aboutsummaryrefslogtreecommitdiff
path: root/lib/Sema/SemaChecking.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Sema/SemaChecking.cpp')
-rw-r--r--lib/Sema/SemaChecking.cpp340
1 files changed, 170 insertions, 170 deletions
diff --git a/lib/Sema/SemaChecking.cpp b/lib/Sema/SemaChecking.cpp
index a63e044272..5faafada50 100644
--- a/lib/Sema/SemaChecking.cpp
+++ b/lib/Sema/SemaChecking.cpp
@@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
//
-// This file implements extra semantic analysis beyond what is enforced
+// This file implements extra semantic analysis beyond what is enforced
// by the C type system.
//
//===----------------------------------------------------------------------===//
@@ -32,14 +32,14 @@ using namespace clang;
SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
unsigned ByteNo) const {
assert(!SL->isWide() && "This doesn't work for wide strings yet");
-
+
// Loop over all of the tokens in this string until we find the one that
// contains the byte we're looking for.
unsigned TokNo = 0;
while (1) {
assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
-
+
// Get the spelling of the string so that we can get the data that makes up
// the string literal, not the identifier for the macro it is potentially
// expanded through.
@@ -51,33 +51,33 @@ SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
std::pair<const char *,const char *> Buffer =
SourceMgr.getBufferData(LocInfo.first);
const char *StrData = Buffer.first+LocInfo.second;
-
+
// Create a langops struct and enable trigraphs. This is sufficient for
// relexing tokens.
LangOptions LangOpts;
LangOpts.Trigraphs = true;
-
+
// Create a lexer starting at the beginning of this token.
Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
Buffer.second);
Token TheTok;
TheLexer.LexFromRawLexer(TheTok);
-
+
// Use the StringLiteralParser to compute the length of the string in bytes.
StringLiteralParser SLP(&TheTok, 1, PP);
unsigned TokNumBytes = SLP.GetStringLength();
-
+
// If the byte is in this token, return the location of the byte.
if (ByteNo < TokNumBytes ||
(ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
- unsigned Offset =
+ unsigned Offset =
StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
-
+
// Now that we know the offset of the token in the spelling, use the
// preprocessor to get the offset in the original source.
return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
}
-
+
// Move to the next string token.
++TokNo;
ByteNo -= TokNumBytes;
@@ -174,7 +174,7 @@ Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
return ExprError();
break;
}
-
+
return move(TheCallResult);
}
@@ -188,7 +188,7 @@ bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
// simple names (e.g., C++ conversion functions).
if (!FnInfo)
return false;
-
+
// FIXME: This mechanism should be abstracted to be less fragile and
// more efficient. For example, just map function ids to custom
// handlers.
@@ -198,7 +198,7 @@ bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
if (CheckablePrintfAttr(Format, TheCall)) {
bool HasVAListArg = Format->getFirstArg() == 0;
if (!HasVAListArg) {
- if (const FunctionProtoType *Proto
+ if (const FunctionProtoType *Proto
= FDecl->getType()->getAsFunctionProtoType())
HasVAListArg = !Proto->isVariadic();
}
@@ -206,8 +206,8 @@ bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
HasVAListArg ? 0 : Format->getFirstArg() - 1);
}
}
-
- for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
+
+ for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
NonNull = NonNull->getNext<NonNullAttr>())
CheckNonNullArguments(NonNull, TheCall);
@@ -219,21 +219,21 @@ bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
if (!Format)
return false;
-
+
const VarDecl *V = dyn_cast<VarDecl>(NDecl);
if (!V)
return false;
-
+
QualType Ty = V->getType();
if (!Ty->isBlockPointerType())
return false;
-
+
if (!CheckablePrintfAttr(Format, TheCall))
return false;
-
+
bool HasVAListArg = Format->getFirstArg() == 0;
if (!HasVAListArg) {
- const FunctionType *FT =
+ const FunctionType *FT =
Ty->getAs<BlockPointerType>()->getPointeeType()->getAsFunctionType();
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
HasVAListArg = !Proto->isVariadic();
@@ -260,7 +260,7 @@ bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
if (TheCall->getNumArgs() < 1)
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
<< 0 << TheCall->getCallee()->getSourceRange();
-
+
// Inspect the first argument of the atomic builtin. This should always be
// a pointer type, whose element is an integral scalar or pointer type.
