//===-- GRExprEngine.h - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a meta-engine for path-sensitive dataflow analysis that // is built on GREngine, but provides the boilerplate to execute transfer // functions and build the ExplodedGraph at the expression level. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_ANALYSIS_GREXPRENGINE #define LLVM_CLANG_ANALYSIS_GREXPRENGINE #include "clang/Analysis/PathSensitive/GRCoreEngine.h" #include "clang/Analysis/PathSensitive/GRState.h" #include "clang/Analysis/PathSensitive/GRSimpleAPICheck.h" #include "clang/Analysis/PathSensitive/GRTransferFuncs.h" #include "clang/AST/Type.h" #include "clang/AST/ExprObjC.h" namespace clang { class BugType; class PathDiagnosticClient; class Diagnostic; class BugReporterData; class GRExprEngine { public: typedef GRState StateTy; typedef ExplodedGraph GraphTy; typedef GraphTy::NodeTy NodeTy; // Builders. typedef GRStmtNodeBuilder StmtNodeBuilder; typedef GRBranchNodeBuilder BranchNodeBuilder; typedef GRIndirectGotoNodeBuilder IndirectGotoNodeBuilder; typedef GRSwitchNodeBuilder SwitchNodeBuilder; typedef GREndPathNodeBuilder EndPathNodeBuilder; typedef ExplodedNodeSet NodeSet; protected: GRCoreEngine CoreEngine; /// G - the simulation graph. GraphTy& G; /// Liveness - live-variables information the ValueDecl* and block-level /// Expr* in the CFG. Used to prune out dead state. LiveVariables& Liveness; /// DeadSymbols - A scratch set used to record the set of symbols that /// were just marked dead by a call to GRStateManager::RemoveDeadBindings. GRStateManager::DeadSymbolsTy DeadSymbols; /// Builder - The current GRStmtNodeBuilder which is used when building the /// nodes for a given statement. StmtNodeBuilder* Builder; /// StateMgr - Object that manages the data for all created states. GRStateManager StateMgr; /// BugTypes - Objects used for reporting bugs. typedef std::vector BugTypeSet; BugTypeSet BugTypes; /// SymMgr - Object that manages the symbol information. SymbolManager& SymMgr; /// EntryNode - The immediate predecessor node. NodeTy* EntryNode; /// CleanedState - The state for EntryNode "cleaned" of all dead /// variables and symbols (as determined by a liveness analysis). const GRState* CleanedState; /// CurrentStmt - The current block-level statement. Stmt* CurrentStmt; // Obj-C Class Identifiers. IdentifierInfo* NSExceptionII; // Obj-C Selectors. Selector* NSExceptionInstanceRaiseSelectors; Selector RaiseSel; llvm::OwningPtr BatchAuditor; public: typedef llvm::SmallPtrSet ErrorNodes; typedef llvm::DenseMap UndefArgsTy; /// RetsStackAddr - Nodes in the ExplodedGraph that result from returning /// the address of a stack variable. ErrorNodes RetsStackAddr; /// RetsUndef - Nodes in the ExplodedGraph that result from returning /// an undefined value. ErrorNodes RetsUndef; /// UndefBranches - Nodes in the ExplodedGraph that result from /// taking a branch based on an undefined value. ErrorNodes UndefBranches; /// UndefStores - Sinks in the ExplodedGraph that result from /// making a store to an undefined lvalue. ErrorNodes UndefStores; /// NoReturnCalls - Sinks in the ExplodedGraph that result from // calling a function with the attribute "noreturn". ErrorNodes NoReturnCalls; /// ImplicitNullDeref - Nodes in the ExplodedGraph that result from /// taking a dereference on a symbolic pointer that MAY be NULL. ErrorNodes ImplicitNullDeref; /// ExplicitNullDeref - Nodes in the ExplodedGraph that result from /// taking a dereference on a symbolic pointer that MUST be NULL. ErrorNodes ExplicitNullDeref; /// UnitDeref - Nodes in the ExplodedGraph that result from /// taking a dereference on an undefined value. ErrorNodes UndefDeref; /// ImplicitBadDivides - Nodes in