//===--- Ownership.h - Parser Ownership Helpers -----------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains classes for managing ownership of Stmt and Expr nodes. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_PARSE_OWNERSHIP_H #define LLVM_CLANG_PARSE_OWNERSHIP_H #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/PointerIntPair.h" //===----------------------------------------------------------------------===// // OpaquePtr //===----------------------------------------------------------------------===// namespace clang { class ActionBase; /// OpaquePtr - This is a very simple POD type that wraps a pointer that the /// Parser doesn't know about but that Sema or another client does. The UID /// template argument is used to make sure that "Decl" pointers are not /// compatible with "Type" pointers for example. template class OpaquePtr { void *Ptr; public: OpaquePtr() : Ptr(0) {} template T* getAs() const { return llvm::PointerLikeTypeTraits::getFromVoidPointer(Ptr); } template T getAsVal() const { return llvm::PointerLikeTypeTraits::getFromVoidPointer(Ptr); } void *get() const { return Ptr; } template static OpaquePtr make(T P) { OpaquePtr R; R.set(P); return R; } template void set(T P) { Ptr = llvm::PointerLikeTypeTraits::getAsVoidPointer(P); } operator bool() const { return Ptr != 0; } }; } namespace llvm { template class PointerLikeTypeTraits > { public: static inline void *getAsVoidPointer(clang::OpaquePtr P) { // FIXME: Doesn't work? return P.getAs< void >(); return P.get(); } static inline clang::OpaquePtr getFromVoidPointer(void *P) { return clang::OpaquePtr::make(P); } enum { NumLowBitsAvailable = 3 }; }; } // -------------------------- About Move Emulation -------------------------- // // The smart pointer classes in this file attempt to emulate move semantics // as they appear in C++0x with rvalue references. Since C++03 doesn't have // rvalue references, some tricks are needed to get similar results. // Move semantics in C++0x have the following properties: // 1) "Moving" means transferring the value of an object to another object, // similar to copying, but without caring what happens to the old object. // In particular, this means that the new object can steal the old object's // resources instead of creating a copy. // 2) Since moving can modify the source object, it must either be explicitly // requested by the user, or the modifications must be unnoticeable. // 3) As such, C++0x moving is only allowed in three contexts: // * By explicitly using std::move() to request it. // * From a temporary object, since that object cannot be accessed // afterwards anyway, thus making the state unobservable. // * On function return, since the object is not observable afterwards. // // To sum up: moving from a named object should only be possible with an // explicit std::move(), or on function return. Moving from a temporary should // be implicitly done. Moving from a const object is forbidden. // // The emulation is not perfect, and has the following shortcomings: // * move() is not in namespace std. // * move() is required on function return. // * There are difficulties with implicit conversions. // * Microsoft's compiler must be given the /Za switch to successfully compile. // // -------------------------- Implementation -------------------------------- // // The move emulation relies on the peculiar reference binding semantics of // C++03: as a rule, a non-const reference may not bind to a temporary object, // except for the implicit object parameter in a member function call, which // can refer to a temporary even when not being const. // The moveable object has five important functions to facilitate moving: // * A private, unimplemented constructor taking a non-const reference to its // own class. This constructor serves a two-fold purpose. // - It prevents the creation of a copy constructor that takes a const // reference. Temporaries would be able to bind to the argument