// Because it is a pointer type, we don't have to worry about any implicit
@@ -269,9 +269,9 @@ bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
if (!FirstArg->getType()->isPointerType())
return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
<< FirstArg->getType() << FirstArg->getSourceRange();
-
+
QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
- if (!ValType->isIntegerType() && !ValType->isPointerType() &&
+ if (!ValType->isIntegerType() && !ValType->isPointerType() &&
!ValType->isBlockPointerType())
return Diag(DRE->getLocStart(),
diag::err_atomic_builtin_must_be_pointer_intptr)
@@ -283,7 +283,7 @@ bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
#define BUILTIN_ROW(x) \
{ Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
Builtin::BI##x##_8, Builtin::BI##x##_16 }
-
+
static const unsigned BuiltinIndices[][5] = {
BUILTIN_ROW(__sync_fetch_and_add),
BUILTIN_ROW(__sync_fetch_and_sub),
@@ -291,21 +291,21 @@ bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
BUILTIN_ROW(__sync_fetch_and_and),
BUILTIN_ROW(__sync_fetch_and_xor),
BUILTIN_ROW(__sync_fetch_and_nand),
-
+
BUILTIN_ROW(__sync_add_and_fetch),
BUILTIN_ROW(__sync_sub_and_fetch),
BUILTIN_ROW(__sync_and_and_fetch),
BUILTIN_ROW(__sync_or_and_fetch),
BUILTIN_ROW(__sync_xor_and_fetch),
BUILTIN_ROW(__sync_nand_and_fetch),
-
+
BUILTIN_ROW(__sync_val_compare_and_swap),
BUILTIN_ROW(__sync_bool_compare_and_swap),
BUILTIN_ROW(__sync_lock_test_and_set),
BUILTIN_ROW(__sync_lock_release)
};
-#undef BUILTIN_ROW
-
+#undef BUILTIN_ROW
+
// Determine the index of the size.
unsigned SizeIndex;
switch (Context.getTypeSize(ValType)/8) {
@@ -318,7 +318,7 @@ bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
<< FirstArg->getType() << FirstArg->getSourceRange();
}
-
+
// Each of these builtins has one pointer argument, followed by some number of
// values (0, 1 or 2) followed by a potentially empty varags list of stuff
// that we ignore. Find out which row of BuiltinIndices to read from as well
@@ -333,14 +333,14 @@ bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
-
+
case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
case Builtin::BI__sync_or_and_fetch: BuiltinIndex = 9; break;
case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
-
+
case Builtin::BI__sync_val_compare_and_swap:
BuiltinIndex = 12;
NumFixed = 2;
@@ -355,37 +355,37 @@ bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
NumFixed = 0;
break;
}
-
+
// Now that we know how many fixed arguments we expect, first check that we
// have at least that many.
if (TheCall->getNumArgs() < 1+NumFixed)
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
<< 0 << TheCall->getCallee()->getSourceRange();
-
-
+
+
// Get the decl for the concrete builtin from this, we can tell what the
// concrete integer type we should convert to is.
unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
- FunctionDecl *NewBuiltinDecl =
+ FunctionDecl *NewBuiltinDecl =
cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
TUScope, false, DRE->getLocStart()));
const FunctionProtoType *BuiltinFT =
NewBuiltinDecl->getType()->getAsFunctionProtoType();
ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
-
+
// If the first type needs to be converted (e.g. void** -> int*), do it now.
if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_Unknown,
/*isLvalue=*/false);
TheCall->setArg(0, FirstArg);
}
-
+
// Next, walk the valid ones promoting to the right type.
for (unsigned i = 0; i != NumFixed; ++i) {
Expr *Arg = TheCall->getArg(i+1);
-
+
// If the argument is an implicit cast, then there was a promotion due to
// "...", just remove it now.
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
@@ -394,7 +394,7 @@ bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
ICE->Destroy(Context);
TheCall->setArg(i+1, Arg);
}
-
+
// GCC does an implicit conversion to the pointer or integer ValType. This
// can fail in some cases (1i -> int**), check for this error case now.
CastExpr::CastKind Kind = CastExpr::CK_Unknown;
@@ -402,27 +402,27 @@ bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind,
ConversionDecl))
return true;
-
+
// Okay, we have something that *can* be converted to the right type. Check
// to see if there is a potentially weird extension going on here. This can
// happen when you do an atomic operation on something like an char* and
// pass in 42. The 42 gets converted to char. This is even more strange
// for things like 45.123 -> char, etc.