the ExplodedGraph that result from /// evaluating a divide or modulo operation where the denominator /// MAY be zero. ErrorNodes ImplicitBadDivides; /// ExplicitBadDivides - Nodes in the ExplodedGraph that result from /// evaluating a divide or modulo operation where the denominator /// MUST be zero or undefined. ErrorNodes ExplicitBadDivides; /// ImplicitBadSizedVLA - Nodes in the ExplodedGraph that result from /// constructing a zero-sized VLA where the size may be zero. ErrorNodes ImplicitBadSizedVLA; /// ExplicitBadSizedVLA - Nodes in the ExplodedGraph that result from /// constructing a zero-sized VLA where the size must be zero. ErrorNodes ExplicitBadSizedVLA; /// UndefResults - Nodes in the ExplodedGraph where the operands are defined /// by the result is not. Excludes divide-by-zero errors. ErrorNodes UndefResults; /// BadCalls - Nodes in the ExplodedGraph resulting from calls to function /// pointers that are NULL (or other constants) or Undefined. ErrorNodes BadCalls; /// UndefReceiver - Nodes in the ExplodedGraph resulting from message /// ObjC message expressions where the receiver is undefined (uninitialized). ErrorNodes UndefReceivers; /// UndefArg - Nodes in the ExplodedGraph resulting from calls to functions /// where a pass-by-value argument has an undefined value. UndefArgsTy UndefArgs; /// MsgExprUndefArgs - Nodes in the ExplodedGraph resulting from /// message expressions where a pass-by-value argument has an undefined /// value. UndefArgsTy MsgExprUndefArgs; /// OutOfBoundMemAccesses - Nodes in the ExplodedGraph resulting from /// out-of-bound memory accesses where the index MAY be out-of-bound. ErrorNodes ImplicitOOBMemAccesses; /// OutOfBoundMemAccesses - Nodes in the ExplodedGraph resulting from /// out-of-bound memory accesses where the index MUST be out-of-bound. ErrorNodes ExplicitOOBMemAccesses; public: GRExprEngine(CFG& cfg, Decl& CD, ASTContext& Ctx, LiveVariables& L, StoreManagerCreator SMC = CreateBasicStoreManager, ConstraintManagerCreator CMC = CreateBasicConstraintManager); ~GRExprEngine(); void ExecuteWorkList(unsigned Steps = 150000) { CoreEngine.ExecuteWorkList(Steps); } /// getContext - Return the ASTContext associated with this analysis. ASTContext& getContext() const { return G.getContext(); } /// getCFG - Returns the CFG associated with this analysis. CFG& getCFG() { return G.getCFG(); } GRTransferFuncs& getTF() { return *StateMgr.TF; } /// setTransferFunctions void setTransferFunctions(GRTransferFuncs* tf); void setTransferFunctions(GRTransferFuncs& tf) { setTransferFunctions(&tf); } /// ViewGraph - Visualize the ExplodedGraph created by executing the /// simulation. void ViewGraph(bool trim = false); void ViewGraph(NodeTy** Beg, NodeTy** End); /// getLiveness - Returned computed live-variables information for the /// analyzed function. const LiveVariables& getLiveness() const { return Liveness; } LiveVariables& getLiveness() { return Liveness; } /// getInitialState - Return the initial state used for the root vertex /// in the ExplodedGraph. const GRState* getInitialState(); GraphTy& getGraph() { return G; } const GraphTy& getGraph() const { return G; } typedef BugTypeSet::iterator bug_type_iterator; typedef BugTypeSet::const_iterator const_bug_type_iterator; bug_type_iterator bug_types_begin() { return BugTypes.begin(); } bug_type_iterator bug_types_end() { return BugTypes.end(); } const_bug_type_iterator bug_types_begin() const { return BugTypes.begin(); } const_bug_type_iterator bug_types_end() const { return BugTypes.end(); } /// Register - Register a BugType with the analyzer engine. A registered /// BugType object will have its 'EmitWarnings' method called when the /// the analyzer finishes analyzing a