of such a // constructor, and that would be bad. // - Named objects will bind to the non-const reference, but since it's // private, this will fail to compile. This prevents implicit moving from // named objects. // There's also a copy assignment operator for the same purpose. // * An implicit, non-const conversion operator to a special mover type. This // type represents the rvalue reference of C++0x. Being a non-const member, // its implicit this parameter can bind to temporaries. // * A constructor that takes an object of this mover type. This constructor // performs the actual move operation. There is an equivalent assignment // operator. // There is also a free move() function that takes a non-const reference to // an object and returns a temporary. Internally, this function uses explicit // constructor calls to move the value from the referenced object to the return // value. // // There are now three possible scenarios of use. // * Copying from a const object. Constructor overload resolution will find the // non-const copy constructor, and the move constructor. The first is not // viable because the const object cannot be bound to the non-const reference. // The second fails because the conversion to the mover object is non-const. // Moving from a const object fails as intended. // * Copying from a named object. Constructor overload resolution will select // the non-const copy constructor, but fail as intended, because this // constructor is private. // * Copying from a temporary. Constructor overload resolution cannot select // the non-const copy constructor, because the temporary cannot be bound to // the non-const reference. It thus selects the move constructor. The // temporary can be bound to the implicit this parameter of the conversion // operator, because of the special binding rule. Construction succeeds. // Note that the Microsoft compiler, as an extension, allows binding // temporaries against non-const references. The compiler thus selects the // non-const copy constructor and fails, because the constructor is private. // Passing /Za (disable extensions) disables this behaviour. // The free move() function is used to move from a named object. // // Note that when passing an object of a different type (the classes below // have OwningResult and OwningPtr, which should be mixable), you get a problem. // Argument passing and function return use copy initialization rules. The // effect of this is that, when the source object is not already of the target // type, the compiler will first seek a way to convert the source object to the // target type, and only then attempt to copy the resulting object. This means // that when passing an OwningResult where an OwningPtr is expected, the // compiler will first seek a conversion from OwningResult to OwningPtr, then // copy the OwningPtr. The resulting conversion sequence is: // OwningResult object -> ResultMover -> OwningResult argument to // OwningPtr(OwningResult) -> OwningPtr -> PtrMover -> final OwningPtr // This conversion sequence is too complex to be allowed. Thus the special // move_* functions, which help the compiler out with some explicit // conversions. // Flip this switch to measure performance impact of the smart pointers. //#define DISABLE_SMART_POINTERS namespace llvm { template<> class PointerLikeTypeTraits { typedef clang::ActionBase* PT; public: static inline void *getAsVoidPointer(PT P) { return P; } static inline PT getFromVoidPointer(void *P) { return static_cast(P); } enum { NumLowBitsAvailable = 2 }; }; } namespace clang { // Basic class DiagnosticBuilder; // Determines whether the low bit of the result pointer for the // given UID is always zero. If so, ActionResult will use that bit // for it's "invalid" flag. template struct IsResultPtrLowBitFree { static const bool value = false; }; /// ActionBase - A small part split from Action because of the horrible /// definition order dependencies between Action and the