//= CStringChecker.h - Checks calls to C string functions ----------*- C++ -*-// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This defines CStringChecker, which is an assortment of checks on calls // to functions in . // //===----------------------------------------------------------------------===// #include "GRExprEngineExperimentalChecks.h" #include "clang/Checker/BugReporter/BugType.h" #include "clang/Checker/PathSensitive/CheckerVisitor.h" #include "llvm/ADT/StringSwitch.h" using namespace clang; namespace { class CStringChecker : public CheckerVisitor { BugType *BT_Bounds; BugType *BT_Overlap; public: CStringChecker() : BT_Bounds(0), BT_Overlap(0) {} static void *getTag() { static int tag; return &tag; } bool EvalCallExpr(CheckerContext &C, const CallExpr *CE); typedef const GRState *(CStringChecker::*FnCheck)(CheckerContext &, const CallExpr *); const GRState *EvalMemcpy(CheckerContext &C, const CallExpr *CE); const GRState *EvalMemmove(CheckerContext &C, const CallExpr *CE); const GRState *EvalMemcmp(CheckerContext &C, const CallExpr *CE); const GRState *EvalBcopy(CheckerContext &C, const CallExpr *CE); // Utility methods const GRState *CheckNonNull(CheckerContext &C, const GRState *state, const Stmt *S, SVal l); const GRState *CheckLocation(CheckerContext &C, const GRState *state, const Stmt *S, SVal l); const GRState *CheckBufferAccess(CheckerContext &C, const GRState *state, const Expr *Size, const Expr *FirstBuf, const Expr *SecondBuf = NULL); const GRState *CheckOverlap(CheckerContext &C, const GRState *state, const Expr *First, const Expr *Second, const Expr *Size); void EmitOverlapBug(CheckerContext &C, const GRState *state, const Stmt *First, const Stmt *Second); }; } //end anonymous namespace void clang::RegisterCStringChecker(GRExprEngine &Eng) { Eng.registerCheck(new CStringChecker()); } const GRState *CStringChecker::CheckNonNull(CheckerContext &C, const GRState *state, const Stmt *S, SVal l) { // FIXME: This method just checks, of course, that the value is non-null. // It should maybe be refactored and combined with AttrNonNullChecker. if (l.isUnknownOrUndef()) return state; ValueManager &ValMgr = C.getValueManager(); SValuator &SV = ValMgr.getSValuator(); Loc Null = ValMgr.makeNull(); DefinedOrUnknownSVal LocIsNull = SV.EvalEQ(state, cast(l), Null); const GRState *stateIsNull, *stateIsNonNull; llvm::tie(stateIsNull, stateIsNonNull) = state->Assume(LocIsNull); if (stateIsNull && !stateIsNonNull) { ExplodedNode *N = C.GenerateSink(stateIsNull); if (!N) return NULL; if (!BT_Bounds) BT_Bounds = new BuiltinBug("API", "Null pointer argument in call to byte string function"); // Generate a report for this bug. BuiltinBug *BT = static_cast(BT_Bounds); EnhancedBugReport *report = new EnhancedBugReport(*BT, BT->getDescription(), N); report->addRange(S->getSourceRange()); report->addVisitorCreator(bugreporter::registerTrackNullOrUndefValue, S); C.EmitReport(report); return NULL; } // From here on, assume that the value is non-null. assert(stateIsNonNull); return stateIsNonNull; } // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? const GRState *CStringChecker::CheckLocation(CheckerContext &C, const GRState *state, const Stmt *S, SVal l) { // Check for out of bound array element access. const MemRegion *R = l.getAsRegion(); if (!R) return state; const ElementRegion *ER = dyn_cast(R); if (!ER) return state; assert(ER->getValueType(C.getASTContext()) == C.getASTContext().CharTy && "CheckLocation should only be called with char* ElementRegions"); // Get the size of the array. const SubRegion *Super = cast(ER->getSuperRegion()); ValueManager &ValMgr = C.getValueManager(); SVal Extent = ValMgr.convertToArrayIndex(Super->getExtent(ValMgr)); DefinedOrUnknownSVal Size = cast(Extent); // Get the index of the accessed element. DefinedOrUnknownSVal &Idx = cast(ER->getIndex()); const GRState *StInBound = state->AssumeInBound(Idx, Size, true); const GRState *StOutBound = state->AssumeInBound(Idx, Size, false); if (StOutBound && !StInBound) { ExplodedNode *N = C.GenerateSink(StOutBound); if (!N) return NULL; if (!BT_Bounds) BT_Bounds = new BuiltinBug("Out-of-bound array access", "Byte string function accesses out-of-bound array element " "(buffer overflow)"); // FIXME: It would be nice to eventually make this diagnostic more clear, // e.g., by referencing the original declaration or by saying *why* this // reference is outside the range. // Generate a report for this bug. BuiltinBug *BT = static_cast(BT_Bounds); RangedBugReport *report = new RangedBugReport(*BT, BT->getDescription(), N); report->addRange(S->getSourceRange()); C.EmitReport(report); return NULL; } // Array bound check succeeded. From this point forward the array bound // should always succeed. return StInBound; } const GRState *CStringChecker::CheckBufferAccess(CheckerContext &C, const GRState *state, const Expr *Size, const Expr *FirstBuf, const Expr *SecondBuf) { ValueManager &VM = C.getValueManager(); SValuator &SV = VM.getSValuator(); ASTContext &Ctx = C.getASTContext(); QualType SizeTy = Ctx.getSizeType(); QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); // Get the access length and make sure it is known. SVal LengthVal = state->getSVal(Size); NonLoc *Length = dyn_cast(&LengthVal); if (!Length) return state; // If the length is zero, it doesn't matter what the two buffers are. DefinedOrUnknownSVal Zero = VM.makeZeroVal(SizeTy); DefinedOrUnknownSVal LengthIsZero = SV.EvalEQ(state, *Length, Zero); const GRState *stateZeroLength, *stateNonZeroLength; llvm::tie(stateZeroLength, stateNonZeroLength) = state->Assume(LengthIsZero); if (stateZeroLength && !stateNonZeroLength) return stateZeroLength; // FIXME: At this point all we know is it's *possible* for the length to be // nonzero; we don't know it for sure. Unfortunately, that means the next few // tests are incorrect for the edge cases in which a buffer is null or invalid // but the size argument was set to zero in some way that we couldn't track. // What we should really do is bifurcate the state here, but that doesn't // match the way CheckBufferAccess is being used. // From here on, we're going to pretend that even if the length is zero, the // buffer access rules still apply. That means the buffer must be non-NULL, // and the value at buffer[size-1] must be valid. // Check that the first buffer is non-null. SVal BufVal = state->getSVal(FirstBuf); state = CheckNonNull(C, state, FirstBuf, BufVal); if (!state) return NULL; // Compute the offset of the last element to be accessed: size-1. NonLoc One = cast(VM.makeIntVal(1, SizeTy)); NonLoc LastOffset = cast(SV.EvalBinOpNN(state, BinaryOperator::Sub, *Length, One, SizeTy)); // Check that the first buffer is sufficently long. Loc BufStart = cast(SV.EvalCast(BufVal, PtrTy, FirstBuf->getType())); SVal BufEnd = SV.EvalBinOpLN(state, BinaryOperator::Add, BufStart, LastOffset, PtrTy); state = CheckLocation(C, state, FirstBuf, BufEnd); // If the buffer isn't large enough, abort. if (!state) return NULL; // If there's a second buffer, check it as well. if (SecondBuf) { BufVal = state->getSVal(SecondBuf); state = CheckNonNull(C, state, SecondBuf, BufVal); if (!state) return NULL; BufStart = cast(SV.EvalCast(BufVal, PtrTy, SecondBuf->getType())); BufEnd = SV.EvalBinOpLN(state, BinaryOperator::Add, BufStart, LastOffset, PtrTy); state = CheckLocation(C, state, SecondBuf, BufEnd); } // Large enough or not, return this state! return state; } const GRState *CStringChecker::CheckOverlap(CheckerContext &C, const GRState *state, const Expr *First, const Expr *Second, const Expr *Size) { // Do a simple check for overlap: if the two arguments are from the same // buffer, see if the end of the first is greater than the start of the second // or vice versa. ValueManager &VM = state->getStateManager().getValueManager(); SValuator &SV = VM.getSValuator(); ASTContext &Ctx = VM.getContext(); const GRState *stateTrue, *stateFalse; // Get the buffer values and make sure they're known locations. SVal FirstVal = state->getSVal(First); SVal SecondVal = state->getSVal(Second); Loc *FirstLoc = dyn_cast(&FirstVal); if (!FirstLoc) return state; Loc *SecondLoc = dyn_cast(&SecondVal); if (!SecondLoc) return state; // Are the two values the same? DefinedOrUnknownSVal EqualTest = SV.EvalEQ(state, *FirstLoc, *SecondLoc); llvm::tie(stateTrue, stateFalse) = state->Assume(EqualTest); if (stateTrue && !stateFalse) { // If the values are known to be equal, that's automatically an overlap. EmitOverlapBug(C, stateTrue, First, Second); return NULL; } // Assume the two expressions are not equal. assert(stateFalse); state = stateFalse; // Which value comes first? QualType CmpTy = Ctx.IntTy; SVal Reverse = SV.EvalBinOpLL(state, BinaryOperator::GT, *FirstLoc, *SecondLoc, CmpTy); DefinedOrUnknownSVal *ReverseTest = dyn_cast(&Reverse); if (!ReverseTest) return state; llvm::tie(stateTrue, stateFalse) = state->Assume(*ReverseTest); if (stateTrue) { if (stateFalse) { // If we don't know which one comes first, we can't perform this test. return state; } else { // Switch the values so that FirstVal is before SecondVal. Loc *tmpLoc = FirstLoc; FirstLoc = SecondLoc; SecondLoc = tmpLoc; // Switch the Exprs as well, so that they still correspond. const Expr *tmpExpr = First; First = Second; Second = tmpExpr; } } // Get the length, and make sure it too is known. SVal LengthVal = state->getSVal(Size); NonLoc *Length = dyn_cast(&LengthVal); if (!Length) return state; // Convert the first buffer's start address to char*. // Bail out if the cast fails. QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); SVal FirstStart = SV.EvalCast(*FirstLoc, CharPtrTy, First->getType()); Loc *FirstStartLoc = dyn_cast(&FirstStart); if (!FirstStartLoc) return state; // Compute the end of the first buffer. Bail out if THAT fails. SVal FirstEnd = SV.EvalBinOpLN(state, BinaryOperator::Add, *FirstStartLoc, *Length, CharPtrTy); Loc *FirstEndLoc = dyn_cast(&FirstEnd); if (!FirstEndLoc) return state; // Is the end of the first buffer past the start of the second buffer? SVal Overlap = SV.EvalBinOpLL(state, BinaryOperator::GT, *FirstEndLoc, *SecondLoc, CmpTy); DefinedOrUnknownSVal *OverlapTest = dyn_cast(&Overlap); if (!OverlapTest) return state; llvm::tie(stateTrue, stateFalse) = state->Assume(*OverlapTest); if (stateTrue && !stateFalse) { // Overlap! EmitOverlapBug(C, stateTrue, First, Second); return NULL; } // Assume the two expressions don't overlap. assert(stateFalse); return stateFalse; } void CStringChecker::EmitOverlapBug(CheckerContext &C, const GRState *state, const Stmt *First, const Stmt *Second) { ExplodedNode *N = C.GenerateSink(state); if (!N) return; if (!BT_Overlap) BT_Overlap = new BugType("Unix API", "Improper arguments"); // Generate a report for this bug. RangedBugReport *report = new RangedBugReport(*BT_Overlap, "Arguments must not be overlapping buffers", N); report->addRange(First->getSourceRange()); report->addRange(Second->getSourceRange()); C.EmitReport(report); } const GRState * CStringChecker::EvalMemcpy(CheckerContext &C, const CallExpr *CE) { // void *memcpy(void *restrict dst, const void *restrict src, size_t n); // memcpy() is like memmove(), but with the extra requirement that the buffers // not overlap. const GRState *state = EvalMemmove(C, CE); if (!state) return NULL; return CheckOverlap(C, state, CE->getArg(0), CE->getArg(1), CE->getArg(2)); } const GRState * CStringChecker::EvalMemmove(CheckerContext &C, const CallExpr *CE) { // void *memmove(void *dst, const void *src, size_t n); const Expr *Dest = CE->getArg(0); const Expr *Source = CE->getArg(1); const Expr *Size = CE->getArg(2); // Check that the accesses will stay in bounds. const GRState *state = C.getState(); state = CheckBufferAccess(C, state, Size, Dest, Source); if (!state) return NULL; // The return value is the address of the destination buffer. return