Age | Commit message (Collapse) | Author |
|
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@72199 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
describe the construction of a value of a given type using function
syntax, e.g.,
T(a1, a2, ..., aN)
when the type or any of its arguments are type-dependent. In this
case, we don't know what kind of type-construction this will be: it
might construct a temporary of type 'T' (which might be a class or
non-class type) or might perform a conversion to type 'T'. Also,
implement printing of and template instantiation for this new
expression type. Due to the change in Sema::ActOnCXXTypeConstructExpr,
our existing tests cover template instantiation of this new expression
node.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@72176 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@72102 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@71988 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
if necessary.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@71983 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@71936 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
all.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@71780 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
template<typename T>
struct X {
struct Inner;
};
template struct X<int>::Inner;
This change is larger than it looks because it also fixes some
a problem with nested-name-specifiers and tags. We weren't requiring
the DeclContext associated with the scope specifier of a tag to be
complete. Therefore, when looking for something like "struct
X<int>::Inner", we weren't instantiating X<int>.
This, naturally, uncovered a problem with member pointers, where we
were requiring the left-hand side of a member pointer access
expression (e.g., x->*) to be a complete type. However, this is wrong:
the semantics of this expression does not require a complete type (EDG
agrees).
Stuart vouched for me. Blame him.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@71756 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@71405 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@71163 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
composite pointer type, and his is better! Updated relational- and
equality-operator checking accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@70963 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
in C++, taking into account conversions to the "composite pointer
type" so that we can compare, e.g., a pointer to a derived class to a
pointer to a base class.
Also, upgrade the "comparing distinct pointer types" from a warning to
an error for C++, since this is clearly an error. Turns out that we
hadn't gone through and audited this code for C++, ever.
Fixes <rdar://problem/6816420>.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@70829 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
types and jumps into protected try-catch scopes.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@70242 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
validity of the conversion.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@70121 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
This gets rid of a bunch of random InvalidDecl bools in sema, changing
us to use the following approach:
1. When analyzing a declspec or declarator, if an error is found, we
set a bit in Declarator saying that it is invalid.
2. Once the Decl is created by sema, we immediately set the isInvalid
bit on it from what is in the declarator. From this point on, sema
consistently looks at and sets the bit on the decl.
This gives a very clear separation of concerns and simplifies a bunch
of code. In addition to this, this patch makes these changes:
1. it renames DeclSpec::getInvalidType() -> isInvalidType().
2. various "merge" functions no longer return bools: they just set the
invalid bit on the dest decl if invalid.
3. The ActOnTypedefDeclarator/ActOnFunctionDeclarator/ActOnVariableDeclarator
methods now set invalid on the decl returned instead of returning an
invalid bit byref.
4. In SemaType, refering to a typedef that was invalid now propagates the
bit into the resultant type. Stuff declared with the invalid typedef
will now be marked invalid.
5. Various methods like CheckVariableDeclaration now return void and set the
invalid bit on the decl they check.
There are a few minor changes to tests with this, but the only major bad
result is test/SemaCXX/constructor-recovery.cpp. I'll take a look at this
next.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@70020 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@69959 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
unused for now, so no functionality change yet. Also, create CXXTempVarDecls to pass to the CXXTemporaryObjectExpr ctor.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@69957 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
general code.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@69555 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
We're getting there ...
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@69548 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
FindCompositePointerType in some other places, too.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@69534 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Add a few commented lines to the test case that point out things that don't work yet.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@69354 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
conversion constructors.
Remove an atrocious amount of trailing whitespace in the overloaded operator mangler. Sorry, couldn't help myself.
Change the DeclType parameter of Sema::CheckReferenceInit to be passed by value instead of reference. It wasn't changed anywhere.
Let the parser handle C++'s irregular grammar around assignment-expression and conditional-expression.
And finally, the reason for all this stuff: implement C++ semantics for the conditional operator. The implementation is complete except for determining lvalueness.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@69299 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
different code path that I forgot previously.
Implement the rvalue reference overload dance for returning local objects. Returning a local object first tries to find a move constructor now.
The error message when no move constructor is defined (or is not applicable) and the copy constructor is deleted is quite ugly, though.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@68902 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
No functionality change (really).
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@68726 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
pointer. Its purpose in life is to be a glorified void*, but which does not
implicitly convert to void* or other OpaquePtr's with a different UID.