method or function. void Register(BugType* B) { BugTypes.push_back(B); } void RegisterInternalChecks(); void EmitWarnings(BugReporterData& BRData); bool isRetStackAddr(const NodeTy* N) const { return N->isSink() && RetsStackAddr.count(const_cast(N)) != 0; } bool isUndefControlFlow(const NodeTy* N) const { return N->isSink() && UndefBranches.count(const_cast(N)) != 0; } bool isUndefStore(const NodeTy* N) const { return N->isSink() && UndefStores.count(const_cast(N)) != 0; } bool isImplicitNullDeref(const NodeTy* N) const { return N->isSink() && ImplicitNullDeref.count(const_cast(N)) != 0; } bool isExplicitNullDeref(const NodeTy* N) const { return N->isSink() && ExplicitNullDeref.count(const_cast(N)) != 0; } bool isUndefDeref(const NodeTy* N) const { return N->isSink() && UndefDeref.count(const_cast(N)) != 0; } bool isImplicitBadDivide(const NodeTy* N) const { return N->isSink() && ImplicitBadDivides.count(const_cast(N)) != 0; } bool isExplicitBadDivide(const NodeTy* N) const { return N->isSink() && ExplicitBadDivides.count(const_cast(N)) != 0; } bool isNoReturnCall(const NodeTy* N) const { return N->isSink() && NoReturnCalls.count(const_cast(N)) != 0; } bool isUndefResult(const NodeTy* N) const { return N->isSink() && UndefResults.count(const_cast(N)) != 0; } bool isBadCall(const NodeTy* N) const { return N->isSink() && BadCalls.count(const_cast(N)) != 0; } bool isUndefArg(const NodeTy* N) const { return N->isSink() && (UndefArgs.find(const_cast(N)) != UndefArgs.end() || MsgExprUndefArgs.find(const_cast(N)) != MsgExprUndefArgs.end()); } bool isUndefReceiver(const NodeTy* N) const { return N->isSink() && UndefReceivers.count(const_cast(N)) != 0; } typedef ErrorNodes::iterator ret_stackaddr_iterator; ret_stackaddr_iterator ret_stackaddr_begin() { return RetsStackAddr.begin(); } ret_stackaddr_iterator ret_stackaddr_end() { return RetsStackAddr.end(); } typedef ErrorNodes::iterator ret_undef_iterator; ret_undef_iterator ret_undef_begin() { return RetsUndef.begin(); } ret_undef_iterator ret_undef_end() { return RetsUndef.end(); } typedef ErrorNodes::iterator undef_branch_iterator; undef_branch_iterator undef_branches_begin() { return UndefBranches.begin(); } undef_branch_iterator undef_branches_end() { return UndefBranches.end(); } typedef ErrorNodes::iterator null_deref_iterator; null_deref_iterator null_derefs_begin() { return ExplicitNullDeref.begin(); } null_deref_iterator null_derefs_end() { return ExplicitNullDeref.end(); } null_deref_iterator implicit_null_derefs_begin() { return ImplicitNullDeref.begin(); } null_deref_iterator implicit_null_derefs_end() { return ImplicitNullDeref.end(); } typedef ErrorNodes::iterator undef_deref_iterator; undef_deref_iterator undef_derefs_begin() { return UndefDeref.begin(); } undef_deref_iterator undef_derefs_end() { return UndefDeref.end(); } typedef ErrorNodes::iterator bad_divide_iterator; bad_divide_iterator explicit_bad_divides_begin() { return ExplicitBadDivides.begin(); } bad_divide_iterator explicit_bad_divides_end() { return ExplicitBadDivides.end(); } bad_divide_iterator implicit_bad_divides_begin() { return ImplicitBadDivides.begin(); } bad_divide_iterator implicit_bad_divides_end() { return ImplicitBadDivides.end(); } typedef ErrorNodes::iterator undef_result_iterator; undef_result_iterator undef_results_begin() { return UndefResults.begin(); } undef_result_iterator undef_results_end() { return UndefResults.end(); } typedef ErrorNodes::iterator bad_calls_iterator; bad_calls_iterator bad_calls_begin() { return BadCalls.begin(); } bad_calls_iterator bad_calls_end() { return BadCalls.end(); } typedef UndefArgsTy::iterator undef_arg_iterator; undef_arg_iterator undef_arg_begin() { return