state->BindExpr(CE, state->getSVal(Dest)); } const GRState * CStringChecker::EvalMemcmp(CheckerContext &C, const CallExpr *CE) { // int memcmp(const void *s1, const void *s2, size_t n); const Expr *Left = CE->getArg(0); const Expr *Right = CE->getArg(1); const Expr *Size = CE->getArg(2); const GRState *state = C.getState(); ValueManager &ValMgr = C.getValueManager(); SValuator &SV = ValMgr.getSValuator(); const GRState *stateTrue, *stateFalse; // If we know the size argument is 0, we know the result is 0, and we don't // have to check either of the buffers. (Another checker will have already // made sure the size isn't undefined, so we can cast it safely.) DefinedOrUnknownSVal SizeV = cast(state->getSVal(Size)); DefinedOrUnknownSVal Zero = ValMgr.makeZeroVal(Size->getType()); DefinedOrUnknownSVal SizeIsZero = SV.EvalEQ(state, SizeV, Zero); llvm::tie(stateTrue, stateFalse) = state->Assume(SizeIsZero); // FIXME: This should really cause a bifurcation of the state, but that would // require changing the contract to allow the various Eval* methods to add // transitions themselves. Currently that isn't the case because some of these // functions are "basically" like another function, but with one or two // additional restrictions (like memcpy and memmove). if (stateTrue && !stateFalse) return stateTrue->BindExpr(CE, ValMgr.makeZeroVal(CE->getType())); // At this point, we still don't know that the size is nonzero, only that it // might be. // If we know the two buffers are the same, we know the result is 0. // First, get the two buffers' addresses. Another checker will have already // made sure they're not undefined. DefinedOrUnknownSVal LBuf = cast(state->getSVal(Left)); DefinedOrUnknownSVal RBuf = cast(state->getSVal(Right)); // See if they are the same. DefinedOrUnknownSVal SameBuf = SV.EvalEQ(state, LBuf, RBuf); llvm::tie(stateTrue, stateFalse) = state->Assume(SameBuf); // FIXME: This should also bifurcate the state (as above). // If the two arguments are known to be the same buffer, we know the result is // zero, and we only need to check one size. if (stateTrue && !stateFalse) { state = CheckBufferAccess(C, stateTrue, Size, Left); return state->BindExpr(CE, ValMgr.makeZeroVal(CE->getType())); } // At this point, we don't know if the arguments are the same or not -- we // only know that they *might* be different. We can't make any assumptions. // The return value is the comparison result, which we don't know. unsigned Count = C.getNodeBuilder().getCurrentBlockCount(); SVal RetVal = ValMgr.getConjuredSymbolVal(NULL, CE, CE->getType(), Count); state = state->BindExpr(CE, RetVal); // Check that the accesses will stay in bounds. return CheckBufferAccess(C, state, Size, Left, Right); } const GRState * CStringChecker::EvalBcopy(CheckerContext &C, const CallExpr *CE) { // void bcopy(const void *src, void *dst, size_t n); return CheckBufferAccess(C, C.getState(), CE->getArg(2), CE->getArg(0), CE->getArg(1)); } bool CStringChecker::EvalCallExpr(CheckerContext &C, const CallExpr *CE) { // Get the callee. All the functions we care about are C functions // with simple identifiers. const GRState *state = C.getState(); const Expr *Callee = CE->getCallee(); const FunctionDecl *FD = state->getSVal(Callee).getAsFunctionDecl(); if (!FD) return false; // Get the name of the callee. If it's a builtin, strip off the prefix. llvm::StringRef Name = FD->getName(); if (Name.startswith("__builtin_")) Name = Name.substr(10); FnCheck EvalFunction = llvm::StringSwitch(Name) .Cases("memcpy", "__memcpy_chk", &CStringChecker::EvalMemcpy) .Cases("memcmp", "bcmp", &CStringChecker::EvalMemcmp) .Cases("memmove", "__memmove_chk", &CStringChecker::EvalMemmove) .Case("bcopy", &CStringChecker::EvalBcopy) .Default(NULL); if (!EvalFunction) // The callee isn't a string function. Let another checker handle it. return false; const GRState *NewState = (this->*EvalFunction)(C, CE); if (NewState) C.addTransition(NewState); return true; }