//===--- DeclBase.cpp - Declaration AST Node Implementation ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Decl and DeclContext classes. // //===----------------------------------------------------------------------===// #include "clang/AST/DeclBase.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Type.h" #include "llvm/ADT/DenseMap.h" #include #include #include using namespace clang; //===----------------------------------------------------------------------===// // Statistics //===----------------------------------------------------------------------===// // temporary statistics gathering static unsigned nFuncs = 0; static unsigned nVars = 0; static unsigned nParmVars = 0; static unsigned nOriginalParmVars = 0; static unsigned nSUC = 0; static unsigned nCXXSUC = 0; static unsigned nEnumConst = 0; static unsigned nEnumDecls = 0; static unsigned nNamespaces = 0; static unsigned nOverFuncs = 0; static unsigned nTypedef = 0; static unsigned nFieldDecls = 0; static unsigned nInterfaceDecls = 0; static unsigned nClassDecls = 0; static unsigned nMethodDecls = 0; static unsigned nProtocolDecls = 0; static unsigned nForwardProtocolDecls = 0; static unsigned nCategoryDecls = 0; static unsigned nIvarDecls = 0; static unsigned nAtDefsFieldDecls = 0; static unsigned nObjCImplementationDecls = 0; static unsigned nObjCCategoryImpl = 0; static unsigned nObjCCompatibleAlias = 0; static unsigned nObjCPropertyDecl = 0; static unsigned nObjCPropertyImplDecl = 0; static unsigned nLinkageSpecDecl = 0; static unsigned nFileScopeAsmDecl = 0; static unsigned nBlockDecls = 0; static bool StatSwitch = false; // This keeps track of all decl attributes. Since so few decls have attrs, we // keep them in a hash map instead of wasting space in the Decl class. typedef llvm::DenseMap DeclAttrMapTy; static DeclAttrMapTy *DeclAttrs = 0; const char *Decl::getDeclKindName() const { switch (DeclKind) { default: assert(0 && "Unknown decl kind!"); case Namespace: return "Namespace"; case OverloadedFunction: return "OverloadedFunction"; case Typedef: return "Typedef"; case Function: return "Function"; case Var: return "Var"; case ParmVar: return "ParmVar"; case OriginalParmVar: return "OriginalParmVar"; case EnumConstant: return "EnumConstant"; case ObjCIvar: return "ObjCIvar"; case ObjCInterface: return "ObjCInterface"; case ObjCImplementation: return "ObjCImplementation"; case ObjCClass: return "ObjCClass"; case ObjCMethod: return "ObjCMethod"; case ObjCProtocol: return "ObjCProtocol"; case ObjCProperty: return "ObjCProperty"; case ObjCPropertyImpl: return "ObjCPropertyImpl"; case ObjCForwardProtocol: return "ObjCForwardProtocol"; case Record: return "Record"; case CXXRecord: return "CXXRecord"; case Enum: return "Enum"; case Block: return "Block"; } } bool Decl::CollectingStats(bool Enable) { if (Enable) StatSwitch = true; return StatSwitch; } void Decl::PrintStats() { fprintf(stderr, "*** Decl Stats:\n"); fprintf(stderr, " %d decls total.\n", int(nFuncs+nVars+nParmVars+nOriginalParmVars+nFieldDecls+nSUC+nCXXSUC+ nEnumDecls+nEnumConst+nTypedef+nInterfaceDecls+nClassDecls+ nMethodDecls+nProtocolDecls+nCategoryDecls+nIvarDecls+ nAtDefsFieldDecls+nNamespaces+nOverFuncs)); fprintf(stderr, " %d namespace decls, %d each (%d bytes)\n", nNamespaces, (int)sizeof(NamespaceDecl), int(nNamespaces*sizeof(NamespaceDecl))); fprintf(stderr, " %d overloaded function decls, %d each (%d bytes)\n", nOverFuncs, (int)sizeof(OverloadedFunctionDecl), int(nOverFuncs*sizeof(OverloadedFunctionDecl))); fprintf(stderr, " %d function decls, %d each (%d bytes)\n", nFuncs, (int)sizeof(FunctionDecl), int(nFuncs*sizeof(FunctionDecl))); fprintf(stderr, " %d variable decls, %d each (%d