//===-- GRExprEngine.h - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a meta-engine for path-sensitive dataflow analysis that // is built on GREngine, but provides the boilerplate to execute transfer // functions and build the ExplodedGraph at the expression level. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_ANALYSIS_GREXPRENGINE #define LLVM_CLANG_ANALYSIS_GREXPRENGINE #include "clang/Analysis/PathSensitive/GRCoreEngine.h" #include "clang/Analysis/PathSensitive/ValueState.h" #include "clang/Analysis/PathSensitive/GRSimpleAPICheck.h" #include "clang/Analysis/PathSensitive/GRTransferFuncs.h" #include "clang/AST/Type.h" namespace clang { class BugType; class PathDiagnosticClient; class Diagnostic; class GRExprEngine { public: typedef ValueState StateTy; typedef ExplodedGraph GraphTy; typedef GraphTy::NodeTy NodeTy; // Builders. typedef GRStmtNodeBuilder StmtNodeBuilder; typedef GRBranchNodeBuilder BranchNodeBuilder; typedef GRIndirectGotoNodeBuilder IndirectGotoNodeBuilder; typedef GRSwitchNodeBuilder SwitchNodeBuilder; typedef GREndPathNodeBuilder EndPathNodeBuilder; typedef ExplodedNodeSet NodeSet; protected: GRCoreEngine CoreEngine; /// G - the simulation graph. GraphTy& G; /// Liveness - live-variables information the ValueDecl* and block-level /// Expr* in the CFG. Used to prune out dead state. LiveVariables Liveness; /// DeadSymbols - A scratch set used to record the set of symbols that /// were just marked dead by a call to ValueStateManager::RemoveDeadBindings. ValueStateManager::DeadSymbolsTy DeadSymbols; /// Builder - The current GRStmtNodeBuilder which is used when building the /// nodes for a given statement. StmtNodeBuilder* Builder; /// StateMgr - Object that manages the data for all created states. ValueStateManager StateMgr; /// ValueMgr - Object that manages the data for all created RVals. BasicValueFactory& BasicVals; /// TF - Object that represents a bundle of transfer functions /// for manipulating and creating RVals. GRTransferFuncs* TF; /// BugTypes - Objects used for reporting bugs. typedef std::vector BugTypeSet; BugTypeSet BugTypes; /// SymMgr - Object that manages the symbol information. SymbolManager& SymMgr; /// EntryNode - The immediate predecessor node. NodeTy* EntryNode; /// CleanedState - The state for EntryNode "cleaned" of all dead /// variables and symbols (as determined by a liveness analysis). ValueState* CleanedState; /// CurrentStmt - The current block-level statement. Stmt* CurrentStmt; // Obj-C Class Identifiers. IdentifierInfo* NSExceptionII; // Obj-C Selectors. Selector* NSExceptionInstanceRaiseSelectors; Selector RaiseSel; typedef llvm::SmallVector SimpleChecksTy; SimpleChecksTy CallChecks; SimpleChecksTy MsgExprChecks; public: typedef llvm::SmallPtrSet UndefBranchesTy; typedef llvm::SmallPtrSet UndefStoresTy; typedef llvm::SmallPtrSet BadDerefTy; typedef llvm::SmallPtrSet BadCallsTy; typedef llvm::SmallPtrSet UndefReceiversTy; typedef llvm::DenseMap UndefArgsTy; typedef llvm::SmallPtrSet BadDividesTy; typedef llvm::SmallPtrSet NoReturnCallsTy; typedef llvm::SmallPtrSet UndefResultsTy; typedef llvm::SmallPtrSet RetsStackAddrTy; protected: /// RetsStackAddr - Nodes in the ExplodedGraph that result from returning /// the address of a stack variable. RetsStackAddrTy RetsStackAddr; /// UndefBranches - Nodes in the ExplodedGraph that result from /// taking a branch based on an undefined value. UndefBranchesTy