//===--- Diagnostic.cpp - C Language Family Diagnostic Handling -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Diagnostic-related interfaces. // //===----------------------------------------------------------------------===// #include "clang/Basic/Diagnostic.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/SourceLocation.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include #include #include using namespace clang; //===----------------------------------------------------------------------===// // Builtin Diagnostic information //===----------------------------------------------------------------------===// /// Flag values for diagnostics. enum { // Diagnostic classes. NOTE = 0x01, WARNING = 0x02, EXTENSION = 0x03, EXTWARN = 0x04, ERROR = 0x05, class_mask = 0x07 }; /// DiagnosticFlags - A set of flags, or'd together, that describe the /// diagnostic. static unsigned char DiagnosticFlags[] = { #define DIAG(ENUM,FLAGS,DESC) FLAGS, #include "clang/Basic/DiagnosticKinds.def" 0 }; /// getDiagClass - Return the class field of the diagnostic. /// static unsigned getBuiltinDiagClass(unsigned DiagID) { assert(DiagID < diag::NUM_BUILTIN_DIAGNOSTICS && "Diagnostic ID out of range!"); return DiagnosticFlags[DiagID] & class_mask; } /// DiagnosticText - An english message to print for the diagnostic. These /// should be localized. static const char * const DiagnosticText[] = { #define DIAG(ENUM,FLAGS,DESC) DESC, #include "clang/Basic/DiagnosticKinds.def" 0 }; //===----------------------------------------------------------------------===// // Custom Diagnostic information //===----------------------------------------------------------------------===// namespace clang { namespace diag { class CustomDiagInfo { typedef std::pair DiagDesc; std::vector DiagInfo; std::map DiagIDs; public: /// getDescription - Return the description of the specified custom /// diagnostic. const char *getDescription(unsigned DiagID) const { assert(this && DiagID-diag::NUM_BUILTIN_DIAGNOSTICS < DiagInfo.size() && "Invalid diagnosic ID"); return DiagInfo[DiagID-diag::NUM_BUILTIN_DIAGNOSTICS].second.c_str(); } /// getLevel - Return the level of the specified custom diagnostic. Diagnostic::Level getLevel(unsigned DiagID) const { assert(this && DiagID-diag::NUM_BUILTIN_DIAGNOSTICS < DiagInfo.size() && "Invalid diagnosic ID"); return DiagInfo[DiagID-diag::NUM_BUILTIN_DIAGNOSTICS].first; } unsigned getOrCreateDiagID(Diagnostic::Level L, const char *Message, Diagnostic &Diags) { DiagDesc D(L, Message); // Check to see if it already exists. std::map::iterator I = DiagIDs.lower_bound(D); if (I != DiagIDs.end() && I->first == D) return I->second; // If not, assign a new ID. unsigned ID = DiagInfo.size()+diag::NUM_BUILTIN_DIAGNOSTICS; DiagIDs.insert(std::make_pair(D, ID)); DiagInfo.push_back(D); // If this is a warning, and all warnings are supposed to map to errors, // insert the mapping now. if (L == Diagnostic::Warning && Diags.getWarningsAsErrors()) Diags.setDiagnosticMapping((diag::kind)ID, diag::MAP_ERROR); return ID; } }; } // end diag namespace } // end clang namespace //===----------------------------------------------------------------------===// // Common Diagnostic implementation //===----------------------------------------------------------------------===// static void DummyArgToStringFn(Diagnostic::ArgumentKind AK, intptr_t QT, const char *Modifier, unsigned ML, const char *Argument, unsigned ArgLen, llvm::SmallVectorImpl &Output) { const char *Str = ""; Output.append(Str, Str+strlen(Str)); } Diagnostic::Diagnostic(DiagnosticClient *client) : Client(client) { IgnoreAllWarnings = false; WarningsAsErrors = false; WarnOnExtensions = false; ErrorOnExtensions = false; SuppressSystemWarnings = false; // Clear all mappings, setting them to MAP_DEFAULT. memset(DiagMappings, 0, sizeof(DiagMappings)); ErrorOccurred = false; NumDiagnostics = 0; NumErrors = 0; CustomDiagInfo = 0; CurDiagID = ~0U; ArgToStringFn = DummyArgToStringFn; } Diagnostic::~Diagnostic() { delete CustomDiagInfo; } /// getCustomDiagID - Return an ID for a diagnostic with the specified message /// and level. If this is the first request for this diagnosic, it