bytes)\n", nVars, (int)sizeof(VarDecl), int(nVars*sizeof(VarDecl))); fprintf(stderr, " %d parameter variable decls, %d each (%d bytes)\n", nParmVars, (int)sizeof(ParmVarDecl), int(nParmVars*sizeof(ParmVarDecl))); fprintf(stderr, " %d original parameter variable decls, %d each (%d bytes)\n", nOriginalParmVars, (int)sizeof(ParmVarWithOriginalTypeDecl), int(nOriginalParmVars*sizeof(ParmVarWithOriginalTypeDecl))); fprintf(stderr, " %d field decls, %d each (%d bytes)\n", nFieldDecls, (int)sizeof(FieldDecl), int(nFieldDecls*sizeof(FieldDecl))); fprintf(stderr, " %d @defs generated field decls, %d each (%d bytes)\n", nAtDefsFieldDecls, (int)sizeof(ObjCAtDefsFieldDecl), int(nAtDefsFieldDecls*sizeof(ObjCAtDefsFieldDecl))); fprintf(stderr, " %d struct/union/class decls, %d each (%d bytes)\n", nSUC, (int)sizeof(RecordDecl), int(nSUC*sizeof(RecordDecl))); fprintf(stderr, " %d C++ struct/union/class decls, %d each (%d bytes)\n", nCXXSUC, (int)sizeof(CXXRecordDecl), int(nCXXSUC*sizeof(CXXRecordDecl))); fprintf(stderr, " %d enum decls, %d each (%d bytes)\n", nEnumDecls, (int)sizeof(EnumDecl), int(nEnumDecls*sizeof(EnumDecl))); fprintf(stderr, " %d enum constant decls, %d each (%d bytes)\n", nEnumConst, (int)sizeof(EnumConstantDecl), int(nEnumConst*sizeof(EnumConstantDecl))); fprintf(stderr, " %d typedef decls, %d each (%d bytes)\n", nTypedef, (int)sizeof(TypedefDecl),int(nTypedef*sizeof(TypedefDecl))); // Objective-C decls... fprintf(stderr, " %d interface decls, %d each (%d bytes)\n", nInterfaceDecls, (int)sizeof(ObjCInterfaceDecl), int(nInterfaceDecls*sizeof(ObjCInterfaceDecl))); fprintf(stderr, " %d instance variable decls, %d each (%d bytes)\n", nIvarDecls, (int)sizeof(ObjCIvarDecl), int(nIvarDecls*sizeof(ObjCIvarDecl))); fprintf(stderr, " %d class decls, %d each (%d bytes)\n", nClassDecls, (int)sizeof(ObjCClassDecl), int(nClassDecls*sizeof(ObjCClassDecl))); fprintf(stderr, " %d method decls, %d each (%d bytes)\n", nMethodDecls, (int)sizeof(ObjCMethodDecl), int(nMethodDecls*sizeof(ObjCMethodDecl))); fprintf(stderr, " %d protocol decls, %d each (%d bytes)\n", nProtocolDecls, (int)sizeof(ObjCProtocolDecl), int(nProtocolDecls*sizeof(ObjCProtocolDecl))); fprintf(stderr, " %d forward protocol decls, %d each (%d bytes)\n", nForwardProtocolDecls, (int)sizeof(ObjCForwardProtocolDecl), int(nForwardProtocolDecls*sizeof(ObjCForwardProtocolDecl))); fprintf(stderr, " %d category decls, %d each (%d bytes)\n", nCategoryDecls, (int)sizeof(ObjCCategoryDecl), int(nCategoryDecls*sizeof(ObjCCategoryDecl))); fprintf(stderr, " %d class implementation decls, %d each (%d bytes)\n", nObjCImplementationDecls, (int)sizeof(ObjCImplementationDecl), int(nObjCImplementationDecls*sizeof(ObjCImplementationDecl))); fprintf(stderr, " %d class implementation decls, %d each (%d bytes)\n", nObjCCategoryImpl, (int)sizeof(ObjCCategoryImplDecl), int(nObjCCategoryImpl*sizeof(ObjCCategoryImplDecl))); fprintf(stderr, " %d compatibility alias decls, %d each (%d bytes)\n", nObjCCompatibleAlias, (int)sizeof(ObjCCompatibleAliasDecl), int(nObjCCompatibleAlias*sizeof(ObjCCompatibleAliasDecl))); fprintf(stderr, " %d property decls, %d each (%d bytes)\n", nObjCPropertyDecl, (int)sizeof(ObjCPropertyDecl), int(nObjCPropertyDecl*sizeof(ObjCPropertyDecl))); fprintf(stderr, " %d property implementation decls, %d each (%d bytes)\n", nObjCPropertyImplDecl, (int)sizeof(ObjCPropertyImplDecl), int(nObjCPropertyImplDecl*sizeof(ObjCPropertyImplDecl))); fprintf(stderr, "Total bytes = %d\n", int(nFuncs*sizeof(FunctionDecl)+ nVars*sizeof(VarDecl)+nParmVars*sizeof(ParmVarDecl)+ nOriginalParmVars*sizeof(ParmVarWithOriginalTypeDecl)+ nFieldDecls*sizeof(FieldDecl)+nSUC*sizeof(RecordDecl)+ nCXXSUC*sizeof(CXXRecordDecl)+ nEnumDecls*sizeof(EnumDecl)+nEnumConst*sizeof(EnumConstantDecl)+ nTypedef*sizeof(TypedefDecl)+ nInterfaceDecls*sizeof(ObjCInterfaceDecl)+ nIvarDecls*sizeof(ObjCIvarDecl)+ nClassDecls*sizeof(ObjCClassDecl)+ nMethodDecls*sizeof(ObjCMethodDecl)+ nProtocolDecls*sizeof(ObjCProtocolDecl)+ nForwardProtocolDecls*sizeof(ObjCForwardProtocolDecl)+ nCategoryDecls*sizeof(ObjCCategoryDecl)+ nObjCImplementationDecls*sizeof(ObjCImplementationDecl)+ nObjCCategoryImpl*sizeof(ObjCCategoryImplDecl)+ nObjCCompatibleAlias*sizeof(ObjCCompatibleAliasDecl)+ nObjCPropertyDecl*sizeof(ObjCPropertyDecl)+ nObjCPropertyImplDecl*sizeof(ObjCPropertyImplDecl)+ nLinkageSpecDecl*sizeof(LinkageSpecDecl)+ nFileScopeAsmDecl*sizeof(FileScopeAsmDecl)+ nNamespaces*sizeof(NamespaceDecl)+ nOverFuncs*sizeof(OverloadedFunctionDecl))); } void Decl::addDeclKind(Kind k) { switch (k) { case Namespace: nNamespaces++; break; case OverloadedFunction: nOverFuncs++; break; case Typedef: nTypedef++; break; case Function: nFuncs++; break; case Var: nVars++; break; case ParmVar: nParmVars++; break; case OriginalParmVar: nOriginalParmVars++; break; case EnumConstant: nEnumConst++; break; case Field: nFieldDecls++; break; case Record: nSUC++; break; case Enum: nEnumDecls++; break; case ObjCContainer: break; // is abstract...no need to account for. case ObjCInterface: nInterfaceDecls++; break; case ObjCClass: nClassDecls++; break; case ObjCMethod: nMethodDecls++; break; case ObjCProtocol: nProtocolDecls++; break; case ObjCForwardProtocol: nForwardProtocolDecls++; break; case ObjCCategory: nCategoryDecls++; break; case ObjCIvar: nIvarDecls++; break; case ObjCAtDefsField: nAtDefsFieldDecls++; break; case ObjCImplementation: nObjCImplementationDecls++; break; case ObjCCategoryImpl: nObjCCategoryImpl++; break; case ObjCCompatibleAlias: nObjCCompatibleAlias++; break; case ObjCProperty: nObjCPropertyDecl++; break; case ObjCPropertyImpl: nObjCPropertyImplDecl++; break; case LinkageSpec: nLinkageSpecDecl++; break; case FileScopeAsm: nFileScopeAsmDecl++; break; case Block: nBlockDecls++; break; case ImplicitParam: case TranslationUnit: break; case CXXRecord: nCXXSUC++; break; // FIXME: Statistics for C++ decls. case TemplateTypeParm: case NonTypeTemplateParm: case CXXMethod: case CXXConstructor: case CXXDestructor: case CXXConversion: case CXXClassVar: break; } } //===----------------------------------------------------------------------===// // Decl Implementation //===----------------------------------------------------------------------===// // Out-of-line virtual method providing a home for Decl. Decl::~Decl() { if (!HasAttrs) return; DeclAttrMapTy::iterator it = DeclAttrs->find(this); assert(it != DeclAttrs->end() && "No attrs found but HasAttrs is true!"); // release attributes. delete it->second; invalidateAttrs(); } void Decl::addAttr(Attr *NewAttr) { if (!DeclAttrs) DeclAttrs = new DeclAttrMapTy(); Attr *&ExistingAttr = (*DeclAttrs)[this]; NewAttr->setNext(ExistingAttr); ExistingAttr = NewAttr; HasAttrs = true; } void Decl::invalidateAttrs() { if (!HasAttrs) return; HasAttrs = false; (*DeclAttrs)[this] = 0; DeclAttrs->erase(this); if (DeclAttrs->empty()) { delete DeclAttrs; DeclAttrs = 0; } } const Attr *Decl::getAttrs() const { if (!HasAttrs) return 0; return (*DeclAttrs)[this]; } void Decl::swapAttrs(Decl *RHS) { bool HasLHSAttr = this->HasAttrs; bool HasRHSAttr = RHS->HasAttrs; // Usually, neither decl has attrs, nothing to do. if (!HasLHSAttr && !HasRHSAttr) return; // If 'this' has no attrs, swap the other way. if (!HasLHSAttr) return RHS->swapAttrs(this); // Handle the case when both decls have attrs. if (HasRHSAttr) { std::swap((*DeclAttrs)[this], (*DeclAttrs)[RHS]); return; } // Otherwise, LHS has an attr and RHS