UndefBranches; /// UndefStores - Sinks in the ExplodedGraph that result from /// making a store to an undefined lvalue. UndefStoresTy UndefStores; /// NoReturnCalls - Sinks in the ExplodedGraph that result from // calling a function with the attribute "noreturn". NoReturnCallsTy NoReturnCalls; /// ImplicitNullDeref - Nodes in the ExplodedGraph that result from /// taking a dereference on a symbolic pointer that MAY be NULL. BadDerefTy ImplicitNullDeref; /// ExplicitNullDeref - Nodes in the ExplodedGraph that result from /// taking a dereference on a symbolic pointer that MUST be NULL. BadDerefTy ExplicitNullDeref; /// UnitDeref - Nodes in the ExplodedGraph that result from /// taking a dereference on an undefined value. BadDerefTy UndefDeref; /// ImplicitBadDivides - Nodes in the ExplodedGraph that result from /// evaluating a divide or modulo operation where the denominator /// MAY be zero. BadDividesTy ImplicitBadDivides; /// ExplicitBadDivides - Nodes in the ExplodedGraph that result from /// evaluating a divide or modulo operation where the denominator /// MUST be zero or undefined. BadDividesTy ExplicitBadDivides; /// UndefResults - Nodes in the ExplodedGraph where the operands are defined /// by the result is not. Excludes divide-by-zero errors. UndefResultsTy UndefResults; /// BadCalls - Nodes in the ExplodedGraph resulting from calls to function /// pointers that are NULL (or other constants) or Undefined. BadCallsTy BadCalls; /// UndefReceiver - Nodes in the ExplodedGraph resulting from message /// ObjC message expressions where the receiver is undefined (uninitialized). UndefReceiversTy UndefReceivers; /// UndefArg - Nodes in the ExplodedGraph resulting from calls to functions /// where a pass-by-value argument has an undefined value. UndefArgsTy UndefArgs; /// MsgExprUndefArgs - Nodes in the ExplodedGraph resulting from /// message expressions where a pass-by-value argument has an undefined /// value. UndefArgsTy MsgExprUndefArgs; public: GRExprEngine(CFG& cfg, Decl& CD, ASTContext& Ctx); ~GRExprEngine(); void ExecuteWorkList(unsigned Steps = 150000) { CoreEngine.ExecuteWorkList(Steps); } /// getContext - Return the ASTContext associated with this analysis. ASTContext& getContext() const { return G.getContext(); } /// getCFG - Returns the CFG associated with this analysis. CFG& getCFG() { return G.getCFG(); } /// setTransferFunctions void setTransferFunctions(GRTransferFuncs* tf); void setTransferFunctions(GRTransferFuncs& tf) { setTransferFunctions(&tf); } /// ViewGraph - Visualize the ExplodedGraph created by executing the /// simulation. void ViewGraph(bool trim = false); void ViewGraph(NodeTy** Beg, NodeTy** End); /// getLiveness - Returned computed live-variables information for the /// analyzed function. const LiveVariables& getLiveness() const { return Liveness; } LiveVariables& getLiveness() { return Liveness; } /// getInitialState - Return the initial state used for the root vertex /// in the ExplodedGraph. ValueState* getInitialState(); GraphTy& getGraph() { return G; } const GraphTy& getGraph() const { return G; } typedef BugTypeSet::iterator bug_type_iterator; typedef BugTypeSet::const_iterator const_bug_type_iterator; bug_type_iterator bug_types_begin() { return BugTypes.begin(); } bug_type_iterator bug_types_end() { return BugTypes.end(); } const_bug_type_iterator bug_types_begin() const { return BugTypes.begin(); } const_bug_type_iterator