- // FIXME: Do this check.
+ // FIXME: Do this check.
ImpCastExprToType(Arg, ValType, Kind, /*isLvalue=*/false);
TheCall->setArg(i+1, Arg);
}
-
+
// Switch the DeclRefExpr to refer to the new decl.
DRE->setDecl(NewBuiltinDecl);
DRE->setType(NewBuiltinDecl->getType());
-
+
// Set the callee in the CallExpr.
// FIXME: This leaks the original parens and implicit casts.
Expr *PromotedCall = DRE;
UsualUnaryConversions(PromotedCall);
TheCall->setCallee(PromotedCall);
-
+
// Change the result type of the call to match the result type of the decl.
TheCall->setType(NewBuiltinDecl->getResultType());
@@ -433,7 +433,7 @@ bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
/// CheckObjCString - Checks that the argument to the builtin
/// CFString constructor is correct
/// FIXME: GCC currently emits the following warning:
-/// "warning: input conversion stopped due to an input byte that does not
+/// "warning: input conversion stopped due to an input byte that does not
/// belong to the input codeset UTF-8"
/// Note: It might also make sense to do the UTF-16 conversion here (would
/// simplify the backend).
@@ -446,10 +446,10 @@ bool Sema::CheckObjCString(Expr *Arg) {
<< Arg->getSourceRange();
return true;
}
-
+
const char *Data = Literal->getStrData();
unsigned Length = Literal->getByteLength();
-
+
for (unsigned i = 0; i < Length; ++i) {
if (!Data[i]) {
Diag(getLocationOfStringLiteralByte(Literal, i),
@@ -458,7 +458,7 @@ bool Sema::CheckObjCString(Expr *Arg) {
break;
}
}
-
+
return false;
}
@@ -470,7 +470,7 @@ bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
Diag(TheCall->getArg(2)->getLocStart(),
diag::err_typecheck_call_too_many_args)
<< 0 /*function call*/ << Fn->getSourceRange()
- << SourceRange(TheCall->getArg(2)->getLocStart(),
+ << SourceRange(TheCall->getArg(2)->getLocStart(),
(*(TheCall->arg_end()-1))->getLocEnd());
return true;
}
@@ -493,17 +493,17 @@ bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
} else {
isVariadic = getCurMethodDecl()->isVariadic();
}
-
+
if (!isVariadic) {
Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
return true;
}
-
+
// Verify that the second argument to the builtin is the last argument of the
// current function or method.
bool SecondArgIsLastNamedArgument = false;
const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
-
+
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
// FIXME: This isn't correct for methods (results in bogus warning).
@@ -518,9 +518,9 @@ bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
SecondArgIsLastNamedArgument = PV == LastArg;
}
}
-
+
if (!SecondArgIsLastNamedArgument)
- Diag(TheCall->getArg(1)->getLocStart(),
+ Diag(TheCall->getArg(1)->getLocStart(),
diag::warn_second_parameter_of_va_start_not_last_named_argument);
return false;
}
@@ -532,12 +532,12 @@ bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
<< 0 /*function call*/;
if (TheCall->getNumArgs() > 2)
- return Diag(TheCall->getArg(2)->getLocStart(),
+ return Diag(TheCall->getArg(2)->getLocStart(),
diag::err_typecheck_call_too_many_args)
<< 0 /*function call*/
<< SourceRange(TheCall->getArg(2)->getLocStart(),
(*(TheCall->arg_end()-1))->getLocEnd());
-
+
Expr *OrigArg0 = TheCall->getArg(0);
Expr *OrigArg1 = TheCall->getArg(1);
@@ -550,18 +550,18 @@ bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
// foo(...)".
