//== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defined the types Store and StoreManager. // //===----------------------------------------------------------------------===// #include "clang/Analysis/PathSensitive/Store.h" #include "clang/Analysis/PathSensitive/GRState.h" using namespace clang; StoreManager::StoreManager(GRStateManager &stateMgr, bool useNewCastRegion) : ValMgr(stateMgr.getValueManager()), StateMgr(stateMgr), UseNewCastRegion(useNewCastRegion), MRMgr(ValMgr.getRegionManager()) {} StoreManager::CastResult StoreManager::MakeElementRegion(const GRState *state, const MemRegion *region, QualType pointeeTy, QualType castToTy) { // Record the cast type of the region. state = setCastType(state, region, castToTy); // Create a new ElementRegion at offset 0. SVal idx = ValMgr.makeZeroArrayIndex(); return CastResult(state, MRMgr.getElementRegion(pointeeTy, idx, region, ValMgr.getContext())); } static bool IsCompleteType(ASTContext &Ctx, QualType Ty) { if (const RecordType *RT = Ty->getAsRecordType()) { const RecordDecl *D = RT->getDecl(); if (!D->getDefinition(Ctx)) return false; } return true; } StoreManager::CastResult StoreManager::NewCastRegion(const GRState *state, const MemRegion* R, QualType CastToTy) { ASTContext& Ctx = StateMgr.getContext(); // We need to know the real type of CastToTy. QualType ToTy = Ctx.getCanonicalType(CastToTy); // Handle casts to Objective-C objects. if (Ctx.isObjCObjectPointerType(CastToTy)) { state = setCastType(state, R, CastToTy); return CastResult(state, R); } // Now assume we are casting from pointer to pointer. Other cases should // already be handled. QualType PointeeTy = CastToTy->getAsPointerType()->getPointeeType(); // Process region cast according to the kind of the region being cast. switch (R->getKind()) { case MemRegion::BEG_TYPED_REGIONS: case MemRegion::MemSpaceRegionKind: case MemRegion::BEG_DECL_REGIONS: case MemRegion::END_DECL_REGIONS: case MemRegion::END_TYPED_REGIONS: case MemRegion::TypedViewRegionKind: { assert(0 && "Invalid region cast"); break; } case MemRegion::CodeTextRegionKind: { // CodeTextRegion should be cast to only function pointer type, although // they can in practice be casted to anything, e.g, void*, char*, etc. // Just pass the region through. break; } case MemRegion::StringRegionKind: // Handle casts of string literals. return MakeElementRegion(state, R, PointeeTy, CastToTy); case MemRegion::ObjCObjectRegionKind: case MemRegion::SymbolicRegionKind: // FIXME: Need to handle arbitrary downcasts. case MemRegion::AllocaRegionKind: { state = setCastType(state, R, CastToTy); break; } case MemRegion::CompoundLiteralRegionKind: case MemRegion::ElementRegionKind: case MemRegion::FieldRegionKind: case MemRegion::ObjCIvarRegionKind: case MemRegion::VarRegionKind: { // VarRegion, ElementRegion, and FieldRegion has an inherent type. // Normally they should not be cast. We only layer an ElementRegion when // the cast-to pointee type is of smaller size. In other cases, we return // the original VarRegion. // If the pointee or object type is incomplete, do not compute their // sizes, and return the original region. QualType ObjTy = cast(R)->getValueType(Ctx); if (!IsCompleteType(Ctx, PointeeTy) || !IsCompleteType(Ctx, ObjTy)) { state = setCastType(state, R, ToTy); break; } uint64_t PointeeTySize = Ctx.getTypeSize(PointeeTy); uint64_t ObjTySize = Ctx.getTypeSize(ObjTy); if ((PointeeTySize > 0 && PointeeTySize < ObjTySize) || (ObjTy->isAggregateType() && PointeeTy->isScalarType()) || ObjTySize == 0 /* R has 'void*' type. */) return MakeElementRegion(state, R, PointeeTy, ToTy); state = setCastType(state, R, ToTy); break; } } return CastResult(state, R); } StoreManager::CastResult StoreManager::OldCastRegion(const GRState* state, const MemRegion* R, QualType CastToTy) { ASTContext& Ctx = StateMgr.getContext(); // We need to know the real type of CastToTy. QualType ToTy = Ctx.getCanonicalType(CastToTy); // Return the same region if the region types are compatible. if (const TypedRegion* TR = dyn_cast(R)) { QualType Ta = Ctx.getCanonicalType(TR->getLocationType(Ctx)); if (Ta == ToTy) return