determines extra information about the tokens comprising an /// \c UnwrappedLine. class TokenAnnotator { public: TokenAnnotator(const UnwrappedLine &Line, const FormatStyle &Style, SourceManager &SourceMgr, Lexer &Lex) : Style(Style), SourceMgr(SourceMgr), Lex(Lex), RootToken(Line.RootToken) { } /// \brief A parser that gathers additional information about tokens. /// /// The \c TokenAnnotator tries to matches parenthesis and square brakets and /// store a parenthesis levels. It also tries to resolve matching "<" and ">" /// into template parameter lists. class AnnotatingParser { public: AnnotatingParser(AnnotatedToken &RootToken) : CurrentToken(&RootToken), KeywordVirtualFound(false) { } bool parseAngle() { while (CurrentToken != NULL) { if (CurrentToken->is(tok::greater)) { CurrentToken->Type = TT_TemplateCloser; next(); return true; } if (CurrentToken->is(tok::r_paren) || CurrentToken->is(tok::r_square) || CurrentToken->is(tok::r_brace)) return false; if (CurrentToken->is(tok::pipepipe) || CurrentToken->is(tok::ampamp) || CurrentToken->is(tok::question) || CurrentToken->is(tok::colon)) return false; if (!consumeToken()) return false; } return false; } bool parseParens() { while (CurrentToken != NULL) { if (CurrentToken->is(tok::r_paren)) { next(); return true; } if (CurrentToken->is(tok::r_square) || CurrentToken->is(tok::r_brace)) return false; if (!consumeToken()) return false; } return false; } bool parseSquare() { while (CurrentToken != NULL) { if (CurrentToken->is(tok::r_square)) { next(); return true; } if (CurrentToken->is(tok::r_paren) || CurrentToken->is(tok::r_brace)) return false; if (!consumeToken()) return false; } return false; } bool parseBrace() { while (CurrentToken != NULL) { if (CurrentToken->is(tok::r_brace)) { next(); return true; } if (CurrentToken->is(tok::r_paren) || CurrentToken->is(tok::r_square)) return false; if (!consumeToken()) return false; } // Lines can currently end with '{'. return true; } bool parseConditional() { while (CurrentToken != NULL) { if (CurrentToken->is(tok::colon)) { CurrentToken->Type = TT_ConditionalExpr; next(); return true; } if (!consumeToken()) return false; } return false; } bool parseTemplateDeclaration() { if (CurrentToken != NULL && CurrentToken->is(tok::less)) { CurrentToken->Type = TT_TemplateOpener; next(); if (!parseAngle()) return false; CurrentToken->Parent->ClosesTemplateDeclaration = true; parseLine(); return true; } return false; } bool consumeToken() { AnnotatedToken *Tok = CurrentToken; next(); switch (Tok->FormatTok.Tok.getKind()) { case tok::l_paren: if (!parseParens()) return false; if (CurrentToken != NULL && CurrentToken->is(tok::colon)) { CurrentToken->Type = TT_CtorInitializerColon; next(); } break; case tok::l_square: if (!parseSquare()) return false; break; case tok::l_brace: if (!parseBrace()) return false; break; case tok::less: if (parseAngle()) Tok->Type = TT_TemplateOpener; else { Tok->Type = TT_BinaryOperator; CurrentToken = Tok; next(); } break; case tok::r_paren: case tok::r_square: return false; case tok::r_brace: // Lines can start with '}'. if (Tok->Parent != NULL) return false; break; case tok::greater: Tok->Type = TT_BinaryOperator; break; case tok::kw_operator: if (CurrentToken->is(tok::l_paren)) { CurrentToken->Type = TT_OverloadedOperator; next(); if (CurrentToken != NULL && CurrentToken->is(tok::r_paren)) { CurrentToken->Type = TT_OverloadedOperator; next(); } } else { while (CurrentToken != NULL && CurrentToken->isNot(tok::l_paren)) { CurrentToken->Type = TT_OverloadedOperator; next(); } } break; case tok::question: parseConditional(); break; case tok::kw_template: parseTemplateDeclaration(); break; default: break; } return true; } void parseIncludeDirective() { while (CurrentToken != NULL) { if (CurrentToken->is(tok::slash)) CurrentToken->Type = TT_DirectorySeparator; else if (CurrentToken->is(tok::less)) CurrentToken->Type = TT_TemplateOpener; else if (CurrentToken->is(tok::greater)) CurrentToken->Type = TT_TemplateCloser; next(); } } void parsePreprocessorDirective() { next(); if (CurrentToken == NULL) return; // Hashes in the middle of a line can lead to any strange token // sequence. if (CurrentToken->FormatTok.Tok.getIdentifierInfo() == NULL) return; switch ( CurrentToken->FormatTok.Tok.getIdentifierInfo()->getPPKeywordID()) { case tok::pp_include: case tok::pp_import: parseIncludeDirective(); break; default: break; } } LineType parseLine() { if (CurrentToken->is(tok::hash)) { parsePreprocessorDirective(); return LT_PreprocessorDirective; } while (CurrentToken != NULL) { if (CurrentToken->is(tok::kw_virtual)) KeywordVirtualFound = true; if (!consumeToken()) return LT_Invalid; } if (KeywordVirtualFound) return LT_VirtualFunctionDecl; return LT_Other; } void next() { if (CurrentToken != NULL && !CurrentToken->Children.empty()) CurrentToken = &CurrentToken->Children[0]; else CurrentToken = NULL; } private: AnnotatedToken *CurrentToken; bool KeywordVirtualFound; }; void createAnnotatedTokens(AnnotatedToken &Current) { if (!Current.FormatTok.Children.empty()) { Current.Children.push_back(AnnotatedToken(Current.FormatTok.Children[0])); Current.Children.back().Parent = &Current; createAnnotatedTokens(Current.Children.back()); } } void calculateExtraInformation(AnnotatedToken &Current) { Current.SpaceRequiredBefore = spaceRequiredBefore(Current); if (Current.FormatTok.MustBreakBefore) { Current.MustBreakBefore = true; } else { if (Current.Type == TT_CtorInitializerColon || Current.Parent->Type == TT_LineComment || (Current.is(tok::string_literal) && Current.Parent->is(tok::string_literal))) { Current.MustBreakBefore = true; } else { Current.MustBreakBefore = false; } } Current.CanBreakBefore = Current.MustBreakBefore || canBreakBefore(Current); if (!Current.Children.empty()) calculateExtraInformation(Current.Children[0]); } bool annotate() { createAnnotatedTokens(RootToken); AnnotatingParser Parser(RootToken); CurrentLineType = Parser.parseLine(); if (CurrentLineType == LT_Invalid) return false; determineTokenTypes(RootToken, /*IsRHS=*/false); if (RootToken.Type == TT_ObjCMethodSpecifier) CurrentLineType = LT_ObjCMethodDecl; if (!RootToken.Children.empty()) calculateExtraInformation(RootToken.Children[0]); return true; } LineType getLineType() { return CurrentLineType; } const AnnotatedToken &getRootToken() { return RootToken; } private: void determineTokenTypes(AnnotatedToken &Current, bool IsRHS) { if (getPrecedence(Current) == prec::Assignment || Current.is(tok::kw_return) || Current.is(tok::kw_throw)) IsRHS = true; if (Current.Type == TT_Unknown) { if (Current.is(tok::star) || Current.is(tok::amp)) { Current.Type = determineStarAmpUsage(Current, IsRHS); } else if (Current.is(tok::minus) || Current.is(tok::plus) || Current.is(tok::caret)) { Current.Type = determinePlusMinusCaretUsage(Current); } else if (Current.is(tok::minusminus) || Current.is(tok::plusplus)) { Current.Type = determineIncrementUsage(Current); } else if (Current.is(tok::exclaim)) { Current.Type = TT_UnaryOperator; } else if (isBinaryOperator(Current)) { Current.Type = TT_BinaryOperator; } else if (Current.is(tok::comment)) { std::string Data(Lexer::getSpelling(Current.FormatTok.Tok, SourceMgr, Lex.getLangOpts())); if (StringRef(Data).startswith("//")) Current.Type = TT_LineComment; else Current.Type = TT_BlockComment; } else if (Current.is(tok::r_paren) && (Current.Parent->Type == TT_PointerOrReference || Current.Parent->Type == TT_TemplateCloser)) { // FIXME: We need to get smarter and understand more cases of casts. Current.Type = TT_CastRParen; } } if (!Current.Children.empty()) determineTokenTypes(Current.Children[0], IsRHS); } bool isBinaryOperator(const AnnotatedToken &Tok) { // Comma is a binary operator, but does not behave as such wrt. formatting. return getPrecedence(Tok) > prec::Comma; } TokenType determineStarAmpUsage(const AnnotatedToken &Tok, bool IsRHS) { if (Tok.Parent == NULL) return TT_UnaryOperator; if (Tok.Children.size() == 0) return TT_Unknown; const FormatToken &PrevToken = Tok.Parent->FormatTok; const FormatToken &NextToken = Tok.Children[0].FormatTok; if (PrevToken.Tok.is(tok::l_paren) || PrevToken.Tok.is(tok::l_square) || PrevToken.Tok.is(tok::comma) || PrevToken.Tok.is(tok::kw_return) || PrevToken.Tok.is(tok::colon) || Tok.Parent->Type == TT_BinaryOperator || Tok.Parent->Type == TT_CastRParen) return TT_UnaryOperator; if (PrevToken.Tok.isLiteral() || NextToken.Tok.isLiteral() || NextToken.Tok.is(tok::plus) || NextToken.Tok.is(tok::minus) || NextToken.Tok.is(tok::plusplus) || NextToken.Tok.is(tok::minusminus) || NextToken.Tok.is(tok::tilde) || NextToken.Tok.is(tok::exclaim) || NextToken.Tok.is(tok::kw_alignof) || NextToken.Tok.is(tok::kw_sizeof)) return TT_BinaryOperator; if (NextToken.Tok.is(tok::comma) || NextToken.Tok.is(tok::r_paren) || NextToken.Tok.is(tok::greater)) return TT_PointerOrReference; // It is very unlikely that we are going to find a pointer or reference type // definition on the RHS of an assignment. if (IsRHS) return TT_BinaryOperator; return TT_PointerOrReference; } TokenType determinePlusMinusCaretUsage(const AnnotatedToken &Tok) { // At the start of the line, +/- specific ObjectiveC method declarations. if (Tok.Parent == NULL) return TT_ObjCMethodSpecifier; // Use heuristics to recognize unary operators. if (Tok.Parent->is(tok::equal) || Tok.Parent->is(tok::l_paren) || Tok.Parent->is(tok::comma) || Tok.Parent->is(tok::l_square) || Tok.Parent->is(tok::question) || Tok.Parent->is(tok::colon) || Tok.Parent->is(tok::kw_return) || Tok.Parent->is(tok::kw_case)) return TT_UnaryOperator; // There can't be to consecutive binary operators. if (Tok.Parent->Type == TT_BinaryOperator) return TT_UnaryOperator; // Fall back to marking the token as binary operator. return TT_BinaryOperator; } /// \brief Determine whether ++/-- are pre- or post-increments/-decrements. TokenType determineIncrementUsage(const AnnotatedToken &Tok) { if (Tok.Parent != NULL && Tok.Parent->is(tok::identifier)) return TT_TrailingUnaryOperator; return TT_UnaryOperator; } bool spaceRequiredBetween(const AnnotatedToken &Left, const AnnotatedToken &Right) { if (Right.is(tok::hashhash)) return Left.is(tok::hash); if (Left.is(tok::hashhash) || Left.is(tok::hash)) return Right.is(tok::hash); if (Right.is(tok::r_paren) || Right.is(tok::semi) || Right.is(tok::comma)) return false; if (Left.is(tok::kw_template) && Right.is(tok::less)) return true; if (Left.is(tok::arrow) || Right.is(tok::arrow)) return false; if (Left.is(tok::exclaim) || Left.is(tok::tilde)) return false; if (Left.is(tok::at) && (Right.is(tok::identifier) || Right.is(tok::string_literal) || Right.is(tok::char_constant) || Right.is(tok::numeric_constant) || Right.is(tok::l_paren) || Right.is(tok::l_brace))) return false; if (Left.is(tok::less) || Right.is(tok::greater) || Right.is(tok::less)) return false; if (Right.is(tok::amp) || Right.is(tok::star)) return Left.FormatTok.Tok.isLiteral() || (Left.isNot(tok::star) && Left.isNot(tok::amp) && !Style.PointerAndReferenceBindToType); if (Left.is(tok::amp) || Left.is(tok::star)) return Right.FormatTok.Tok.isLiteral() || Style.PointerAndReferenceBindToType; if (Right.is(tok::star) && Left.is(tok::l_paren)) return false; if (Left.is(tok::l_square) || Right.is(tok::l_square) || Right.is(tok::r_square)) return false; if (Left.is(tok::coloncolon) || (Right.is(tok::coloncolon) && (Left.is(tok::identifier) || Left.is(tok::greater)))) return false; if (Left.is(tok::period) || Right.is(tok::period)) return false; if (Left.is(tok::colon) || Right.is(tok::colon)) return true; if (Left.is(tok::l_paren)) return false; if (Right.is(tok::l_paren)) { return Left.is(tok::kw_if) || Left.is(tok::kw_for) || Left.is(tok::kw_while) || Left.is(tok::kw_switch) || (Left.isNot(tok::identifier) && Left.isNot(tok::kw_sizeof) && Left.isNot(tok::kw_typeof) && Left.isNot(tok::kw_alignof)); } if (Left.is(tok::at) && Right.FormatTok.Tok.getObjCKeywordID() != tok::objc_not_keyword) return false; return true; } bool spaceRequiredBefore(const AnnotatedToken &Tok) { if (CurrentLineType == LT_ObjCMethodDecl) { if (Tok.is(tok::identifier) && !Tok.Children.empty() && Tok.Children[0].is(tok::colon) && Tok.Parent->is(tok::identifier)) return true; if (Tok.is(tok::colon)) return false; if (Tok.Parent->Type == TT_ObjCMethodSpecifier) return true; if (Tok.Parent->is(tok::r_paren) && Tok.is(tok::identifier)) // Don't space between ')' and return false; if (Tok.Parent->is(tok::colon) && Tok.is(tok::l_paren)) // Don't space between ':' and '(' return false; } if (Tok.Type == TT_CtorInitializerColon) return true; if (Tok.Type == TT_OverloadedOperator) return Tok.is(tok::identifier) || Tok.is(tok::kw_new) || Tok.is(tok::kw_delete); if (Tok.Parent->Type == TT_OverloadedOperator) return false; if (Tok.is(tok::colon)) return RootToken.isNot(tok::kw_case) && (!Tok.Children.empty()); if (Tok.Parent->Type == TT_UnaryOperator || Tok.Parent->Type == TT_CastRParen) return false; if (Tok.Type == TT_UnaryOperator) return Tok.Parent->isNot(tok::l_paren) && Tok.Parent->isNot(tok::l_square); if (Tok.Parent->is(tok::greater) && Tok.is(tok::greater)) { return Tok.Type == TT_TemplateCloser && Tok.Parent->Type == TT_TemplateCloser && Style.SplitTemplateClosingGreater; } if (Tok.Type == TT_DirectorySeparator || Tok.Parent->Type == TT_DirectorySeparator) return false; if (Tok.Type == TT_BinaryOperator || Tok.Parent->Type == TT_BinaryOperator) return true; if (Tok.Parent->Type == TT_TemplateCloser && Tok.is(tok::l_paren)) return false; if (Tok.is(tok::less) && RootToken.is(tok::hash)) return true; if (Tok.Type == TT_TrailingUnaryOperator) return false; return spaceRequiredBetween(*Tok.Parent, Tok); } bool canBreakBefore(const AnnotatedToken &Right) { const AnnotatedToken &Left = *Right.Parent; if (CurrentLineType == LT_ObjCMethodDecl) { if (Right.is(tok::identifier) && !Right.Children.empty() && Right.Children[0].is(tok::colon) && Left.is(tok::identifier)) return true; if (CurrentLineType == LT_ObjCMethodDecl && Right.is(tok::identifier) && Left.is(tok::l_paren) && Left.Parent->is(tok::colon)) // Don't break this identifier as ':' or identifier // before it will break. return false; if (Right.is(tok::colon) && Left.is(tok::identifier) && Left.CanBreakBefore) // Don't break at ':' if identifier before it can beak. return false; } if (Left.ClosesTemplateDeclaration) return true; if (Left.Type == TT_PointerOrReference || Left.Type == TT_TemplateCloser || Left.Type == TT_UnaryOperator || Right.Type == TT_ConditionalExpr) return false; if (Left.is(tok::equal) && CurrentLineType == LT_VirtualFunctionDecl) return false; if (Right.is(tok::comment)) return !Right.Children.empty(); if (Right.is(tok::r_paren) || Right.is(tok::l_brace) || Right.is(tok::greater)) return false; return (isBinaryOperator(Left) && Left.isNot(tok::lessless)) || Left.is(tok::comma) || Right.is(tok::lessless) || Right.is(tok::arrow) || Right.is(tok::period) || Right.is(tok::colon) || Left.is(tok::semi) || Left.is(tok::l_brace) || Left.is(tok::question) || Left.Type == TT_ConditionalExpr || (Left.is(tok::l_paren) && !Right.is(tok::r_paren)); } FormatStyle Style; SourceManager &SourceMgr; Lexer &Lex; LineType CurrentLineType; AnnotatedToken RootToken; }; class LexerBasedFormatTokenSource : public FormatTokenSource { public: LexerBasedFormatTokenSource(Lexer &Lex, SourceManager &SourceMgr) : GreaterStashed(false), Lex(Lex), SourceMgr(SourceMgr), IdentTable(Lex.getLangOpts()) { Lex.SetKeepWhitespaceMode(true); } virtual FormatToken getNextToken() { if (GreaterStashed) { FormatTok.NewlinesBefore = 0; FormatTok.WhiteSpaceStart = FormatTok.Tok.getLocation().getLocWithOffset(1); FormatTok.WhiteSpaceLength = 0; GreaterStashed = false; return FormatTok; } FormatTok = FormatToken(); Lex.LexFromRawLexer(FormatTok.Tok); StringRef Text = rawTokenText(FormatTok.Tok); FormatTok.WhiteSpaceStart = FormatTok.Tok.getLocation(); if (SourceMgr.getFileOffset(FormatTok.WhiteSpaceStart) == 0) FormatTok.IsFirst = true; // Consume and record whitespace until we find a significant token. while (FormatTok.Tok.is(tok::unknown)) { FormatTok.NewlinesBefore += Text.count('\n'); FormatTok.HasUnescapedNewline = Text.count("\\\n") != FormatTok.NewlinesBefore; FormatTok.WhiteSpaceLength += FormatTok.Tok.getLength(); if (FormatTok.Tok.is(tok::eof)) return FormatTok; Lex.LexFromRawLexer(FormatTok.Tok); Text = rawTokenText(FormatTok.Tok); } // Now FormatTok is the next non-whitespace token. FormatTok.TokenLength = Text.size(); // In case the token starts with escaped newlines, we want to // take them into account as whitespace - this pattern is