TheCall->setArg(0, OrigArg0);
TheCall->setArg(1, OrigArg1);
-
+
if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
return false;
// If the common type isn't a real floating type, then the arguments were
// invalid for this operation.
if (!Res->isRealFloatingType())
- return Diag(OrigArg0->getLocStart(),
+ return Diag(OrigArg0->getLocStart(),
diag::err_typecheck_call_invalid_ordered_compare)
<< OrigArg0->getType() << OrigArg1->getType()
<< SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
-
+
return false;
}
@@ -572,23 +572,23 @@ bool Sema::SemaBuiltinUnaryFP(CallExpr *TheCall) {
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
<< 0 /*function call*/;
if (TheCall->getNumArgs() > 1)
- return Diag(TheCall->getArg(1)->getLocStart(),
+ return Diag(TheCall->getArg(1)->getLocStart(),
diag::err_typecheck_call_too_many_args)
<< 0 /*function call*/
<< SourceRange(TheCall->getArg(1)->getLocStart(),
(*(TheCall->arg_end()-1))->getLocEnd());
Expr *OrigArg = TheCall->getArg(0);
-
+
if (OrigArg->isTypeDependent())
return false;
// This operation requires a floating-point number
if (!OrigArg->getType()->isRealFloatingType())
- return Diag(OrigArg->getLocStart(),
+ return Diag(OrigArg->getLocStart(),
diag::err_typecheck_call_invalid_unary_fp)
<< OrigArg->getType() << OrigArg->getSourceRange();
-
+
return false;
}
@@ -600,7 +600,7 @@ bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
!TheCall->getArg(0)->isValueDependent() &&
!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
-
+
return false;
}
@@ -617,18 +617,18 @@ Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
!TheCall->getArg(1)->isTypeDependent()) {
QualType FAType = TheCall->getArg(0)->getType();
QualType SAType = TheCall->getArg(1)->getType();
-
+
if (!FAType->isVectorType() || !SAType->isVectorType()) {
Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
- << SourceRange(TheCall->getArg(0)->getLocStart(),
+ << SourceRange(TheCall->getArg(0)->getLocStart(),
TheCall->getArg(1)->getLocEnd());
return ExprError();
}
-
+
if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
Context.getCanonicalType(SAType).getUnqualifiedType()) {
Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
- << SourceRange(TheCall->getArg(0)->getLocStart(),
+ << SourceRange(TheCall->getArg(0)->getLocStart(),
TheCall->getArg(1)->getLocEnd());
return ExprError();
}
@@ -706,7 +706,7 @@ bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
if (!Arg->isIntegerConstantExpr(Result, Context))
return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
<< SourceRange(Arg->getLocStart(), Arg->getLocEnd());
-
+
// FIXME: gcc issues a warning and rewrites these to 0. These
// seems especially odd for the third argument since the default
// is 3.
@@ -732,8 +732,8 @@ bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
if (Arg->isTypeDependent())
return false;
- QualType ArgType = Arg->getType();
- const BuiltinType *BT = ArgType->getAsBuiltinType();
+ QualType ArgType = Arg->getType();
+ const BuiltinType *BT = ArgType->getAsBuiltinType();
llvm::APSInt Result(32);
if (!BT || BT->getKind() != BuiltinType::Int)
return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
@@ -797,10 +797,10 @@ bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
format_idx, firstDataArg);
}
-
+
case Stmt::DeclRefExprClass: {
const DeclRefExpr *DR = cast<DeclRefExpr>(E);
-
+
// As an exception, do not flag errors for variables binding to
// const string literals.
if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
@@ -810,17 +810,17 @@ bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
if (const ArrayType *AT = Context.getAsArrayType(T)) {
isConstant = AT->getElementType().isConstant(Context);
} else if (const PointerType *PT = T->getAs<PointerType>()) {
- isConstant = T.isConstant(Context) &&
+ isConstant = T.isConstant(Context) &&
PT->getPointeeType().isConstant(Context);
}
-
+
if (isConstant) {
const VarDecl *Def = 0;
if (const Expr *Init = VD->getDefinition(Def))
return SemaCheckStringLiteral(Init, TheCall,
HasVAListArg, format_idx, firstDataArg);
}
-
+
// For vprintf* functions (i.e., HasVAListArg==true), we add a
// special check to see if the format string is a function parameter
// of the function calling the printf function. If the function
@@ -843,55 +843,55 @@ bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
if (isa<ParmVarDecl>(VD))
return true;
}
-
+
return false;
}
case Stmt::CallExprClass: {
const CallExpr *CE = cast<CallExpr>(E);
- if (const ImplicitCastExpr *ICE
+ if (const ImplicitCastExpr *ICE
= dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
unsigned ArgIndex = FA->getFormatIdx();
const Expr *Arg = CE->getArg(ArgIndex - 1);
-
- return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
+
+ return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
format_idx, firstDataArg);
}
}
}
}
-
+
return false;
}
case Stmt::ObjCStringLiteralClass:
case Stmt::StringLiteralClass: {
const StringLiteral *StrE = NULL;
-
+
if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
StrE = ObjCFExpr->getString();
else
StrE = cast<StringLiteral>(E);
-
+
if (StrE) {
- CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
+ CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
firstDataArg);
return true;
}
-
+
return false;
}
-
+
default:
return false;
}
}
void
-Sema::CheckNonNullArguments(const NonNullAttr *NonNull, const CallExpr *TheCall)
-{
+Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
+ const CallExpr *TheCall) {
for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
i != e; ++i) {
const Expr *ArgExpr = TheCall->getArg(*i);
@@ -902,7 +902,7 @@ Sema::CheckNonNullArguments(const NonNullAttr *NonNull, const CallExpr *TheCall)
}
/// CheckPrintfArguments - Check calls to printf (and similar functions) for
-/// correct use of format strings.