CastResult(state, R); } if (const PointerType* PTy = dyn_cast(ToTy.getTypePtr())) { // Check if we are casting to 'void*'. // FIXME: Handle arbitrary upcasts. QualType Pointee = PTy->getPointeeType(); if (Pointee->isVoidType()) { while (true) { if (const TypedViewRegion *TR = dyn_cast(R)) { // Casts to void* removes TypedViewRegion. This happens when: // // void foo(void*); // ... // void bar() { // int x; // foo(&x); // } // R = TR->removeViews(); continue; } else if (const ElementRegion *ER = dyn_cast(R)) { // Casts to void* also removes ElementRegions. This happens when: // // void foo(void*); // ... // void bar() { // int x; // foo((char*)&x); // } // R = ER->getSuperRegion(); continue; } break; } return CastResult(state, R); } else if (Pointee->isIntegerType()) { // FIXME: At some point, it stands to reason that this 'dyn_cast' should // become a 'cast' and that 'R' will always be a TypedRegion. if (const TypedRegion *TR = dyn_cast(R)) { // Check if we are casting to a region with an integer type. We now // the types aren't the same, so we construct an ElementRegion. SVal Idx = ValMgr.makeZeroArrayIndex(); // If the super region is an element region, strip it away. // FIXME: Is this the right thing to do in all cases? const MemRegion *Base = isa(TR) ? TR->getSuperRegion() : TR; ElementRegion* ER = MRMgr.getElementRegion(Pointee, Idx, Base, StateMgr.getContext()); return CastResult(state, ER); } } } // FIXME: Need to handle arbitrary downcasts. // FIXME: Handle the case where a TypedViewRegion (layering a SymbolicRegion // or an AllocaRegion is cast to another view, thus causing the memory // to be re-used for a different purpose. if (isa(R) || isa(R)) { const MemRegion* ViewR = MRMgr.getTypedViewRegion(CastToTy, R); return CastResult(AddRegionView(state, ViewR, R), ViewR); } return CastResult(state, R); } const GRState *StoreManager::InvalidateRegion(const GRState *state, const MemRegion *R, const Expr *E, unsigned Count) { ASTContext& Ctx = StateMgr.getContext(); if (!R->isBoundable()) return state; if (isa(R) || isa(R)) { // Invalidate the alloca region by setting its default value to // conjured symbol. The type of the symbol is irrelavant. SVal V = ValMgr.getConjuredSymbolVal(E, Ctx.IntTy, Count); state = setDefaultValue(state, R, V); return state; } const TypedRegion *TR = cast(R); QualType T; // If the region is cast to another type, use that type. if (const QualType *CastTy = getCastType(state, R)) { assert(!(*CastTy)->isObjCObjectPointerType()); T = (*CastTy)->getAsPointerType()->getPointeeType(); } else T = TR->getValueType(Ctx); if (Loc::IsLocType(T) || (T->isIntegerType() && T->isScalarType())) { SVal V = ValMgr.getConjuredSymbolVal(E, T, Count); return Bind(state, ValMgr.makeLoc(TR), V); } else if (const RecordType *RT = T->getAsStructureType()) { // FIXME: handle structs with default region value. const RecordDecl *RD = RT->getDecl()->getDefinition(Ctx); // No record definition. There is nothing we can do. if (!RD) return state; // Iterate through the fields and construct new symbols. for (RecordDecl::field_iterator FI=RD->field_begin(), FE=RD->field_end(); FI!=FE; ++FI) { // For now just handle scalar fields. FieldDecl *FD = *FI; QualType FT = FD->getType(); const FieldRegion* FR = MRMgr.getFieldRegion(FD, TR); if (Loc::IsLocType(FT) || (FT->isIntegerType() && FT->isScalarType())) { SVal V = ValMgr.getConjuredSymbolVal(E, FT, Count); state = state->bindLoc(ValMgr.makeLoc(FR), V); } else if (FT->isStructureType()) { // set the default value of the struct field to conjured // symbol. Note that the type of the symbol is irrelavant. // We cannot use the type of the struct otherwise ValMgr won't // give us the conjured symbol. SVal V = ValMgr.getConjuredSymbolVal(E, Ctx.IntTy, Count); state = setDefaultValue(state, FR, V); } } } else if (const ArrayType *AT = Ctx.getAsArrayType(T)) { // Set the default value of the array to conjured symbol. SVal V = ValMgr.getConjuredSymbolVal(E, AT->getElementType(), Count); state = setDefaultValue(state, TR, V); } else { // Just blast away other values. state = Bind(state, ValMgr.makeLoc(TR), UnknownVal()); } return state; }