smart pointers. class ActionBase { public: /// Out-of-line virtual destructor to provide home for this class. virtual ~ActionBase(); // Types - Though these don't actually enforce strong typing, they document // what types are required to be identical for the actions. typedef OpaquePtr<0> DeclPtrTy; typedef OpaquePtr<1> DeclGroupPtrTy; typedef OpaquePtr<2> TemplateTy; typedef void AttrTy; typedef void BaseTy; typedef void MemInitTy; typedef void ExprTy; typedef void StmtTy; typedef void TemplateParamsTy; typedef void CXXScopeTy; typedef void TypeTy; // FIXME: Change TypeTy to use OpaquePtr. /// ActionResult - This structure is used while parsing/acting on /// expressions, stmts, etc. It encapsulates both the object returned by /// the action, plus a sense of whether or not it is valid. /// When CompressInvalid is true, the "invalid" flag will be /// stored in the low bit of the Val pointer. template::value> class ActionResult { PtrTy Val; bool Invalid; public: ActionResult(bool Invalid = false) : Val(PtrTy()), Invalid(Invalid) {} template ActionResult(ActualExprTy val) : Val(val), Invalid(false) {} ActionResult(const DiagnosticBuilder &) : Val(PtrTy()), Invalid(true) {} PtrTy get() const { return Val; } void set(PtrTy V) { Val = V; } bool isInvalid() const { return Invalid; } const ActionResult &operator=(PtrTy RHS) { Val = RHS; Invalid = false; return *this; } }; // This ActionResult partial specialization places the "invalid" // flag into the low bit of the pointer. template class ActionResult { // A pointer whose low bit is 1 if this result is invalid, 0 // otherwise. uintptr_t PtrWithInvalid; typedef llvm::PointerLikeTypeTraits PtrTraits; public: ActionResult(bool Invalid = false) : PtrWithInvalid(static_cast(Invalid)) { } template ActionResult(ActualExprTy *val) { PtrTy V(val); void *VP = PtrTraits::getAsVoidPointer(V); PtrWithInvalid = reinterpret_cast(VP); assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer"); } ActionResult(PtrTy V) { void *VP = PtrTraits::getAsVoidPointer(V); PtrWithInvalid = reinterpret_cast(VP); assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer"); } ActionResult(const DiagnosticBuilder &) : PtrWithInvalid(0x01) { } PtrTy get() const { void *VP = reinterpret_cast(PtrWithInvalid & ~0x01); return PtrTraits::getFromVoidPointer(VP); } void set(PtrTy V) { void *VP = PtrTraits::getAsVoidPointer(V); PtrWithInvalid = reinterpret_cast(VP); assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer"); } bool isInvalid() const { return PtrWithInvalid & 0x01; } const ActionResult &operator=(PtrTy RHS) { void *VP = PtrTraits::getAsVoidPointer(RHS); PtrWithInvalid = reinterpret_cast(VP); assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer"); return *this; } }; /// Deletion callbacks - Since the parser doesn't know the concrete types of /// the AST nodes being generated, it must do callbacks to delete objects /// when recovering from errors. These are in ActionBase because the smart /// pointers need access to them. virtual void DeleteExpr(ExprTy *E) {} virtual void DeleteStmt(StmtTy *S) {} virtual void DeleteTemplateParams(TemplateParamsTy *P) {} }; /// ASTDestroyer - The type of an AST node destruction function pointer. typedef void (ActionBase::*ASTDestroyer)(void *); /// For the transition phase: translate from an ASTDestroyer to its /// ActionResult UID. template struct DestroyerToUID; template <> struct DestroyerToUID<&ActionBase::DeleteExpr> { static const unsigned UID = 0; }; template <> struct DestroyerToUID<&ActionBase::DeleteStmt> { static const unsigned UID = 1; }; /// ASTOwningResult - A moveable smart pointer for AST nodes that also /// has an extra flag to indicate an additional success status. template class ASTOwningResult; /// ASTMultiPtr - A moveable smart pointer to multiple AST nodes. Only owns /// the individual pointers, not the array holding them. template class ASTMultiPtr; #if !defined(DISABLE_SMART_POINTERS) namespace moving { /// Move