quite frequent // in macro definitions. // FIXME: What do we want to do with other escaped spaces, and escaped // spaces or newlines in the middle of tokens? // FIXME: Add a more explicit test. unsigned i = 0; while (i + 1 < Text.size() && Text[i] == '\\' && Text[i + 1] == '\n') { FormatTok.WhiteSpaceLength += 2; FormatTok.TokenLength -= 2; i += 2; } if (FormatTok.Tok.is(tok::raw_identifier)) { IdentifierInfo &Info = IdentTable.get(Text); FormatTok.Tok.setIdentifierInfo(&Info); FormatTok.Tok.setKind(Info.getTokenID()); } if (FormatTok.Tok.is(tok::greatergreater)) { FormatTok.Tok.setKind(tok::greater); GreaterStashed = true; } return FormatTok; } private: FormatToken FormatTok; bool GreaterStashed; Lexer &Lex; SourceManager &SourceMgr; IdentifierTable IdentTable; /// Returns the text of \c FormatTok. StringRef rawTokenText(Token &Tok) { return StringRef(SourceMgr.getCharacterData(Tok.getLocation()), Tok.getLength()); } }; class Formatter : public UnwrappedLineConsumer { public: Formatter(const FormatStyle &Style, Lexer &Lex, SourceManager &SourceMgr, const std::vector &Ranges) : Style(Style), Lex(Lex), SourceMgr(SourceMgr), Ranges(Ranges), StructuralError(false) { } virtual ~Formatter() { } tooling::Replacements format() { LexerBasedFormatTokenSource Tokens(Lex, SourceMgr); UnwrappedLineParser Parser(Style, Tokens, *this); StructuralError = Parser.parse(); unsigned PreviousEndOfLineColumn = 0; for (std::vector::iterator I = UnwrappedLines.begin(), E = UnwrappedLines.end(); I != E; ++I) PreviousEndOfLineColumn = formatUnwrappedLine(*I, PreviousEndOfLineColumn); return Replaces; } private: virtual void consumeUnwrappedLine(const UnwrappedLine &TheLine) { UnwrappedLines.push_back(TheLine); } unsigned formatUnwrappedLine(const UnwrappedLine &TheLine, unsigned PreviousEndOfLineColumn) { const FormatToken *First = &TheLine.RootToken; const FormatToken *Last = First; while (!Last->Children.empty()) Last = &Last->Children.back(); CharSourceRange LineRange = CharSourceRange::getTokenRange( First->Tok.getLocation(), Last->Tok.getLocation()); for (unsigned i = 0, e = Ranges.size(); i != e; ++i) { if (SourceMgr.isBeforeInTranslationUnit(LineRange.getEnd(), Ranges[i].getBegin()) || SourceMgr.isBeforeInTranslationUnit(Ranges[i].getEnd(), LineRange.getBegin())) continue; TokenAnnotator Annotator(TheLine, Style, SourceMgr, Lex); if (!Annotator.annotate()) break; UnwrappedLineFormatter Formatter( Style, SourceMgr, TheLine, PreviousEndOfLineColumn, Annotator.getLineType(), Annotator.getRootToken(), Replaces, StructuralError); return Formatter.format(); } // If we did not reformat this unwrapped line, the column at the end of the // last token is unchanged - thus, we can calculate the end of the last // token, and return the result. return SourceMgr.getSpellingColumnNumber(Last->Tok.getLocation()) + Lex.MeasureTokenLength(Last->Tok.getLocation(), SourceMgr, Lex.getLangOpts()) - 1; } FormatStyle Style; Lexer &Lex; SourceManager &SourceMgr; tooling::Replacements Replaces; std::vector Ranges; std::vector UnwrappedLines; bool StructuralError; }; tooling::Replacements reformat(const FormatStyle &Style, Lexer &Lex, SourceManager &SourceMgr, std::vector Ranges) { Formatter formatter(Style, Lex, SourceMgr, Ranges); return formatter.format(); } } // namespace format } // namespace clang