Introduce Action::DeclPtrTy which is a typedef for OpaquePtr<0>. Change the
entire parser/sema interface to use DeclPtrTy instead of DeclTy*. This
makes the C++ compiler enforce that these aren't convertible to other opaque
types.
We should also convert ExprTy, StmtTy, TypeTy, AttrTy, BaseTy, etc,
but I don't plan to do that in the short term.
The one outstanding known problem with this patch is that we lose the
bitmangling optimization where ActionResult<DeclPtrTy> doesn't know how to
bitmangle the success bit into the low bit of DeclPtrTy. I will rectify
this with a subsequent patch.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67952 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
types; add another use of RequireCompleteType.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67644 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
incomplete types. RequireCompleteType is needed when the type may be
completed by instantiating a template.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67643 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
class C {
void g(C c);
virtual void f() = 0;
};
In this case, C is not known to be abstract when doing semantic analysis on g. This is done by recursively traversing the abstract class and checking the types of member functions.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67594 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
make sure to check parameter types before they decay.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67550 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67542 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
unclear areas. Maybe Doug can shed some light on some of the fixmes.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67059 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
PrintParserCallbacks a bit more in line with reality.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67029 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
- C++ function casts, e.g., T(foo)
- sizeof(), alignof()
More importantly, this allows us to verify that we're performing
overload resolution during template instantiation, with
argument-dependent lookup and the "cached" results of name lookup from
the template definition.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@66947 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
instantiation for binary operators. This change moves most of the
operator-overloading code from the parser action ActOnBinOp to a new,
parser-independent semantic checking routine CreateOverloadedBinOp.
Of particular importance is the fact that CreateOverloadedBinOp does
*not* perform any name lookup based on the current parsing context (it
doesn't take a Scope*), since it has to be usable during template
instantiation, when there is no scope information. Rather, it takes a
pre-computed set of functions that are visible from the context or via
argument-dependent lookup, and adds to that set any member operators
and built-in operator candidates. The set of functions is computed in
the parser action ActOnBinOp based on the current context (both
operator name lookup and argument-dependent lookup). Within a
template, the set computed by ActOnBinOp is saved within the
type-dependent AST node and is augmented with the results of
argument-dependent name lookup at instantiation time (see
TemplateExprInstantiator::VisitCXXOperatorCallExpr).
Sadly, we can't fully test this yet. I'll follow up with template
instantiation for sizeof so that the real fun can begin.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@66923 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
documentation to reflect the fact that we can instantiate templates here
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@66421 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@65671 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@65529 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
only from a function definition (that does not have a prototype) are
only used to determine the compatible with other declarations of that
same function. In particular, when referencing the function we pretend
as if it does not have a prototype. Implement this behavior, which
fixes PR3626.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@65460 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
(as GCC does), except when we've performed overload resolution and
found an unavailable function: in this case, we actually error.
Merge the checking of unavailable functions with the checking for
deprecated functions. This unifies a bit of code, and makes sure that
we're checking for unavailable functions in the right places. Also,
this check can cause an error. We may, eventually, want an option to
make "unavailable" warnings into errors.
Implement much of the logic needed for C++0x deleted functions, which
are effectively the same as "unavailable" functions (but always cause
an error when referenced). However, we don't have the syntax to
specify deleted functions yet :)
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@64955 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
2 out of 2 people on irc prefer them gone :)
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@64749 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
system. Since C99 doesn't have overloading and C++ doesn't have
_Complex, there is no specification for this. Here's what I think
makes sense.
Complex conversions come in several flavors:
- Complex promotions: a complex -> complex conversion where the
underlying real-type conversion is a floating-point promotion. GCC
seems to call this a promotion, EDG does something else. This is
given "promotion" rank for determining the best viable function.
- Complex conversions: a complex -> complex conversion that is
not a complex promotion. This is given "conversion" rank for
determining the best viable function.
- Complex-real conversions: a real -> complex or complex -> real
conversion. This is given "conversion" rank for determining the
best viable function.
These rules are the same for C99 (when using the "overloadable"
attribute) and C++. However, there is one difference in the handling
of floating-point promotions: in C99, float -> long double and double
-> long double are considered promotions (so we give them "promotion"
rank), while C++ considers these conversions ("conversion" rank).