emulation helper for ASTOwningResult. NEVER EVER use this class /// directly if you don't know what you're doing. template class ASTResultMover { ASTOwningResult &Moved; public: ASTResultMover(ASTOwningResult &moved) : Moved(moved) {} ASTOwningResult * operator ->() { return &Moved; } }; /// Move emulation helper for ASTMultiPtr. NEVER EVER use this class /// directly if you don't know what you're doing. template class ASTMultiMover { ASTMultiPtr &Moved; public: ASTMultiMover(ASTMultiPtr &moved) : Moved(moved) {} ASTMultiPtr * operator ->() { return &Moved; } /// Reset the moved object's internal structures. void release(); }; } #else /// Kept only as a type-safe wrapper for a void pointer, when smart pointers /// are disabled. When they are enabled, ASTOwningResult takes over. template class ASTOwningPtr { void *Node; public: explicit ASTOwningPtr(ActionBase &) : Node(0) {} ASTOwningPtr(ActionBase &, void *node) : Node(node) {} // Normal copying operators are defined implicitly. ASTOwningPtr(const ASTOwningResult &o); ASTOwningPtr & operator =(void *raw) { Node = raw; return *this; } /// Access to the raw pointer. void * get() const { return Node; } /// Release the raw pointer. void * take() { return Node; } /// Take outside ownership of the raw pointer and cast it down. template T *takeAs() { return static_cast(Node); } /// Alias for interface familiarity with unique_ptr. void * release() { return take(); } }; #endif // Important: There are two different implementations of // ASTOwningResult below, depending on whether // DISABLE_SMART_POINTERS is defined. If you make changes that // affect the interface, be sure to compile and test both ways! #if !defined(DISABLE_SMART_POINTERS) template class ASTOwningResult { llvm::PointerIntPair ActionInv; void *Ptr; friend class moving::ASTResultMover; ASTOwningResult(ASTOwningResult&); // DO NOT IMPLEMENT ASTOwningResult& operator =(ASTOwningResult&); // DO NOT IMPLEMENT void destroy() { if (Ptr) { assert(ActionInv.getPointer() && "Smart pointer has node but no action."); (ActionInv.getPointer()->*Destroyer)(Ptr); Ptr = 0; } } public: typedef ActionBase::ActionResult::UID> DumbResult; explicit ASTOwningResult(ActionBase &actions, bool invalid = false) : ActionInv(&actions, invalid), Ptr(0) {} ASTOwningResult(ActionBase &actions, void *node) : ActionInv(&actions, false), Ptr(node) {} ASTOwningResult(ActionBase &actions, const DumbResult &res) : ActionInv(&actions, res.isInvalid()), Ptr(res.get()) {} /// Move from another owning result ASTOwningResult(moving::ASTResultMover mover) : ActionInv(mover->ActionInv), Ptr(mover->Ptr) { mover->Ptr = 0; } ~ASTOwningResult() { destroy(); } /// Move assignment from another owning result ASTOwningResult &operator=(moving::ASTResultMover mover) { destroy(); ActionInv = mover->ActionInv; Ptr = mover->Ptr; mover->Ptr = 0; return *this; } /// Assignment from a raw pointer. Takes ownership - beware! ASTOwningResult &operator=(void *raw) { destroy(); Ptr = raw; ActionInv.setInt(false); return *this; } /// Assignment from an ActionResult. Takes ownership - beware! ASTOwningResult &operator=(const DumbResult &res) { destroy(); Ptr = res.get(); ActionInv.setInt(res.isInvalid()); return *this; } /// Access to the raw pointer. void *get() const { return Ptr; } bool isInvalid() const { return ActionInv.getInt(); } /// Does this point to a usable AST node? To be usable, the node must be /// valid and non-null. bool isUsable() const { return !isInvalid() && get(); } /// Take outside ownership of the raw pointer. void *take() { if (isInvalid()) return 0; void *tmp = Ptr; Ptr = 0; return tmp; } /// Take outside ownership of the raw pointer and cast it down. template T *takeAs() { return static_cast(take()); } /// Alias for interface familiarity with unique_ptr. void *release() { return take(); } /// Pass ownership to a classical ActionResult. DumbResult result() { if (isInvalid()) return true; return take(); } /// Move hook operator