bug_types_end() const { return BugTypes.end(); } void Register(BugType* B) { BugTypes.push_back(B); } void EmitWarnings(Diagnostic& Diag, PathDiagnosticClient* PD); bool isRetStackAddr(const NodeTy* N) const { return N->isSink() && RetsStackAddr.count(const_cast(N)) != 0; } bool isUndefControlFlow(const NodeTy* N) const { return N->isSink() && UndefBranches.count(const_cast(N)) != 0; } bool isUndefStore(const NodeTy* N) const { return N->isSink() && UndefStores.count(const_cast(N)) != 0; } bool isImplicitNullDeref(const NodeTy* N) const { return N->isSink() && ImplicitNullDeref.count(const_cast(N)) != 0; } bool isExplicitNullDeref(const NodeTy* N) const { return N->isSink() && ExplicitNullDeref.count(const_cast(N)) != 0; } bool isUndefDeref(const NodeTy* N) const { return N->isSink() && UndefDeref.count(const_cast(N)) != 0; } bool isImplicitBadDivide(const NodeTy* N) const { return N->isSink() && ImplicitBadDivides.count(const_cast(N)) != 0; } bool isExplicitBadDivide(const NodeTy* N) const { return N->isSink() && ExplicitBadDivides.count(const_cast(N)) != 0; } bool isNoReturnCall(const NodeTy* N) const { return N->isSink() && NoReturnCalls.count(const_cast(N)) != 0; } bool isUndefResult(const NodeTy* N) const { return N->isSink() && UndefResults.count(const_cast(N)) != 0; } bool isBadCall(const NodeTy* N) const { return N->isSink() && BadCalls.count(const_cast(N)) != 0; } bool isUndefArg(const NodeTy* N) const { return N->isSink() && (UndefArgs.find(const_cast(N)) != UndefArgs.end() || MsgExprUndefArgs.find(const_cast(N)) != MsgExprUndefArgs.end()); } bool isUndefReceiver(const NodeTy* N) const { return N->isSink() && UndefReceivers.count(const_cast(N)) != 0; } typedef RetsStackAddrTy::iterator ret_stackaddr_iterator; ret_stackaddr_iterator ret_stackaddr_begin() { return RetsStackAddr.begin(); } ret_stackaddr_iterator ret_stackaddr_end() { return RetsStackAddr.end(); } typedef UndefBranchesTy::iterator undef_branch_iterator; undef_branch_iterator undef_branches_begin() { return UndefBranches.begin(); } undef_branch_iterator undef_branches_end() { return UndefBranches.end(); } typedef BadDerefTy::iterator null_deref_iterator; null_deref_iterator null_derefs_begin() { return ExplicitNullDeref.begin(); } null_deref_iterator null_derefs_end() { return ExplicitNullDeref.end(); } typedef BadDerefTy::iterator undef_deref_iterator; undef_deref_iterator undef_derefs_begin() { return UndefDeref.begin(); } undef_deref_iterator undef_derefs_end() { return UndefDeref.end(); } typedef BadDividesTy::iterator bad_divide_iterator; bad_divide_iterator explicit_bad_divides_begin() { return ExplicitBadDivides.begin(); } bad_divide_iterator explicit_bad_divides_end() { return ExplicitBadDivides.end(); } bad_divide_iterator implicit_bad_divides_begin() { return ImplicitBadDivides.begin(); } bad_divide_iterator implicit_bad_divides_end() { return ImplicitBadDivides.end(); } typedef UndefResultsTy::iterator undef_result_iterator; undef_result_iterator undef_results_begin() { return UndefResults.begin(); } undef_result_iterator undef_results_end() { return UndefResults.end(); } typedef BadCallsTy::iterator bad_calls_iterator; bad_calls_iterator bad_calls_begin() { return BadCalls.begin(); } bad_calls_iterator bad_calls_end() { return BadCalls.end(); } typedef UndefArgsTy::iterator undef_arg_iterator; undef_arg_iterator undef_arg_begin() { return UndefArgs.begin(); } undef_arg_iterator