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@64343 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
This commit adds a new attribute, "overloadable", that enables C++
function overloading in C. The attribute can only be added to function
declarations, e.g.,
int *f(int) __attribute__((overloadable));
If the "overloadable" attribute exists on a function with a given
name, *all* functions with that name (and in that scope) must have the
"overloadable" attribute. Sets of overloaded functions with the
"overloadable" attribute then follow the normal C++ rules for
overloaded functions, e.g., overloads must have different
parameter-type-lists from each other.
When calling an overloaded function in C, we follow the same
overloading rules as C++, with three extensions to the set of standard
conversions:
- A value of a given struct or union type T can be converted to the
type T. This is just the identity conversion. (In C++, this would
go through a copy constructor).
- A value of pointer type T* can be converted to a value of type U*
if T and U are compatible types. This conversion has Conversion
rank (it's considered a pointer conversion in C).
- A value of type T can be converted to a value of type U if T and U
are compatible (and are not both pointer types). This conversion
has Conversion rank (it's considered to be a new kind of
conversion unique to C, a "compatible" conversion).
Known defects (and, therefore, next steps):
1) The standard-conversion handling does not understand conversions
involving _Complex or vector extensions, so it is likely to get
these wrong. We need to add these conversions.
2) All overloadable functions with the same name will have the same
linkage name, which means we'll get a collision in the linker (if
not sooner). We'll need to mangle the names of these functions.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@64336 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
References are not objects; implement this in Type::isObjectType().
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@64152 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@64029 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
- Made allocation of Stmt objects using vanilla new/delete a *compiler
error* by making this new/delete "protected" within class Stmt.
- Now the only way to allocate Stmt objects is by using the new
operator that takes ASTContext& as an argument. This ensures that
all Stmt nodes are allocated from the same (pool) allocator.
- Naturally, these two changes required that *all* creation sites for
AST nodes use new (ASTContext&). This is a large patch, but the
majority of the changes are just this mechanical adjustment.
- The above changes also mean that AST nodes can no longer be
deallocated using 'delete'. Instead, one most do
StmtObject->Destroy(ASTContext&) or do
ASTContextObject.Deallocate(StmtObject) (the latter not running the
'Destroy' method).
Along the way I also...
- Made CompoundStmt allocate its array of Stmt* using the allocator in
ASTContext (previously it used std::vector). There are a whole
bunch of other Stmt classes that need to be similarly changed to
ensure that all memory allocated for ASTs comes from the allocator
in ASTContext.
- Added a new smart pointer ExprOwningPtr to Sema.h. This replaces
the uses of llvm::OwningPtr within Sema, as llvm::OwningPtr used
'delete' to free memory instead of a Stmt's 'Destroy' method.
Big thanks to Doug Gregor for helping with the acrobatics of making
'new/delete' private and the new smart pointer ExprOwningPtr!
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@63997 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
unqualified-id '('
in C++. The unqualified-id might not refer to any declaration in our
current scope, but declarations by that name might be found via
argument-dependent lookup. We now do so properly.
As part of this change, CXXDependentNameExpr, which was previously
designed to express the unqualified-id in the above constructor within
templates, has become UnresolvedFunctionNameExpr, which does
effectively the same thing but will work for both templates and
non-templates.
Additionally, we cope with all unqualified-ids, since ADL also applies
in cases like
operator+(x, y)
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@63733 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Pointers to functions don't work yet, and pointers to overloaded functions even less. Also, far too much illegal code is accepted.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@63655 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
LookupName et al. Instead, use an enum and a bool to describe its
contents.
Optimized the C/Objective-C path through LookupName, eliminating any
unnecessarily C++isms. Simplify IdentifierResolver::iterator, removing
some code and arguments that are no longer used.
Eliminated LookupDeclInScope/LookupDeclInContext, moving all callers
over to LookupName, LookupQualifiedName, or LookupParsedName, as
appropriate.
All together, I'm seeing a 0.2% speedup on Cocoa.h with PTH and
-disable-free. Plus, we're down to three name-lookup routines.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@63354 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
redundant #includes. Patch by Anders Johnsen!
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@63271 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
LookupDeclInContext().
The previous interface was very confusing. This is much more explicit, which will be easier to understand/optimize/convert.
The plan is to eventually deprecate both of these functions. For now, I'm focused on performance.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@63256 91177308-0d34-0410-b5e6-96231b3b80d8
|