//===--- CGCXXExpr.cpp - Emit LLVM Code for C++ expressions ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code dealing with code generation of C++ expressions // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" using namespace clang; using namespace CodeGen; static uint64_t CalculateCookiePadding(ASTContext &Ctx, const CXXNewExpr *E) { if (!E->isArray()) return 0; QualType T = E->getAllocatedType(); const RecordType *RT = T->getAs(); if (!RT) return 0; const CXXRecordDecl *RD = dyn_cast(RT->getDecl()); if (!RD) return 0; // Check if the class has a trivial destructor. if (RD->hasTrivialDestructor()) { // FIXME: Check for a two-argument delete. return 0; } // Padding is the maximum of sizeof(size_t) and alignof(T) return std::max(Ctx.getTypeSize(Ctx.getSizeType()), static_cast(Ctx.getTypeAlign(T))) / 8; } static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, const CXXNewExpr *E, llvm::Value *& NumElements) { QualType Type = E->getAllocatedType(); uint64_t TypeSizeInBytes = CGF.getContext().getTypeSize(Type) / 8; const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); if (!E->isArray()) return llvm::ConstantInt::get(SizeTy, TypeSizeInBytes); uint64_t CookiePadding = CalculateCookiePadding(CGF.getContext(), E); Expr::EvalResult Result; if (E->getArraySize()->Evaluate(Result, CGF.getContext()) && !Result.HasSideEffects && Result.Val.isInt()) { uint64_t AllocSize = Result.Val.getInt().getZExtValue() * TypeSizeInBytes + CookiePadding; NumElements = llvm::ConstantInt::get(SizeTy, Result.Val.getInt().getZExtValue()); return llvm::ConstantInt::get(SizeTy, AllocSize); } // Emit the array size expression. NumElements = CGF.EmitScalarExpr(E->getArraySize()); // Multiply with the type size. llvm::Value *V = CGF.Builder.CreateMul(NumElements, llvm::ConstantInt::get(SizeTy, TypeSizeInBytes)); // And add the cookie padding if necessary. if (CookiePadding) V = CGF.Builder.CreateAdd(V, llvm::ConstantInt::get(SizeTy, CookiePadding)); return V; } static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, llvm::Value *NewPtr, llvm::Value *NumElements) { QualType AllocType = E->getAllocatedType(); if (!E->isArray()) { if (CXXConstructorDecl *Ctor = E->getConstructor()) { CGF.EmitCXXConstructorCall(Ctor, Ctor_Complete, NewPtr, E->constructor_arg_begin(), E->constructor_arg_end()); return; } // We have a POD type. if (E->getNumConstructorArgs() == 0) return; assert(E->getNumConstructorArgs() == 1 && "Can only have one argument to initializer of POD type."); const Expr *Init = E->getConstructorArg(0); if (!CGF.hasAggregateLLVMType(AllocType)) CGF.Builder.CreateStore(CGF.EmitScalarExpr(Init), NewPtr); else if (AllocType->isAnyComplexType()) CGF.EmitComplexExprIntoAddr(Init, NewPtr, AllocType.isVolatileQualified()); else CGF.EmitAggExpr(Init, NewPtr, AllocType.isVolatileQualified()); return; } if (CXXConstructorDecl *Ctor = E->getConstructor()) CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr); } llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { QualType AllocType = E->getAllocatedType(); FunctionDecl *NewFD = E->getOperatorNew(); const FunctionProtoType *NewFTy = NewFD->getType()->getAs(); CallArgList NewArgs; // The allocation size is the first argument. QualType SizeTy = getContext().getSizeType(); llvm::Value *NumElements = 0; llvm::Value *AllocSize = EmitCXXNewAllocSize(*this, E, NumElements); NewArgs.push_back(std::make_pair(RValue::get(AllocSize), SizeTy)); // Emit the rest of the arguments. // FIXME: Ideally, this should just use EmitCallArgs. CXXNewExpr::const_arg_iterator NewArg = E->placement_arg_begin(); // First, use the types from the function type. // We start at 1 here because the first argument (the allocation size) // has already been emitted. for (unsigned i = 1, e = NewFTy->getNumArgs(); i != e; ++i, ++NewArg) { QualType ArgType = NewFTy->getArgType(i); assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). getTypePtr() == getContext().getCanonicalType(NewArg->getType()).getTypePtr() && "type mismatch in call argument!"); NewArgs.push_back(std::make_pair(EmitCallArg(*NewArg, ArgType), ArgType)); } // Either we've emitted all the call args, or we have a call to a // variadic function. assert((NewArg == E->placement_arg_end() || NewFTy->isVariadic()) && "Extra arguments in non-variadic function!"); // If we still have any arguments, emit them using the type of the argument. for (CXXNewExpr::const_arg_iterator NewArgEnd = E->placement_arg_end(); NewArg != NewArgEnd; ++NewArg) { QualType ArgType = NewArg->getType(); NewArgs.push_back(std::make_pair(EmitCallArg(*NewArg, ArgType), ArgType)); } // Emit the call to new. RValue RV = EmitCall(CGM.getTypes().getFunctionInfo(NewFTy->getResultType(), NewArgs), CGM.GetAddrOfFunction(NewFD), NewArgs, NewFD); // If an allocation function is declared with an empty exception specification // it returns null to indicate failure to allocate storage. [expr.new]p13. // (We don't need to check for null when there's no new initializer and // we're allocating a POD type). bool NullCheckResult = NewFTy->hasEmptyExceptionSpec() && !