+/// correct use of format strings.
///
/// HasVAListArg - A predicate indicating whether the printf-like
/// function is passed an explicit va_arg argument (e.g., vprintf)
@@ -951,30 +951,30 @@ Sema::CheckNonNullArguments(const NonNullAttr *NonNull, const CallExpr *TheCall)
///
/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
void
-Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
+Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
unsigned format_idx, unsigned firstDataArg) {
const Expr *Fn = TheCall->getCallee();
- // CHECK: printf-like function is called with no format string.
+ // CHECK: printf-like function is called with no format string.
if (format_idx >= TheCall->getNumArgs()) {
Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
<< Fn->getSourceRange();
return;
}
-
+
const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
-
+
// CHECK: format string is not a string literal.
- //
+ //
// Dynamically generated format strings are difficult to
// automatically vet at compile time. Requiring that format strings
// are string literals: (1) permits the checking of format strings by
// the compiler and thereby (2) can practically remove the source of
// many format string exploits.
- // Format string can be either ObjC string (e.g. @"%d") or
+ // Format string can be either ObjC string (e.g. @"%d") or
// C string (e.g. "%d")
- // ObjC string uses the same format specifiers as C string, so we can use
+ // ObjC string uses the same format specifiers as C string, so we can use
// the same format string checking logic for both ObjC and C strings.
if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
firstDataArg))
@@ -983,11 +983,11 @@ Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
// If there are no arguments specified, warn with -Wformat-security, otherwise
// warn only with -Wformat-nonliteral.
if (TheCall->getNumArgs() == format_idx+1)
- Diag(TheCall->getArg(format_idx)->getLocStart(),
+ Diag(TheCall->getArg(format_idx)->getLocStart(),
diag::warn_printf_nonliteral_noargs)
<< OrigFormatExpr->getSourceRange();
else
- Diag(TheCall->getArg(format_idx)->getLocStart(),
+ Diag(TheCall->getArg(format_idx)->getLocStart(),
diag::warn_printf_nonliteral)
<< OrigFormatExpr->getSourceRange();
}
@@ -1013,7 +1013,7 @@ void Sema::CheckPrintfString(const StringLiteral *FExpr,
// CHECK: empty format string?
unsigned StrLen = FExpr->getByteLength();
-
+
if (StrLen == 0) {
Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
<< OrigFormatExpr->getSourceRange();
@@ -1026,7 +1026,7 @@ void Sema::CheckPrintfString(const StringLiteral *FExpr,
state_OrdChr,
state_Conversion
} CurrentState = state_OrdChr;
-
+
// numConversions - The number of conversions seen so far. This is
// incremented as we traverse the format string.
unsigned numConversions = 0;
@@ -1039,17 +1039,17 @@ void Sema::CheckPrintfString(const StringLiteral *FExpr,
// Inspect the format string.
unsigned StrIdx = 0;
-
+
// LastConversionIdx - Index within the format string where we last saw
// a '%' character that starts a new format conversion.
unsigned LastConversionIdx = 0;
-
+
for (; StrIdx < StrLen; ++StrIdx) {
-
+
// Is the number of detected conversion conversions greater than
// the number of matching data arguments? If so, stop.
if (!HasVAListArg && numConversions > numDataArgs) break;
-
+
// Handle "\0"
if (Str[StrIdx] == '\0') {
// The string returned by getStrData() is not null-terminated,
@@ -1059,7 +1059,7 @@ void Sema::CheckPrintfString(const StringLiteral *FExpr,
<< OrigFormatExpr->getSourceRange();
return;
}
-
+
// Ordinary characters (not processing a format conversion).
if (CurrentState == state_OrdChr) {
if (Str[StrIdx] == '%') {
@@ -1071,10 +1071,10 @@ void Sema::CheckPrintfString(const StringLiteral *FExpr,
// Seen '%'. Now processing a format conversion.
switch (Str[StrIdx]) {
- // Handle dynamic precision or width specifier.