undef_arg_end() { return UndefArgs.end(); } undef_arg_iterator msg_expr_undef_arg_begin() { return MsgExprUndefArgs.begin(); } undef_arg_iterator msg_expr_undef_arg_end() { return MsgExprUndefArgs.end(); } typedef UndefReceiversTy::iterator undef_receivers_iterator; undef_receivers_iterator undef_receivers_begin() { return UndefReceivers.begin(); } undef_receivers_iterator undef_receivers_end() { return UndefReceivers.end(); } typedef SimpleChecksTy::iterator simple_checks_iterator; simple_checks_iterator call_auditors_begin() { return CallChecks.begin(); } simple_checks_iterator call_auditors_end() { return CallChecks.end(); } simple_checks_iterator msgexpr_auditors_begin() { return MsgExprChecks.begin(); } simple_checks_iterator msgexpr_auditors_end() { return MsgExprChecks.end(); } void AddCallCheck(GRSimpleAPICheck* A); void AddObjCMessageExprCheck(GRSimpleAPICheck* A); /// ProcessStmt - Called by GRCoreEngine. Used to generate new successor /// nodes by processing the 'effects' of a block-level statement. void ProcessStmt(Stmt* S, StmtNodeBuilder& builder); /// ProcessBlockEntrance - Called by GRCoreEngine when start processing /// a CFGBlock. This method returns true if the analysis should continue /// exploring the given path, and false otherwise. bool ProcessBlockEntrance(CFGBlock* B, ValueState* St, GRBlockCounter BC); /// ProcessBranch - Called by GRCoreEngine. Used to generate successor /// nodes by processing the 'effects' of a branch condition. void ProcessBranch(Expr* Condition, Stmt* Term, BranchNodeBuilder& builder); /// ProcessIndirectGoto - Called by GRCoreEngine. Used to generate successor /// nodes by processing the 'effects' of a computed goto jump. void ProcessIndirectGoto(IndirectGotoNodeBuilder& builder); /// ProcessSwitch - Called by GRCoreEngine. Used to generate successor /// nodes by processing the 'effects' of a switch statement. void ProcessSwitch(SwitchNodeBuilder& builder); /// ProcessEndPath - Called by GRCoreEngine. Used to generate end-of-path /// nodes when the control reaches the end of a function. void ProcessEndPath(EndPathNodeBuilder& builder) { TF->EvalEndPath(*this, builder); } ValueStateManager& getStateManager() { return StateMgr; } const ValueStateManager& getStateManger() const { return StateMgr; } BasicValueFactory& getBasicVals() { return BasicVals; } const BasicValueFactory& getBasicVals() const { return BasicVals; } SymbolManager& getSymbolManager() { return SymMgr; } const SymbolManager& getSymbolManager() const { return SymMgr; } protected: ValueState* GetState(NodeTy* N) { return N == EntryNode ? CleanedState : N->getState(); } public: // FIXME: Maybe make these accesible only within the StmtBuilder? ValueState* SetRVal(ValueState* St, Expr* Ex, RVal V); ValueState* SetRVal(ValueState* St, const Expr* Ex, RVal V) { return SetRVal(St, const_cast(Ex), V); } protected: ValueState* SetBlkExprRVal(ValueState* St, Expr* Ex, RVal V) { return StateMgr.SetRVal(St, Ex, V, true, false); } ValueState* SetRVal(ValueState* St, LVal LV, RVal V) { return StateMgr.SetRVal(St, LV, V); } RVal GetRVal(ValueState* St, Expr* Ex) { return StateMgr.GetRVal(St, Ex); } RVal GetRVal(ValueState* St, const Expr* Ex) { return GetRVal(St, const_cast(Ex)); } RVal GetBlkExprRVal(ValueState* St, Expr* Ex) { return StateMgr.GetBlkExprRVal(St, Ex); } RVal GetRVal(ValueState* St, LVal LV, QualType T = QualType()) { return StateMgr.GetRVal(St, LV, T); } inline