is /// registered and created, otherwise the existing ID is returned. unsigned Diagnostic::getCustomDiagID(Level L, const char *Message) { if (CustomDiagInfo == 0) CustomDiagInfo = new diag::CustomDiagInfo(); return CustomDiagInfo->getOrCreateDiagID(L, Message, *this); } /// isBuiltinNoteWarningOrExtension - Return true if the unmapped diagnostic /// level of the specified diagnostic ID is a Note, Warning, or Extension. /// Note that this only works on builtin diagnostics, not custom ones. bool Diagnostic::isBuiltinNoteWarningOrExtension(unsigned DiagID) { return DiagID < diag::NUM_BUILTIN_DIAGNOSTICS && getBuiltinDiagClass(DiagID) < ERROR; } /// getDescription - Given a diagnostic ID, return a description of the /// issue. const char *Diagnostic::getDescription(unsigned DiagID) const { if (DiagID < diag::NUM_BUILTIN_DIAGNOSTICS) return DiagnosticText[DiagID]; else return CustomDiagInfo->getDescription(DiagID); } /// getDiagnosticLevel - Based on the way the client configured the Diagnostic /// object, classify the specified diagnostic ID into a Level, consumable by /// the DiagnosticClient. Diagnostic::Level Diagnostic::getDiagnosticLevel(unsigned DiagID) const { // Handle custom diagnostics, which cannot be mapped. if (DiagID >= diag::NUM_BUILTIN_DIAGNOSTICS) return CustomDiagInfo->getLevel(DiagID); unsigned DiagClass = getBuiltinDiagClass(DiagID); // Specific non-error diagnostics may be mapped to various levels from ignored // to error. if (DiagClass < ERROR) { switch (getDiagnosticMapping((diag::kind)DiagID)) { case diag::MAP_DEFAULT: break; case diag::MAP_IGNORE: return Diagnostic::Ignored; case diag::MAP_WARNING: DiagClass = WARNING; break; case diag::MAP_ERROR: DiagClass = ERROR; break; } } // Map diagnostic classes based on command line argument settings. if (DiagClass == EXTENSION) { if (ErrorOnExtensions) DiagClass = ERROR; else if (WarnOnExtensions) DiagClass = WARNING; else return Ignored; } else if (DiagClass == EXTWARN) { DiagClass = ErrorOnExtensions ? ERROR : WARNING; } // If warnings are globally mapped to ignore or error, do it. if (DiagClass == WARNING) { if (IgnoreAllWarnings) return Diagnostic::Ignored; if (WarningsAsErrors) DiagClass = ERROR; } switch (DiagClass) { default: assert(0 && "Unknown diagnostic class!"); case NOTE: return Diagnostic::Note; case WARNING: return Diagnostic::Warning; case ERROR: return Diagnostic::Error; } } /// ProcessDiag - This is the method used to report a diagnostic that is /// finally fully formed. void Diagnostic::ProcessDiag() { DiagnosticInfo Info(this); // Figure out the diagnostic level of this message. Diagnostic::Level DiagLevel = getDiagnosticLevel(Info.getID()); // If the client doesn't care about this message, don't issue it. if (DiagLevel == Diagnostic::Ignored) return; // If this is not an error and we are in a system header, ignore it. We // have to check on the original Diag ID here, because we also want to // ignore extensions and warnings in -Werror and -pedantic-errors modes, // which *map* warnings/extensions to errors. if (SuppressSystemWarnings && Info.getID() < diag::NUM_BUILTIN_DIAGNOSTICS && getBuiltinDiagClass(Info.getID()) != ERROR && Info.getLocation().isValid() && Info.getLocation().getPhysicalLoc().isInSystemHeader()) return; if (DiagLevel >= Diagnostic::Error) { ErrorOccurred = true; ++NumErrors; } // Finally, report it. Client->HandleDiagnostic(DiagLevel, Info); ++NumDiagnostics; } DiagnosticClient::~DiagnosticClient() {} /// ModifierIs - Return true if the specified modifier matches specified string. template static bool ModifierIs(const char *Modifier, unsigned ModifierLen, const char (&Str)[StrLen]) { return StrLen-1 == ModifierLen && !memcmp(Modifier, Str, StrLen-1); } /// HandleSelectModifier - Handle the integer 'select' modifier. This is used /// like this: %select{foo|bar|baz}2. This means that the integer argument /// "%2" has a value from 0-2. If the value is 0, the diagnostic prints 'foo'. /// If the value is 1, it prints 'bar'. If it has the value 2, it prints 'baz'. /// This is very useful for certain classes of variant diagnostics. static void HandleSelectModifier(unsigned ValNo, const char *Argument, unsigned ArgumentLen, llvm::SmallVectorImpl &OutStr) { const char *ArgumentEnd = Argument+ArgumentLen; // Skip over 'ValNo' |'s. while (ValNo) { const char *NextVal = std::find(Argument, ArgumentEnd, '|'); assert(NextVal != ArgumentEnd && "Value for integer select modifier was" " larger than the number of options in the diagnostic string!"); Argument = NextVal+1; // Skip this string. --ValNo; } // Get the end of the value. This is either the } or the |. const char *EndPtr = std::find(Argument, ArgumentEnd, '|'); // Add the value to the output string. OutStr.append(Argument, EndPtr); } /// HandleIntegerSModifier - Handle the integer 's' modifier. This adds the /// letter 's' to the string if the value is not 1. This is used in cases like /// this: "you idiot, you have %4 parameter%s4!". static void HandleIntegerSModifier(unsigned ValNo, llvm::SmallVectorImpl &OutStr) { if (ValNo != 1) OutStr.push_back('s'); } /// PluralNumber - Parse an unsigned integer and advance Start. static unsigned PluralNumber(const char *&Start, const char *End) { // Programming 101: Parse a decimal number :-) unsigned Val = 0; while (Start != End && *Start >= '0' && *Start <= '9') { Val *= 10; Val += *Start - '0'; ++Start; } return Val; } /// TestPluralRange - Test if Val is in the parsed range. Modifies Start. static bool TestPluralRange(unsigned Val, const char *&Start, const char *End) { if (*Start != '[') { unsigned Ref = PluralNumber(Start, End); return Ref == Val; } ++Start; unsigned Low = PluralNumber(Start, End); assert(*Start == ',' && "Bad plural expression syntax: expected ,"); ++Start; unsigned High = PluralNumber(Start, End); assert(*Start == ']' && "Bad plural expression syntax: expected )"); ++Start; return Low <= Val && Val <= High; } /// EvalPluralExpr - Actual expression evaluator for HandlePluralModifier. static bool EvalPluralExpr(unsigned ValNo, const char *Start, const char *End) { // Empty condition? if (*Start == ':') return true; while (1) { char C = *Start; if (C == '%') { // Modulo expression ++Start; unsigned Arg = PluralNumber(Start, End); assert(*Start == '=' && "Bad plural expression syntax: expected ="); ++Start; unsigned ValMod = ValNo % Arg; if (TestPluralRange(ValMod, Start, End)) return true; } else { assert((C == '[' || (C >= '0' && C <= '9')) && "Bad plural expression syntax: unexpected character"); // Range expression if (TestPluralRange(ValNo, Start, End)) return true; } // Scan for next or-expr part. Start = std::find(Start, End, ','); if(Start == End) break; ++Start; } return false; } /// HandlePluralModifier - Handle the integer 'plural' modifier. This is used /// for complex plural forms, or in languages where all plurals are complex. /// The syntax is: %plural{cond1:form1|cond2:form2|:form3}, where condn are /// conditions that are tested in order, the form corresponding to the first /// that applies being emitted. The empty condition is always true, making the /// last form a default case. /// Conditions are simple boolean expressions, where n is the number argument. /// Here are the rules. /// condition := expression | empty /// empty := -> always true /// expression := numeric [',' expression] -> logical or /// numeric := range -> true if n in range /// | '%' number '=' range -> true if n % number in range /// range := number /// | '[' number ',' number ']' -> ranges are inclusive both ends /// /// Here are some examples from the GNU gettext manual written in this form: /// English: /// {1:form0|:form1} /// Latvian: /// {0:form2|%100=11,%10=0,%10=[2,9]:form1|:form0} /// Gaeilge: /// {1:form0|2:form1|:form2} /// Romanian: /// {1:form0|0,%100=[1,19]:form1|:form2} /// Lithuanian: /// {%10=0,%100=[10,19]:form2|%10=1:form0|:form1} /// Russian (requires repeated form): /// {%100=[11,14]:form2|%10=1:form0|%10=[2,4]:form1|:form2} /// Slovak /// {1:form0|[2,4]:form1|:form2} /// Polish (requires repeated form): /// {1:form0|%100=[10,20]:form2|%10=[2,4]:form1|:form2} static void HandlePluralModifier(unsigned ValNo, const char *Argument, unsigned ArgumentLen, llvm::SmallVectorImpl &OutStr) { const char *ArgumentEnd = Argument + ArgumentLen; while (1) { assert(Argument < ArgumentEnd && "Plural expression didn't match."); const char *ExprEnd = Argument; while (*ExprEnd != ':') { assert(ExprEnd != ArgumentEnd && "Plural missing expression end"); ++ExprEnd; } if (EvalPluralExpr(ValNo, Argument, ExprEnd)) { Argument = ExprEnd + 1; ExprEnd = std::find(Argument, ArgumentEnd, '|'); OutStr.append(Argument, ExprEnd); return; } Argument = std::find(Argument, ArgumentEnd - 1, '|') + 1; } } /// FormatDiagnostic - Format this diagnostic into a string, substituting the /// formal arguments into the %0 slots. The result is appended onto the Str /// array. void DiagnosticInfo:: FormatDiagnostic(llvm::SmallVectorImpl &OutStr) const { const char *DiagStr = getDiags()->getDescription(getID()); const char *DiagEnd = DiagStr+strlen(DiagStr); while (DiagStr != DiagEnd) { if (DiagStr[0] != '%') { // Append non-%0 substrings to Str if we have one. const char *StrEnd = std::find(DiagStr, DiagEnd, '%'); OutStr.append(DiagStr, StrEnd); DiagStr = StrEnd; continue; } else if (DiagStr[1] == '%') { OutStr.push_back('%'); // %% -> %. DiagStr += 2; continue; } // Skip the %. ++DiagStr; // This must be a placeholder for a diagnostic argument. The format for a // placeholder is one of "%0", "%modifier0", or "%modifier{arguments}0". // The digit is a number from 0-9 indicating which argument this comes from. // The modifier is a string of digits from the set [-a-z]+, arguments is a // brace enclosed string. const char *Modifier = 0, *Argument = 0; unsigned ModifierLen = 0, ArgumentLen = 0; // Check to see if we have a modifier. If so eat it. if (!isdigit(DiagStr[0])) { Modifier = DiagStr; while (DiagStr[0] == '-' || (DiagStr[0] >= 'a' && DiagStr[0] <= 'z')) ++DiagStr; ModifierLen = DiagStr-Modifier; // If we have an argument, get it next. if (DiagStr[0] == '{') { ++DiagStr; // Skip {. Argument = DiagStr; for (; DiagStr[0] != '}'; ++DiagStr) assert(DiagStr[0] && "Mismatched {}'s in diagnostic string!"); ArgumentLen = DiagStr-Argument; ++DiagStr; // Skip }. } } assert(isdigit(*DiagStr) && "Invalid format for argument in diagnostic"); unsigned ArgNo = *DiagStr++ - '0'; switch (getArgKind(ArgNo)) { // ---- STRINGS ---- case Diagnostic::ak_std_string: { const std::string &S = getArgStdStr(ArgNo); assert(ModifierLen == 0 && "No modifiers for strings yet"); OutStr.append(S.begin(), S.end()); break; } case Diagnostic::ak_c_string: { const char *S = getArgCStr(ArgNo); assert(ModifierLen == 0 && "No modifiers for strings yet"); OutStr.append(S, S + strlen(S)); break; } // ---- INTEGERS ---- case Diagnostic::ak_sint: { int Val = getArgSInt(ArgNo); if (ModifierIs(Modifier, ModifierLen, "select")) { HandleSelectModifier((unsigned)Val, Argument, ArgumentLen, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "s")) { HandleIntegerSModifier(Val, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "plural")) { HandlePluralModifier((unsigned)Val, Argument, ArgumentLen, OutStr); } else { assert(ModifierLen == 0 && "Unknown integer modifier"); // FIXME: Optimize std::string S = llvm::itostr(Val); OutStr.append(S.begin(), S.end()); } break; } case Diagnostic::ak_uint: { unsigned Val = getArgUInt(ArgNo); if (ModifierIs(Modifier, ModifierLen, "select")) { HandleSelectModifier(Val, Argument, ArgumentLen, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "s")) { HandleIntegerSModifier(Val, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "plural")) { HandlePluralModifier((unsigned)Val, Argument, ArgumentLen, OutStr); } else { assert(ModifierLen == 0 && "Unknown integer modifier"); // FIXME: Optimize std::string S = llvm::utostr_32(Val); OutStr.append(S.begin(), S.end()); } break; } // ---- NAMES and TYPES ---- case Diagnostic::ak_identifierinfo: { OutStr.push_back('\''); const IdentifierInfo *II = getArgIdentifier(ArgNo); assert(ModifierLen == 0 && "No modifiers for strings yet"); OutStr.append(II->getName(), II->getName() + II->getLength()); OutStr.push_back('\''); break; } case Diagnostic::ak_qualtype: case Diagnostic::ak_declarationname: OutStr.push_back('\''); getDiags()->ConvertArgToString(getArgKind(ArgNo), getRawArg(ArgNo), Modifier, ModifierLen, Argument, ArgumentLen, OutStr); OutStr.push_back('\''); break; } } }