+ // Handle dynamic precision or width specifier.
case '*': {
++numConversions;
-
+
if (!HasVAListArg) {
if (numConversions > numDataArgs) {
SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
@@ -1085,39 +1085,39 @@ void Sema::CheckPrintfString(const StringLiteral *FExpr,
else
Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
<< OrigFormatExpr->getSourceRange();
-
+
// Don't do any more checking. We'll just emit spurious errors.
return;
}
-
+
// Perform type checking on width/precision specifier.
const Expr *E = TheCall->getArg(format_idx+numConversions);
if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
if (BT->getKind() == BuiltinType::Int)
break;
-
+
SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
-
+
if (Str[StrIdx-1] == '.')
Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
<< E->getType() << E->getSourceRange();
else
Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
<< E->getType() << E->getSourceRange();
-
- break;
+
+ break;
}
}
-
+
// Characters which can terminate a format conversion
// (e.g. "%d"). Characters that specify length modifiers or
// other flags are handled by the default case below.
//
- // FIXME: additional checks will go into the following cases.
+ // FIXME: additional checks will go into the following cases.
case 'i':
case 'd':
- case 'o':
- case 'u':
+ case 'o':
+ case 'u':
case 'x':
case 'X':
case 'D':
@@ -1135,7 +1135,7 @@ void Sema::CheckPrintfString(const StringLiteral *FExpr,
case 'C':
case 'S':
case 's':
- case 'p':
+ case 'p':
++numConversions;
CurrentState = state_OrdChr;
break;
@@ -1151,21 +1151,21 @@ void Sema::CheckPrintfString(const StringLiteral *FExpr,
CurrentState = state_OrdChr;
SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
LastConversionIdx);
-
+
Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
break;
}
-
+
// Handle "%@"
case '@':
// %@ is allowed in ObjC format strings only.
- if(ObjCFExpr != NULL)
- CurrentState = state_OrdChr;
+ if (ObjCFExpr != NULL)
+ CurrentState = state_OrdChr;
else {
// Issue a warning: invalid format conversion.
- SourceLocation Loc =
+ SourceLocation Loc =
getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
-
+
Diag(Loc, diag::warn_printf_invalid_conversion)
<< std::string(Str+LastConversionIdx,
Str+std::min(LastConversionIdx+2, StrLen))
@@ -1173,7 +1173,7 @@ void Sema::CheckPrintfString(const StringLiteral *FExpr,
}
++numConversions;
break;
-
+
// Handle "%%"
case '%':
// Sanity check: Was the first "%" character the previous one?
@@ -1181,23 +1181,23 @@ void Sema::CheckPrintfString(const StringLiteral *FExpr,
// conversion, and that the current "%" character is the start
// of a new conversion.
if (StrIdx - LastConversionIdx == 1)
- CurrentState = state_OrdChr;
+ CurrentState = state_OrdChr;
else {
// Issue a warning: invalid format conversion.
SourceLocation Loc =
getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
-
+
Diag(Loc, diag::warn_printf_invalid_conversion)
<< std::string(Str+LastConversionIdx, Str+StrIdx)
<< OrigFormatExpr->getSourceRange();
-
+
// This conversion is broken. Advance to the next format
// conversion.
LastConversionIdx = StrIdx;
++numConversions;
}
break;
-
+
default:
// This case catches all other characters: flags, widths, etc.
// We should eventually process those as well.
@@ -1209,21 +1209,21 @@ void Sema::CheckPrintfString(const StringLiteral *FExpr,
// Issue a warning: invalid format conversion.