NonLVal MakeConstantVal(uint64_t X, Expr* Ex) { return NonLVal::MakeVal(BasicVals, X, Ex->getType()); } /// Assume - Create new state by assuming that a given expression /// is true or false. ValueState* Assume(ValueState* St, RVal Cond, bool Assumption, bool& isFeasible) { if (Cond.isUnknown()) { isFeasible = true; return St; } if (isa(Cond)) return Assume(St, cast(Cond), Assumption, isFeasible); else return Assume(St, cast(Cond), Assumption, isFeasible); } ValueState* Assume(ValueState* St, LVal Cond, bool Assumption, bool& isFeasible); ValueState* AssumeAux(ValueState* St, LVal Cond, bool Assumption, bool& isFeasible); ValueState* Assume(ValueState* St, NonLVal Cond, bool Assumption, bool& isFeasible); ValueState* AssumeAux(ValueState* St, NonLVal Cond, bool Assumption, bool& isFeasible); ValueState* AssumeSymNE(ValueState* St, SymbolID sym, const llvm::APSInt& V, bool& isFeasible); ValueState* AssumeSymEQ(ValueState* St, SymbolID sym, const llvm::APSInt& V, bool& isFeasible); ValueState* AssumeSymInt(ValueState* St, bool Assumption, const SymIntConstraint& C, bool& isFeasible); NodeTy* MakeNode(NodeSet& Dst, Stmt* S, NodeTy* Pred, ValueState* St) { assert (Builder && "GRStmtNodeBuilder not present."); return Builder->MakeNode(Dst, S, Pred, St); } /// Visit - Transfer function logic for all statements. Dispatches to /// other functions that handle specific kinds of statements. void Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst); /// VisitLVal - Similar to Visit, but the specified expression is assummed /// to be evaluated under the context where it evaluates to an LVal. For /// example, if Ex is a DeclRefExpr, under Visit Ex would evaluate to the /// value bound to Ex in the symbolic state, while under VisitLVal it would /// evaluate to an LVal representing the location of the referred Decl. void VisitLVal(Expr* Ex, NodeTy* Pred, NodeSet& Dst); /// VisitArraySubscriptExpr - Transfer function for array accesses. void VisitArraySubscriptExpr(ArraySubscriptExpr* Ex, NodeTy* Pred, NodeSet& Dst, bool asLVal); /// VisitAsmStmt - Transfer function logic for inline asm. void VisitAsmStmt(AsmStmt* A, NodeTy* Pred, NodeSet& Dst); void VisitAsmStmtHelperOutputs(AsmStmt* A, AsmStmt::outputs_iterator I, AsmStmt::outputs_iterator E, NodeTy* Pred, NodeSet& Dst); void VisitAsmStmtHelperInputs(AsmStmt* A, AsmStmt::inputs_iterator I, AsmStmt::inputs_iterator E, NodeTy* Pred, NodeSet& Dst); /// VisitBinaryOperator - Transfer function logic for binary operators. void VisitBinaryOperator(BinaryOperator* B, NodeTy* Pred, NodeSet& Dst); /// VisitCall - Transfer function for function calls. void VisitCall(CallExpr* CE, NodeTy* Pred, CallExpr::arg_iterator AI, CallExpr::arg_iterator AE, NodeSet& Dst); /// VisitCast - Transfer function logic for all casts (implicit and explicit). void VisitCast(Expr* CastE, Expr* Ex, NodeTy* Pred, NodeSet& Dst); /// VisitDeclRefExpr - Transfer function logic for DeclRefExprs. void VisitDeclRefExpr(DeclRefExpr* DR, NodeTy* Pred, NodeSet& Dst, bool asLval); /// VisitDeclStmt - Transfer function logic for DeclStmts. void VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst); void VisitDeclStmtAux(DeclStmt* DS, ScopedDecl* D, NodeTy* Pred, NodeSet& Dst); /// VisitGuardedExpr - Transfer function logic for ?, __builtin_choose void VisitGuardedExpr(Expr* Ex, Expr* L, Expr* R, NodeTy* Pred, NodeSet& Dst); /// VisitLogicalExpr - Transfer function logic for '&&', '||' void VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred, NodeSet& Dst); /// VisitMemberExpr - Transfer function for member expressions. void VisitMemberExpr(MemberExpr* M, NodeTy* Pred, NodeSet& Dst, bool asLVal); /// VisitObjCMessageExpr - Transfer function for ObjC message expressions. void VisitObjCMessageExpr(ObjCMessageExpr* ME, NodeTy* Pred, NodeSet& Dst); void VisitObjCMessageExprArgHelper(ObjCMessageExpr* ME, ObjCMessageExpr::arg_iterator I, ObjCMessageExpr::arg_iterator E, NodeTy* Pred, NodeSet& Dst); void VisitObjCMessageExprDispatchHelper(ObjCMessageExpr* ME, NodeTy* Pred, NodeSet& Dst); /// VisitReturnStmt - Transfer function logic for return statements. void VisitReturnStmt(ReturnStmt* R, NodeTy* Pred, NodeSet& Dst); /// VisitSizeOfAlignOfTypeExpr - Transfer function for sizeof(type). void VisitSizeOfAlignOfTypeExpr(SizeOfAlignOfTypeExpr* Ex, NodeTy* Pred, NodeSet& Dst); /// VisitUnaryOperator - Transfer function logic for unary operators. void VisitUnaryOperator(UnaryOperator* B, NodeTy* Pred, NodeSet& Dst, bool asLVal); bool CheckDivideZero(Expr* Ex, ValueState* St, NodeTy* Pred, RVal Denom); RVal EvalCast(RVal X, QualType CastT) { if (X.isUnknownOrUndef()) return X; if (isa(X)) return TF->EvalCast(*this, cast(X), CastT); else return TF->EvalCast(*this, cast(X), CastT); } RVal EvalMinus(UnaryOperator* U, RVal X) { return X.isValid() ? TF->EvalMinus(*this, U, cast(X)) : X; } RVal EvalComplement(RVal X) { return X.isValid() ? TF->EvalComplement(*this, cast(X)) : X; } RVal EvalBinOp(BinaryOperator::Opcode Op, NonLVal L, RVal R) { return R.isValid() ? TF->EvalBinOp(*this, Op, L, cast(R)) : R; } RVal EvalBinOp(BinaryOperator::Opcode Op, NonLVal L, NonLVal R) { return R.isValid() ? TF->EvalBinOp(*this, Op, L, R) : R; } RVal EvalBinOp(BinaryOperator::Opcode Op, RVal L, RVal R) { if (L.isUndef() || R.isUndef()) return UndefinedVal(); if (L.isUnknown() || R.isUnknown()) return UnknownVal(); if (isa(L)) { if (isa(R)) return TF->EvalBinOp(*this, Op, cast(L), cast(R)); else return TF->EvalBinOp(*this, Op, cast(L), cast(R)); } if (isa(R)) { // Support pointer arithmetic where the increment/decrement operand // is on the left and the pointer on the right. assert (Op == BinaryOperator::Add || Op == BinaryOperator::Sub); // Commute the operands. return TF->EvalBinOp(*this, Op, cast(R), cast(L)); } else return TF->EvalBinOp(*this, Op, cast(L), cast(R)); } void EvalCall(NodeSet& Dst, CallExpr* CE, RVal L, NodeTy* Pred) { assert (Builder && "GRStmtNodeBuilder must be defined."); TF->EvalCall(Dst, *this, *Builder, CE, L, Pred); } void EvalObjCMessageExpr(NodeSet& Dst, ObjCMessageExpr* ME, NodeTy* Pred) { assert (Builder && "GRStmtNodeBuilder must be defined."); TF->EvalObjCMessageExpr(Dst, *this, *Builder, ME, Pred); } void EvalStore(NodeSet& Dst, Expr* E, NodeTy* Pred, ValueState* St, RVal TargetLV, RVal Val); // FIXME: The "CheckOnly" option exists only because Array and Field // loads aren't fully implemented. Eventually this option will go away. void EvalLoad(NodeSet& Dst, Expr* Ex, NodeTy* Pred, ValueState* St, RVal location, bool CheckOnly = false); ValueState* EvalLocation(Expr* Ex, NodeTy* Pred, ValueState* St, RVal location, bool isLoad = false); void EvalReturn(NodeSet& Dst, ReturnStmt* s, NodeTy* Pred); ValueState* MarkBranch(ValueState* St, Stmt* Terminator, bool branchTaken); }; } // end clang namespace #endif