(AllocType->isPODType() && !E->hasInitializer()); llvm::BasicBlock *NewNull = 0; llvm::BasicBlock *NewNotNull = 0; llvm::BasicBlock *NewEnd = 0; llvm::Value *NewPtr = RV.getScalarVal(); if (NullCheckResult) { NewNull = createBasicBlock("new.null"); NewNotNull = createBasicBlock("new.notnull"); NewEnd = createBasicBlock("new.end"); llvm::Value *IsNull = Builder.CreateICmpEQ(NewPtr, llvm::Constant::getNullValue(NewPtr->getType()), "isnull"); Builder.CreateCondBr(IsNull, NewNull, NewNotNull); EmitBlock(NewNotNull); } if (uint64_t CookiePadding = CalculateCookiePadding(getContext(), E)) { uint64_t CookieOffset = CookiePadding - getContext().getTypeSize(SizeTy) / 8; llvm::Value *NumElementsPtr = Builder.CreateConstInBoundsGEP1_64(NewPtr, CookieOffset); NumElementsPtr = Builder.CreateBitCast(NumElementsPtr, ConvertType(SizeTy)->getPointerTo()); Builder.CreateStore(NumElements, NumElementsPtr); // Now add the padding to the new ptr. NewPtr = Builder.CreateConstInBoundsGEP1_64(NewPtr, CookiePadding); } NewPtr = Builder.CreateBitCast(NewPtr, ConvertType(E->getType())); EmitNewInitializer(*this, E, NewPtr, NumElements); if (NullCheckResult) { Builder.CreateBr(NewEnd); NewNotNull = Builder.GetInsertBlock(); EmitBlock(NewNull); Builder.CreateBr(NewEnd); EmitBlock(NewEnd); llvm::PHINode *PHI = Builder.CreatePHI(NewPtr->getType()); PHI->reserveOperandSpace(2); PHI->addIncoming(NewPtr, NewNotNull); PHI->addIncoming(llvm::Constant::getNullValue(NewPtr->getType()), NewNull); NewPtr = PHI; } return NewPtr; } void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { // Get at the argument before we performed the implicit conversion // to void*. const Expr *Arg = E->getArgument(); while (const ImplicitCastExpr *ICE = dyn_cast(Arg)) { if (ICE->getCastKind() != CastExpr::CK_UserDefinedConversion && ICE->getType()->isVoidPointerType()) Arg = ICE->getSubExpr(); else break; } QualType DeleteTy = Arg->getType()->getAs()->getPointeeType(); llvm::Value *Ptr = EmitScalarExpr(Arg); // Null check the pointer. llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); llvm::Value *IsNull = Builder.CreateICmpEQ(Ptr, llvm::Constant::getNullValue(Ptr->getType()), "isnull"); Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); EmitBlock(DeleteNotNull); bool ShouldCallDelete = true; // Call the destructor if necessary. if (const RecordType *RT = DeleteTy->getAs()) { if (CXXRecordDecl *RD = dyn_cast(RT->getDecl())) { if (!RD->hasTrivialDestructor()) { const CXXDestructorDecl *Dtor = RD->getDestructor(getContext()); if (E->isArrayForm()) { QualType SizeTy = getContext().getSizeType(); uint64_t CookiePadding = std::max(getContext().getTypeSize(SizeTy), static_cast(getContext().getTypeAlign(DeleteTy))) / 8; if (CookiePadding) { llvm::Type *Ptr8Ty = llvm::PointerType::get(llvm::Type::getInt8Ty(VMContext), 0); uint64_t CookieOffset = CookiePadding - getContext().getTypeSize(SizeTy) / 8; llvm::Value *AllocatedObjectPtr = Builder.CreateConstInBoundsGEP1_64( Builder.CreateBitCast(Ptr, Ptr8Ty), -CookiePadding); llvm::Value *NumElementsPtr = Builder.CreateConstInBoundsGEP1_64(AllocatedObjectPtr, CookieOffset); NumElementsPtr = Builder.CreateBitCast(NumElementsPtr, ConvertType(SizeTy)->getPointerTo()); llvm::Value *NumElements = Builder.CreateLoad(NumElementsPtr); NumElements = Builder.CreateIntCast(NumElements, llvm::Type::getInt64Ty(VMContext), false, "count.tmp"); EmitCXXAggrDestructorCall(Dtor, NumElements, Ptr); Ptr = AllocatedObjectPtr; } } else if (Dtor->isVirtual()) { const llvm::Type *Ty = CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(Dtor), /*isVariadic=*/false); llvm::Value *Callee = BuildVirtualCall(Dtor, Dtor_Deleting, Ptr, Ty); EmitCXXMemberCall(Dtor, Callee, Ptr, 0, 0); // The dtor took care of deleting the object. ShouldCallDelete = false; } else EmitCXXDestructorCall(Dtor, Dtor_Complete, Ptr); } } } if (ShouldCallDelete) { // Call delete. FunctionDecl *DeleteFD = E->getOperatorDelete(); const FunctionProtoType *DeleteFTy = DeleteFD->getType()->getAs(); CallArgList DeleteArgs; QualType ArgTy = DeleteFTy->getArgType(0); llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); DeleteArgs.push_back(std::make_pair(RValue::get(DeletePtr), ArgTy)); // Emit the call to delete. EmitCall(CGM.getTypes().getFunctionInfo(DeleteFTy->getResultType(), DeleteArgs), CGM.GetAddrOfFunction(DeleteFD), DeleteArgs, DeleteFD); } EmitBlock(DeleteEnd); }