UndefArgs.begin(); } undef_arg_iterator undef_arg_end() { return UndefArgs.end(); } undef_arg_iterator msg_expr_undef_arg_begin() { return MsgExprUndefArgs.begin(); } undef_arg_iterator msg_expr_undef_arg_end() { return MsgExprUndefArgs.end(); } typedef ErrorNodes::iterator undef_receivers_iterator; undef_receivers_iterator undef_receivers_begin() { return UndefReceivers.begin(); } undef_receivers_iterator undef_receivers_end() { return UndefReceivers.end(); } typedef ErrorNodes::iterator oob_memacc_iterator; oob_memacc_iterator implicit_oob_memacc_begin() { return ImplicitOOBMemAccesses.begin(); } oob_memacc_iterator implicit_oob_memacc_end() { return ImplicitOOBMemAccesses.end(); } oob_memacc_iterator explicit_oob_memacc_begin() { return ExplicitOOBMemAccesses.begin(); } oob_memacc_iterator explicit_oob_memacc_end() { return ExplicitOOBMemAccesses.end(); } void AddCheck(GRSimpleAPICheck* A, Stmt::StmtClass C); /// ProcessStmt - Called by GRCoreEngine. Used to generate new successor /// nodes by processing the 'effects' of a block-level statement. void ProcessStmt(Stmt* S, StmtNodeBuilder& builder); /// ProcessBlockEntrance - Called by GRCoreEngine when start processing /// a CFGBlock. This method returns true if the analysis should continue /// exploring the given path, and false otherwise. bool ProcessBlockEntrance(CFGBlock* B, const GRState* St, GRBlockCounter BC); /// ProcessBranch - Called by GRCoreEngine. Used to generate successor /// nodes by processing the 'effects' of a branch condition. void ProcessBranch(Stmt* Condition, Stmt* Term, BranchNodeBuilder& builder); /// ProcessIndirectGoto - Called by GRCoreEngine. Used to generate successor /// nodes by processing the 'effects' of a computed goto jump. void ProcessIndirectGoto(IndirectGotoNodeBuilder& builder); /// ProcessSwitch - Called by GRCoreEngine. Used to generate successor /// nodes by processing the 'effects' of a switch statement. void ProcessSwitch(SwitchNodeBuilder& builder); /// ProcessEndPath - Called by GRCoreEngine. Used to generate end-of-path /// nodes when the control reaches the end of a function. void ProcessEndPath(EndPathNodeBuilder& builder) { getTF().EvalEndPath(*this, builder); StateMgr.EndPath(builder.getState()); } GRStateManager& getStateManager() { return StateMgr; } const GRStateManager& getStateManger() const { return StateMgr; } StoreManager& getStoreManager() { return StateMgr.getStoreManager(); } BasicValueFactory& getBasicVals() { return StateMgr.getBasicVals(); } const BasicValueFactory& getBasicVals() const { return StateMgr.getBasicVals(); } SymbolManager& getSymbolManager() { return SymMgr; } const SymbolManager& getSymbolManager() const { return SymMgr; } protected: const GRState* GetState(NodeTy* N) { return N == EntryNode ? CleanedState : N->getState(); } public: const GRState* BindExpr(const GRState* St, Expr* Ex, SVal V) { return StateMgr.BindExpr(St, Ex, V); } const GRState* BindExpr(const GRState* St, const Expr* Ex, SVal V) { return BindExpr(St, const_cast(Ex), V); } protected: const GRState* BindBlkExpr(const GRState* St, Expr* Ex, SVal V) { return StateMgr.BindExpr(St, Ex, V, true, false); } const GRState* BindLoc(const GRState* St, Loc LV, SVal V) { return StateMgr.BindLoc(St, LV, V); } SVal GetSVal(const GRState* St, Stmt* Ex) { return StateMgr.GetSVal(St, Ex); } SVal GetSVal(const GRState* St, const Stmt* Ex) { return GetSVal(St, const_cast(Ex)); } SVal GetBlkExprSVal(const GRState* St, Stmt* Ex) { return StateMgr.GetBlkExprSVal(St, Ex); } SVal GetSVal(const GRState* St, Loc LV, QualType T = QualType()) { return StateMgr.GetSVal(St, LV, T); } inline NonLoc MakeConstantVal(uint64_t X, Expr* Ex) { return NonLoc::MakeVal(getBasicVals(), X, Ex->getType()); } /// Assume - Create new state by assuming that a given expression /// is true or false. const GRState* Assume(const GRState* St, SVal Cond, bool Assumption, bool& isFeasible) { return StateMgr.Assume(St, Cond, Assumption, isFeasible); } const GRState* Assume(const GRState* St, Loc Cond, bool Assumption, bool& isFeasible) { return StateMgr.Assume(St, Cond, Assumption, isFeasible); } const GRState* AssumeInBound(const GRState* St, SVal Idx, SVal UpperBound, bool Assumption, bool& isFeasible) { return StateMgr.AssumeInBound(St, Idx, UpperBound, Assumption, isFeasible); } NodeTy* MakeNode(NodeSet& Dst, Stmt* S, NodeTy* Pred, const GRState* St, ProgramPoint::Kind K = ProgramPoint::PostStmtKind) { assert (Builder && "GRStmtNodeBuilder not present."); return Builder->MakeNode(Dst, S, Pred, St, K); } /// Visit - Transfer function logic for all statements. Dispatches to /// other functions that handle specific kinds of statements. void Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst); /// VisitLValue - Evaluate the lvalue of the expression. For example, if Ex is /// a DeclRefExpr, it evaluates to the MemRegionVal which represents its /// storage location. Note that not all kinds of expressions has lvalue. void VisitLValue(Expr* Ex, NodeTy* Pred, NodeSet& Dst); /// VisitArraySubscriptExpr - Transfer function for array accesses. void VisitArraySubscriptExpr(ArraySubscriptExpr* Ex, NodeTy* Pred, NodeSet& Dst, bool asLValue); /// VisitAsmStmt - Transfer function logic for inline asm. void VisitAsmStmt(AsmStmt* A, NodeTy* Pred, NodeSet& Dst); void VisitAsmStmtHelperOutputs(AsmStmt* A, AsmStmt::outputs_iterator I, AsmStmt::outputs_iterator E, NodeTy* Pred, NodeSet& Dst); void VisitAsmStmtHelperInputs(AsmStmt* A, AsmStmt::inputs_iterator I, AsmStmt::inputs_iterator E, NodeTy* Pred, NodeSet& Dst); /// VisitBinaryOperator - Transfer function logic for binary operators. void VisitBinaryOperator(BinaryOperator* B, NodeTy* Pred, NodeSet& Dst); /// VisitCall - Transfer function for function calls. void VisitCall(CallExpr* CE, NodeTy* Pred, CallExpr::arg_iterator AI, CallExpr::arg_iterator AE, NodeSet& Dst); void VisitCallRec(CallExpr* CE, NodeTy* Pred, CallExpr::arg_iterator AI, CallExpr::arg_iterator AE, NodeSet& Dst, const FunctionTypeProto *, unsigned ParamIdx = 0); /// VisitCast - Transfer function logic for all casts (implicit and explicit). void VisitCast(Expr* CastE, Expr* Ex, NodeTy* Pred, NodeSet& Dst); /// VisitCompoundLiteralExpr - Transfer function logic for compound literals. void VisitCompoundLiteralExpr(CompoundLiteralExpr* CL, NodeTy* Pred, NodeSet& Dst, bool asLValue); /// VisitDeclRefExpr - Transfer function logic for DeclRefExprs. void VisitDeclRefExpr(DeclRefExpr* DR, NodeTy* Pred, NodeSet& Dst, bool asLValue); /// VisitDeclStmt - Transfer function logic for DeclStmts. void VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst); /// VisitGuardedExpr - Transfer function logic for ?, __builtin_choose void VisitGuardedExpr(Expr* Ex, Expr* L, Expr* R, NodeTy* Pred, NodeSet& Dst); void VisitInitListExpr(InitListExpr* E, NodeTy* Pred, NodeSet& Dst); /// VisitLogicalExpr - Transfer function logic for '&&', '||' void VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred, NodeSet& Dst); /// VisitMemberExpr - Transfer function for member expressions. void VisitMemberExpr(MemberExpr* M, NodeTy* Pred, NodeSet& Dst,bool asLValue); /// VisitObjCIvarRefExpr - Transfer function logic for ObjCIvarRefExprs. void VisitObjCIvarRefExpr(ObjCIvarRefExpr* DR, NodeTy* Pred, NodeSet& Dst, bool asLValue); /// VisitObjCForCollectionStmt - Transfer function logic for /// ObjCForCollectionStmt. void VisitObjCForCollectionStmt(ObjCForCollectionStmt* S, NodeTy* Pred, NodeSet& Dst); void