moving::ASTResultMover() { return moving::ASTResultMover(*this); } }; #else template class ASTOwningResult { public: typedef ActionBase::ActionResult::UID> DumbResult; private: DumbResult Result; public: explicit ASTOwningResult(ActionBase &actions, bool invalid = false) : Result(invalid) { } ASTOwningResult(ActionBase &actions, void *node) : Result(node) { } ASTOwningResult(ActionBase &actions, const DumbResult &res) : Result(res) { } // Normal copying semantics are defined implicitly. ASTOwningResult(const ASTOwningPtr &o) : Result(o.get()) { } /// Assignment from a raw pointer. Takes ownership - beware! ASTOwningResult & operator =(void *raw) { Result = raw; return *this; } /// Assignment from an ActionResult. Takes ownership - beware! ASTOwningResult & operator =(const DumbResult &res) { Result = res; return *this; } /// Access to the raw pointer. void * get() const { return Result.get(); } bool isInvalid() const { return Result.isInvalid(); } /// Does this point to a usable AST node? To be usable, the node must be /// valid and non-null. bool isUsable() const { return !Result.isInvalid() && get(); } /// Take outside ownership of the raw pointer. void * take() { return Result.get(); } /// Take outside ownership of the raw pointer and cast it down. template T *takeAs() { return static_cast(take()); } /// Alias for interface familiarity with unique_ptr. void * release() { return take(); } /// Pass ownership to a classical ActionResult. DumbResult result() { return Result; } }; #endif template class ASTMultiPtr { #if !defined(DISABLE_SMART_POINTERS) ActionBase &Actions; #endif void **Nodes; unsigned Count; #if !defined(DISABLE_SMART_POINTERS) friend class moving::ASTMultiMover; #if defined(_MSC_VER) // Last tested with Visual Studio 2008. // Visual C++ appears to have a bug where it does not recognise // the return value from ASTMultiMover::opeator-> as // being a pointer to ASTMultiPtr. However, the diagnostics // suggest it has the right name, simply that the pointer type // is not convertible to itself. // Either way, a classic C-style hard cast resolves any issue. static ASTMultiPtr* hack(moving::ASTMultiMover & source) { return (ASTMultiPtr*)source.operator->(); } #endif ASTMultiPtr(ASTMultiPtr&); // DO NOT IMPLEMENT // Reference member prevents copy assignment. void destroy() { assert((Count == 0 || Nodes) && "No nodes when count is not zero."); for (unsigned i = 0; i < Count; ++i) { if (Nodes[i]) (Actions.*Destroyer)(Nodes[i]); } } #endif public: #if !defined(DISABLE_SMART_POINTERS) explicit ASTMultiPtr(ActionBase &actions) : Actions(actions), Nodes(0), Count(0) {} ASTMultiPtr(ActionBase &actions, void **nodes, unsigned count) : Actions(actions), Nodes(nodes), Count(count) {} /// Move constructor ASTMultiPtr(moving::ASTMultiMover mover) #if defined(_MSC_VER) // Apply the visual C++ hack supplied above. // Last tested with Visual Studio 2008. : Actions(hack(mover)->Actions), Nodes(hack(mover)->Nodes), Count(hack(mover)->Count) { #else : Actions(mover->Actions), Nodes(mover->Nodes), Count(mover->Count) { #endif mover.release(); } #else // Normal copying implicitly defined explicit ASTMultiPtr(ActionBase &) : Nodes(0), Count(0) {} ASTMultiPtr(ActionBase &, void **nodes, unsigned count) : Nodes(nodes), Count(count) {} // Fake mover in Parse/AstGuard.h needs this: ASTMultiPtr(void **nodes, unsigned count) : Nodes(nodes), Count(count) {} #endif #if !defined(DISABLE_SMART_POINTERS) /// Move assignment ASTMultiPtr & operator =(moving::ASTMultiMover mover) { destroy(); Nodes = mover->Nodes; Count = mover->Count; mover.release(); return *this; } #endif /// Access to the raw pointers. void ** get() const { return Nodes; } /// Access to the count. unsigned size() const { return Count; } void ** release() { #if !defined(DISABLE_SMART_POINTERS) void **tmp = Nodes; Nodes = 0; Count = 0; return tmp; #else return Nodes; #endif } #if !defined(DISABLE_SMART_POINTERS) /// Move hook operator moving::ASTMultiMover() { return