doesn't. (*DeclAttrs)[RHS] = (*DeclAttrs)[this]; (*DeclAttrs).erase(this); this->HasAttrs = false; RHS->HasAttrs = true; } void Decl::Destroy(ASTContext& C) { if (ScopedDecl* SD = dyn_cast(this)) { // Observe the unrolled recursion. By setting N->NextDeclarator = 0x0 // within the loop, only the Destroy method for the first ScopedDecl // will deallocate all of the ScopedDecls in a chain. ScopedDecl* N = SD->getNextDeclarator(); while (N) { ScopedDecl* Tmp = N->getNextDeclarator(); N->NextDeclarator = 0x0; N->Destroy(C); N = Tmp; } } this->~Decl(); C.getAllocator().Deallocate((void *)this); } Decl *Decl::castFromDeclContext (const DeclContext *D) { return DeclContext::CastTo(D); } DeclContext *Decl::castToDeclContext(const Decl *D) { return DeclContext::CastTo(D); } //===----------------------------------------------------------------------===// // DeclContext Implementation //===----------------------------------------------------------------------===// const DeclContext *DeclContext::getParent() const { if (const ScopedDecl *SD = dyn_cast(this)) return SD->getDeclContext(); else if (const BlockDecl *BD = dyn_cast(this)) return BD->getParentContext(); else return NULL; } const DeclContext *DeclContext::getLexicalParent() const { if (const ScopedDecl *SD = dyn_cast(this)) return SD->getLexicalDeclContext(); return getParent(); } // FIXME: We really want to use a DenseSet here to eliminate the // redundant storage of the declaration names, but (1) it doesn't give // us the ability to search based on DeclarationName, (2) we really // need something more like a DenseMultiSet, and (3) it's // implemented in terms of DenseMap anyway. However, this data // structure is really space-inefficient, so we'll have to do // something. typedef llvm::DenseMap > StoredDeclsMap; DeclContext::~DeclContext() { unsigned Size = LookupPtr.getInt(); if (Size == LookupIsMap) { StoredDeclsMap *Map = static_cast(LookupPtr.getPointer()); delete Map; } else { ScopedDecl **Array = static_cast(LookupPtr.getPointer()); delete [] Array; } } void DeclContext::DestroyDecls(ASTContext &C) { for (decl_iterator D = Decls.begin(); D != Decls.end(); ++D) { if ((*D)->getLexicalDeclContext() == this) (*D)->Destroy(C); } } bool DeclContext::isTransparentContext() const { if (DeclKind == Decl::Enum) return true; // FIXME: Check for C++0x scoped enums else if (DeclKind == Decl::LinkageSpec) return true; else if (DeclKind == Decl::Record || DeclKind == Decl::CXXRecord) return cast(this)->isAnonymousStructOrUnion(); else if (DeclKind == Decl::Namespace) return false; // FIXME: Check for C++0x inline namespaces return false; } DeclContext *DeclContext::getPrimaryContext() { switch (DeclKind) { case Decl::TranslationUnit: case Decl::LinkageSpec: case Decl::Block: // There is only one DeclContext for these entities. return this; case Decl::Namespace: // The original namespace is our primary context. return static_cast(this)->getOriginalNamespace(); case Decl::Enum: #if 0 // FIXME: See the comment for CXXRecord, below. // The declaration associated with the enumeration type is our // primary context. return Context.getTypeDeclType(static_cast(this)) ->getAsEnumType()->getDecl(); #else return this; #endif case Decl::Record: case Decl::CXXRecord: { // The declaration associated with the type is be our primary // context. #if 0 // FIXME: This is what we expect to do. However, it doesn't work // because ASTContext::setTagDefinition changes the result of // Context.getTypeDeclType, meaning that our "primary" declaration // of a RecordDecl/CXXRecordDecl will change, and we won't be able // to find any values inserted into the earlier "primary" // declaration. We need better tracking of redeclarations and // definitions. QualType Type = Context.getTypeDeclType(static_cast(this)); return Type->getAsRecordType()->getDecl(); #else // FIXME: This hack will work for now, because the declaration we // create when we're defining the record is the one we'll use as // the definition later. return this; #endif } case Decl::ObjCMethod: return this; case Decl::ObjCInterface: case Decl::ObjCProtocol: case Decl::ObjCCategory: // FIXME: Can Objective-C interfaces be forward-declared? return this; case Decl::ObjCImplementation: case Decl::ObjCCategoryImpl: return this; default: assert(DeclKind >= Decl::FunctionFirst && DeclKind <= Decl::FunctionLast && "Unknown DeclContext kind"); return this; } } DeclContext *DeclContext::getNextContext() { switch (DeclKind) { case Decl::TranslationUnit: case Decl::Enum: case Decl::Record: case Decl::CXXRecord: case Decl::ObjCMethod: case Decl::ObjCInterface: case Decl::ObjCCategory: case Decl::ObjCProtocol: case Decl::ObjCImplementation: case Decl::ObjCCategoryImpl: case Decl::LinkageSpec: case Decl::Block: // There is only one DeclContext for these entities. return 0; case Decl::Namespace: // Return the next namespace return static_cast(this)->getNextNamespace(); default: assert(DeclKind >= Decl::FunctionFirst && DeclKind <= Decl::FunctionLast && "Unknown DeclContext kind"); return 0; } } void DeclContext::addDecl(ASTContext &Context, ScopedDecl *D, bool AllowLookup) { assert(D->getLexicalDeclContext() == this && "Decl inserted into wrong lexical context"); Decls.push_back(D); if (AllowLookup) D->getDeclContext()->insert(Context, D); } /// buildLookup - Build the lookup data structure with all of the /// declarations in DCtx (and any other contexts linked to it or /// transparent contexts nested within it). void DeclContext::buildLookup(DeclContext *DCtx) { for (; DCtx; DCtx = DCtx->getNextContext()) { for (decl_iterator D = DCtx->decls_begin(), DEnd = DCtx->decls_end(); D != DEnd; ++D) { // Insert this declaration into the lookup structure insertImpl(*D); // If this declaration is itself a transparent declaration context, // add its members (recursively). if (DeclContext *InnerCtx = dyn_cast(*D)) if (InnerCtx->isTransparentContext()) buildLookup(InnerCtx->getPrimaryContext()); } } } DeclContext::lookup_result DeclContext::lookup(DeclarationName Name) { DeclContext *PrimaryContext = getPrimaryContext(); if (PrimaryContext != this) return PrimaryContext->lookup(Name); /// If there is no lookup data structure, build one now by walking /// all of the linked DeclContexts (in declaration order!) and /// inserting their values. if (LookupPtr.getPointer() == 0) buildLookup(this); if (isLookupMap()) { StoredDeclsMap *Map = static_cast(LookupPtr.getPointer()); StoredDeclsMap::iterator Pos = Map->find(Name); if (Pos != Map->end()) return lookup_result(&Pos->second.front(), &Pos->second.front() + Pos->second.size()); return lookup_result(0, 0); } // We have a small array. Look into it. unsigned Size = LookupPtr.getInt(); ScopedDecl **Array = static_cast(LookupPtr.getPointer()); for (unsigned Idx = 0; Idx != Size; ++Idx) if (Array[Idx]->getDeclName() == Name) { unsigned Last = Idx + 1; while (Last != Size && Array[Last]->getDeclName() == Name) ++Last; return lookup_result(&Array[Idx], &Array[Last]); } return lookup_result(0, 0); } DeclContext::lookup_const_result DeclContext::lookup(DeclarationName Name) const { return const_cast(this)->lookup(Name); } const DeclContext *DeclContext::getLookupContext() const { const DeclContext *Ctx = this; // Skip through transparent contexts. while (Ctx->isTransparentContext()) Ctx = Ctx->getParent(); return Ctx; } void DeclContext::insert(ASTContext &Context, ScopedDecl *D) { DeclContext *PrimaryContext = getPrimaryContext(); if (PrimaryContext != this) { PrimaryContext->insert(Context, D); return; } // If we already have a lookup data structure, perform the insertion // into it. Otherwise, be lazy and don't build that structure until // someone asks for it. if (LookupPtr.getPointer()) insertImpl(D); // If we are a transparent context, insert into our parent context, // too. This operation is recursive. if (isTransparentContext()) getParent()->insert(Context, D); } void DeclContext::insertImpl(ScopedDecl *D) { // Skip unnamed declarations. if (!D->getDeclName()) return; bool MayBeRedeclaration = true; if (!isLookupMap()) { unsigned Size = LookupPtr.getInt(); // The lookup data is stored as an array. Search through the array // to find the insertion location. ScopedDecl **Array; if (Size == 0) { Array = new ScopedDecl*[LookupIsMap - 1]; LookupPtr.setPointer(Array); } else { Array = static_cast(LookupPtr.getPointer()); } // We always keep declarations of the same name next to each other // in the array, so that it is easy to return multiple results // from lookup(). unsigned FirstMatch; for (FirstMatch = 0; FirstMatch != Size; ++FirstMatch) if (Array[FirstMatch]->getDeclName() == D->getDeclName()) break; unsigned InsertPos = FirstMatch; if (FirstMatch != Size) { // We found another declaration with the same name. First // determine whether this is a redeclaration of an existing // declaration in this scope, in which case we will replace the // existing declaration. unsigned LastMatch = FirstMatch; for (; LastMatch != Size; ++LastMatch) { if (Array[LastMatch]->getDeclName() != D->getDeclName()) break; if (D->declarationReplaces(Array[LastMatch])) { // D is a redeclaration of an existing element in the // array. Replace that element with D. Array[LastMatch] = D; return; } } // [FirstMatch, LastMatch) contains the set of declarations that // have the same name as this declaration. Determine where the // declaration D will be inserted into this range. if (D->getIdentifierNamespace() == Decl::IDNS_Tag) InsertPos = LastMatch; else if (Array[LastMatch-1]->getIdentifierNamespace() == Decl::IDNS_Tag) InsertPos = LastMatch - 1; else InsertPos = LastMatch; } if (Size < LookupIsMap - 1) { // The new declaration will fit in the array. Insert the new // declaration at the position Match in the array. for (unsigned Idx = Size; Idx > InsertPos; --Idx) Array[Idx] = Array[Idx-1]; Array[InsertPos] = D; LookupPtr.setInt(Size + 1); return; } // We've reached capacity in this array. Create a map and copy in // all of the declarations that were stored in the array. StoredDeclsMap *Map = new StoredDeclsMap(16); LookupPtr.setPointer(Map); LookupPtr.setInt(LookupIsMap); for (unsigned Idx = 0; Idx != LookupIsMap - 1; ++Idx) insertImpl(Array[Idx]); delete [] Array; // Fall through to perform insertion into the map. MayBeRedeclaration = false; } // Insert this declaration into the map. StoredDeclsMap *Map = static_cast(LookupPtr.getPointer()); StoredDeclsMap::iterator Pos = Map->find(D->getDeclName()); if (Pos != Map->end()) { if (MayBeRedeclaration) { // Determine if this declaration is actually a redeclaration. std::vector::iterator Redecl = std::find_if(Pos->second.begin(), Pos->second.end(), std::bind1st(std::mem_fun(&ScopedDecl::declarationReplaces), D)); if (Redecl != Pos->second.end()) { *Redecl = D; return; } } // Put this declaration into the appropriate slot. if (D->getIdentifierNamespace() == Decl::IDNS_Tag || Pos->second.empty()) Pos->second.push_back(D); else if (Pos->second.back()->getIdentifierNamespace() == Decl::IDNS_Tag) { ScopedDecl *TagD = Pos->second.back(); Pos->second.back() = D; Pos->second.push_back(TagD); } else Pos->second.push_back(D); } else { (*Map)[D->getDeclName()].push_back(D); } }