SourceLocation Loc =
getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
-
+
Diag(Loc, diag::warn_printf_invalid_conversion)
<< std::string(Str+LastConversionIdx,
Str+std::min(LastConversionIdx+2, StrLen))
<< OrigFormatExpr->getSourceRange();
return;
}
-
+
if (!HasVAListArg) {
// CHECK: Does the number of format conversions exceed the number
// of data arguments?
if (numConversions > numDataArgs) {
SourceLocation Loc =
getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
-
+
Diag(Loc, diag::warn_printf_insufficient_data_args)
<< OrigFormatExpr->getSourceRange();
}
@@ -1246,13 +1246,13 @@ static DeclRefExpr* EvalAddr(Expr* E);
void
Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
SourceLocation ReturnLoc) {
-
+
// Perform checking for returned stack addresses.
if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
if (DeclRefExpr *DR = EvalAddr(RetValExp))
Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
<< DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
-
+
// Skip over implicit cast expressions when checking for block expressions.
RetValExp = RetValExp->IgnoreParenCasts();
@@ -1279,7 +1279,7 @@ Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
///
/// EvalAddr processes expressions that are pointers that are used as
/// references (and not L-values). EvalVal handles all other values.
-/// At the base case of the recursion is a check for a DeclRefExpr* in
+/// At the base case of the recursion is a check for a DeclRefExpr* in
/// the refers to a stack variable.
///
/// This implementation handles:
@@ -1296,7 +1296,7 @@ static DeclRefExpr* EvalAddr(Expr *E) {
E->getType()->isBlockPointerType() ||
E->getType()->isObjCQualifiedIdType()) &&
"EvalAddr only works on pointers");
-
+
// Our "symbolic interpreter" is just a dispatch off the currently
// viewed AST node. We then recursively traverse the AST by calling
// EvalAddr and EvalVal appropriately.
@@ -1309,28 +1309,28 @@ static DeclRefExpr* EvalAddr(Expr *E) {
// The only unary operator that make sense to handle here
// is AddrOf. All others don't make sense as pointers.
UnaryOperator *U = cast<UnaryOperator>(E);
-
+
if (U->getOpcode() == UnaryOperator::AddrOf)
return EvalVal(U->getSubExpr());
else
return NULL;
}
-
+
case Stmt::BinaryOperatorClass: {
// Handle pointer arithmetic. All other binary operators are not valid
// in this context.
BinaryOperator *B = cast<BinaryOperator>(E);
BinaryOperator::Opcode op = B->getOpcode();
-
+
if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
return NULL;
-
+
Expr *Base = B->getLHS();
// Determine which argument is the real pointer base. It could be
// the RHS argument instead of the LHS.
if (!Base->getType()->isPointerType()) Base = B->getRHS();
-
+
assert (Base->getType()->isPointerType());
return EvalAddr(Base);
}
@@ -1339,7 +1339,7 @@ static DeclRefExpr* EvalAddr(Expr *E) {
// valid DeclRefExpr*s. If one of them is valid, we return it.
case Stmt::ConditionalOperatorClass: {
ConditionalOperator *C = cast<ConditionalOperator>(E);
-
+
// Handle the GNU extension for missing LHS.
if (Expr *lhsExpr = C->getLHS())
if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
@@ -1347,7 +1347,7 @@ static DeclRefExpr* EvalAddr(Expr *E) {
return EvalAddr(C->getRHS());
}
-
+
// For casts, we need to handle conversions from arrays to
// pointer values, and pointer-to-pointer conversions.
case Stmt::ImplicitCastExprClass:
@@ -1355,7 +1355,7 @@ static DeclRefExpr* EvalAddr(Expr *E) {
case Stmt::CXXFunctionalCastExprClass: {
Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
QualType T = SubExpr->getType();
-
+
if (SubExpr->getType()->isPointerType() ||
SubExpr->getType()->isBlockPointerType() ||
SubExpr->getType()->isObjCQualifiedIdType())
@@ -1365,7 +1365,7 @@ static DeclRefExpr* EvalAddr(Expr *E) {
else
return 0;
}
-
+
// C++ casts. For dynamic casts, static casts, and const casts, we
// are always converting from a pointer-to-pointer, so we just blow
// through the cast. In the case the dynamic cast doesn't fail (and
@@ -1373,9 +1373,9 @@ static DeclRefExpr* EvalAddr(Expr *E) {
// where we return the address of a stack variable. For Reinterpre
// FIXME: The comment about is wrong; we're not always converting
// from pointer to pointer. I'm guessing that this code should also
- // handle references to objects.
- case Stmt::CXXStaticCastExprClass:
- case Stmt::CXXDynamicCastExprClass:
+ // handle references to objects.
+ case Stm