moving::ASTMultiMover(*this); } #endif }; class ASTTemplateArgsPtr { #if !defined(DISABLE_SMART_POINTERS) ActionBase &Actions; #endif void **Args; bool *ArgIsType; mutable unsigned Count; #if !defined(DISABLE_SMART_POINTERS) void destroy() { if (!Count) return; for (unsigned i = 0; i != Count; ++i) if (Args[i] && !ArgIsType[i]) Actions.DeleteExpr((ActionBase::ExprTy *)Args[i]); Count = 0; } #endif public: ASTTemplateArgsPtr(ActionBase &actions, void **args, bool *argIsType, unsigned count) : #if !defined(DISABLE_SMART_POINTERS) Actions(actions), #endif Args(args), ArgIsType(argIsType), Count(count) { } // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'. ASTTemplateArgsPtr(ASTTemplateArgsPtr &Other) : #if !defined(DISABLE_SMART_POINTERS) Actions(Other.Actions), #endif Args(Other.Args), ArgIsType(Other.ArgIsType), Count(Other.Count) { #if !defined(DISABLE_SMART_POINTERS) Other.Count = 0; #endif } // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'. ASTTemplateArgsPtr& operator=(ASTTemplateArgsPtr &Other) { #if !defined(DISABLE_SMART_POINTERS) Actions = Other.Actions; #endif Args = Other.Args; ArgIsType = Other.ArgIsType; Count = Other.Count; #if !defined(DISABLE_SMART_POINTERS) Other.Count = 0; #endif return *this; } #if !defined(DISABLE_SMART_POINTERS) ~ASTTemplateArgsPtr() { destroy(); } #endif void **getArgs() const { return Args; } bool *getArgIsType() const {return ArgIsType; } unsigned size() const { return Count; } void reset(void **args, bool *argIsType, unsigned count) { #if !defined(DISABLE_SMART_POINTERS) destroy(); #endif Args = args; ArgIsType = argIsType; Count = count; } void *operator[](unsigned Arg) const { return Args[Arg]; } void **release() const { #if !defined(DISABLE_SMART_POINTERS) Count = 0; #endif return Args; } }; /// \brief A small vector that owns a set of AST nodes. template class ASTOwningVector : public llvm::SmallVector { #if !defined(DISABLE_SMART_POINTERS) ActionBase &Actions; bool Owned; #endif ASTOwningVector(ASTOwningVector &); // do not implement ASTOwningVector &operator=(ASTOwningVector &); // do not implement public: explicit ASTOwningVector(ActionBase &Actions) #if !defined(DISABLE_SMART_POINTERS) : Actions(Actions), Owned(true) #endif { } #if !defined(DISABLE_SMART_POINTERS) ~ASTOwningVector() { if (!Owned) return; for (unsigned I = 0, Last = this->size(); I != Last; ++I) (Actions.*Destroyer)((*this)[I]); } #endif void **take() { #if !defined(DISABLE_SMART_POINTERS) Owned = false; #endif return &this->front(); } template T **takeAs() { return (T**)take(); } #if !defined(DISABLE_SMART_POINTERS) ActionBase &getActions() const { return Actions; } #endif }; /// A SmallVector of statements, with stack size 32 (as that is the only one /// used.) typedef ASTOwningVector<&ActionBase::DeleteStmt, 32> StmtVector; /// A SmallVector of expressions, with stack size 12 (the maximum used.) typedef ASTOwningVector<&ActionBase::DeleteExpr, 12> ExprVector; template inline ASTMultiPtr move_arg(ASTOwningVector &vec) { #if !defined(DISABLE_SMART_POINTERS) return ASTMultiPtr(vec.getActions(), vec.take(), vec.size()); #else return ASTMultiPtr(vec.take(), vec.size()); #endif } #if !defined(DISABLE_SMART_POINTERS) // Out-of-line implementations due to definition dependencies template inline void moving::ASTMultiMover::release() { Moved.Nodes = 0; Moved.Count = 0; } // Move overloads. template inline ASTOwningResult move(ASTOwningResult &ptr) { return ASTOwningResult(moving::ASTResultMover(ptr)); } template inline ASTMultiPtr move(ASTMultiPtr &ptr) { return ASTMultiPtr(moving::ASTMultiMover(ptr)); } #else template inline ASTOwningPtr::ASTOwningPtr(const ASTOwningResult &o) : Node(o.get()) {} // These versions are hopefully no-ops. template inline ASTOwningResult& move(ASTOwningResult &ptr) { return ptr; } template inline ASTOwningPtr& move(ASTOwningPtr &ptr) { return ptr; } template inline ASTMultiPtr& move(ASTMultiPtr &ptr) { return ptr; } #endif } #endif