VisitObjCForCollectionStmtAux(ObjCForCollectionStmt* S, NodeTy* Pred, NodeSet& Dst, SVal ElementV); /// VisitObjCMessageExpr - Transfer function for ObjC message expressions. void VisitObjCMessageExpr(ObjCMessageExpr* ME, NodeTy* Pred, NodeSet& Dst); void VisitObjCMessageExprArgHelper(ObjCMessageExpr* ME, ObjCMessageExpr::arg_iterator I, ObjCMessageExpr::arg_iterator E, NodeTy* Pred, NodeSet& Dst); void VisitObjCMessageExprDispatchHelper(ObjCMessageExpr* ME, NodeTy* Pred, NodeSet& Dst); /// VisitReturnStmt - Transfer function logic for return statements. void VisitReturnStmt(ReturnStmt* R, NodeTy* Pred, NodeSet& Dst); /// VisitSizeOfAlignOfExpr - Transfer function for sizeof. void VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr* Ex, NodeTy* Pred, NodeSet& Dst); /// VisitUnaryOperator - Transfer function logic for unary operators. void VisitUnaryOperator(UnaryOperator* B, NodeTy* Pred, NodeSet& Dst, bool asLValue); const GRState* CheckDivideZero(Expr* Ex, const GRState* St, NodeTy* Pred, SVal Denom); SVal EvalCast(SVal X, QualType CastT) { if (X.isUnknownOrUndef()) return X; if (isa(X)) return getTF().EvalCast(*this, cast(X), CastT); else return getTF().EvalCast(*this, cast(X), CastT); } SVal EvalMinus(UnaryOperator* U, SVal X) { return X.isValid() ? getTF().EvalMinus(*this, U, cast(X)) : X; } SVal EvalComplement(SVal X) { return X.isValid() ? getTF().EvalComplement(*this, cast(X)) : X; } SVal EvalBinOp(BinaryOperator::Opcode Op, NonLoc L, NonLoc R) { return R.isValid() ? getTF().DetermEvalBinOpNN(*this, Op, L, R) : R; } SVal EvalBinOp(BinaryOperator::Opcode Op, NonLoc L, SVal R) { return R.isValid() ? getTF().DetermEvalBinOpNN(*this, Op, L, cast(R)) : R; } void EvalBinOp(ExplodedNodeSet& Dst, Expr* Ex, BinaryOperator::Opcode Op, NonLoc L, NonLoc R, ExplodedNode* Pred); void EvalBinOp(GRStateSet& OStates, const GRState* St, Expr* Ex, BinaryOperator::Opcode Op, NonLoc L, NonLoc R); SVal EvalBinOp(BinaryOperator::Opcode Op, SVal L, SVal R) { if (L.isUndef() || R.isUndef()) return UndefinedVal(); if (L.isUnknown() || R.isUnknown()) return UnknownVal(); if (isa(L)) { if (isa(R)) return getTF().EvalBinOp(*this, Op, cast(L), cast(R)); else return getTF().EvalBinOp(*this, Op, cast(L), cast(R)); } if (isa(R)) { // Support pointer arithmetic where the increment/decrement operand // is on the left and the pointer on the right. assert (Op == BinaryOperator::Add || Op == BinaryOperator::Sub); // Commute the operands. return getTF().EvalBinOp(*this, Op, cast(R), cast(L)); } else return getTF().DetermEvalBinOpNN(*this, Op, cast(L), cast(R)); } void EvalCall(NodeSet& Dst, CallExpr* CE, SVal L, NodeTy* Pred) { assert (Builder && "GRStmtNodeBuilder must be defined."); getTF().EvalCall(Dst, *this, *Builder, CE, L, Pred); } void EvalObjCMessageExpr(NodeSet& Dst, ObjCMessageExpr* ME, NodeTy* Pred) { assert (Builder && "GRStmtNodeBuilder must be defined."); getTF().EvalObjCMessageExpr(Dst, *this, *Builder, ME, Pred); } void EvalStore(NodeSet& Dst, Expr* E, NodeTy* Pred, const GRState* St, SVal TargetLV, SVal Val); void EvalStore(NodeSet& Dst, Expr* E, Expr* StoreE, NodeTy* Pred, const GRState* St, SVal TargetLV, SVal Val); // FIXME: The "CheckOnly" option exists only because Array and Field // loads aren't fully implemented. Eventually this option will go away. void EvalLoad(NodeSet& Dst, Expr* Ex, NodeTy* Pred, const GRState* St, SVal location, bool CheckOnly = false); const GRState* EvalLocation(Stmt* Ex, NodeTy* Pred, const GRState* St, SVal location, bool isLoad = false); void EvalReturn(NodeSet& Dst, ReturnStmt* s, NodeTy* Pred); const GRState* MarkBranch(const GRState* St, Stmt* Terminator, bool branchTaken); }; } // end clang namespace #endif