aboutsummaryrefslogtreecommitdiff
path: root/lib/StaticAnalyzer
diff options
context:
space:
mode:
authorAnna Zaks <ganna@apple.com>2011-12-05 18:58:30 +0000
committerAnna Zaks <ganna@apple.com>2011-12-05 18:58:30 +0000
commit5344baa704f42b22d9df25c24ffbbf6b4716603b (patch)
treebec0b29a373929c4d0555696500dc284bcb15cf3 /lib/StaticAnalyzer
parent76462f00854171d2aa3ebc34f9aac1c60021b0ea (diff)
[analyzer] Unify SymbolVal and SymExprVal under a single SymbolVal
class. We are going into the direction of handling SymbolData and other SymExpr uniformly, so it makes less sense to keep two different SVal classes. For example, the checkers would have to take an extra step to reason about each type separately. The classes have the same members, we were just using the SVal kind field for easy differentiation in 3 switch statements. The switch statements look more ugly now, but we can make the code more readable in other ways, for example, moving some code into separate functions. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@145833 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/StaticAnalyzer')
-rw-r--r--lib/StaticAnalyzer/Core/ExprEngine.cpp3
-rw-r--r--lib/StaticAnalyzer/Core/SValBuilder.cpp4
-rw-r--r--lib/StaticAnalyzer/Core/SVals.cpp17
-rw-r--r--lib/StaticAnalyzer/Core/SimpleConstraintManager.cpp53
-rw-r--r--lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp279
5 files changed, 175 insertions, 181 deletions
diff --git a/lib/StaticAnalyzer/Core/ExprEngine.cpp b/lib/StaticAnalyzer/Core/ExprEngine.cpp
index f5d26c9645..9b0e66fffb 100644
--- a/lib/StaticAnalyzer/Core/ExprEngine.cpp
+++ b/lib/StaticAnalyzer/Core/ExprEngine.cpp
@@ -1665,7 +1665,8 @@ void ExprEngine::evalEagerlyAssume(ExplodedNodeSet &Dst, ExplodedNodeSet &Src,
const ProgramState *state = Pred->getState();
SVal V = state->getSVal(Ex);
- if (nonloc::SymExprVal *SEV = dyn_cast<nonloc::SymExprVal>(&V)) {
+ nonloc::SymbolVal *SEV = dyn_cast<nonloc::SymbolVal>(&V);
+ if (SEV && SEV->isExpression()) {
const std::pair<const ProgramPointTag *, const ProgramPointTag*> &tags =
getEagerlyAssumeTags();
diff --git a/lib/StaticAnalyzer/Core/SValBuilder.cpp b/lib/StaticAnalyzer/Core/SValBuilder.cpp
index 331f5934b5..617e0ddc72 100644
--- a/lib/StaticAnalyzer/Core/SValBuilder.cpp
+++ b/lib/StaticAnalyzer/Core/SValBuilder.cpp
@@ -45,7 +45,7 @@ NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
// BasicValueFactory again.
assert(lhs);
assert(!Loc::isLocType(type));
- return nonloc::SymExprVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
+ return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
}
NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
@@ -53,7 +53,7 @@ NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
assert(lhs && rhs);
assert(SymMgr.getType(lhs) == SymMgr.getType(rhs));
assert(!Loc::isLocType(type));
- return nonloc::SymExprVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
+ return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
}
diff --git a/lib/StaticAnalyzer/Core/SVals.cpp b/lib/StaticAnalyzer/Core/SVals.cpp
index 6b71f184aa..4bdea1d9e1 100644
--- a/lib/StaticAnalyzer/Core/SVals.cpp
+++ b/lib/StaticAnalyzer/Core/SVals.cpp
@@ -98,8 +98,8 @@ SymbolRef SVal::getAsSymbol() const {
if (const nonloc::SymbolVal *X = dyn_cast<nonloc::SymbolVal>(this))
return X->getSymbol();
- if (const nonloc::SymExprVal *X = dyn_cast<nonloc::SymExprVal>(this))
- if (SymbolRef Y = X->getSymbolicExpression())
+ if (const nonloc::SymbolVal *X = dyn_cast<nonloc::SymbolVal>(this))
+ if (SymbolRef Y = X->getSymbol())
return Y;
return getAsLocSymbol();
@@ -108,8 +108,8 @@ SymbolRef SVal::getAsSymbol() const {
/// getAsSymbolicExpression - If this Sval wraps a symbolic expression then
/// return that expression. Otherwise return NULL.
const SymExpr *SVal::getAsSymbolicExpression() const {
- if (const nonloc::SymExprVal *X = dyn_cast<nonloc::SymExprVal>(this))
- return X->getSymbolicExpression();
+ if (const nonloc::SymbolVal *X = dyn_cast<nonloc::SymbolVal>(this))
+ return X->getSymbol();
return getAsSymbol();
}
@@ -305,13 +305,8 @@ void NonLoc::dumpToStream(raw_ostream &os) const {
<< C.getValue().getBitWidth() << 'b';
break;
}
- case nonloc::SymbolValKind:
- os << '$' << cast<nonloc::SymbolVal>(this)->getSymbol();
- break;
- case nonloc::SymExprValKind: {
- const nonloc::SymExprVal& C = *cast<nonloc::SymExprVal>(this);
- const SymExpr *SE = C.getSymbolicExpression();
- os << SE;
+ case nonloc::SymbolValKind: {
+ os << cast<nonloc::SymbolVal>(this)->getSymbol();
break;
}
case nonloc::LocAsIntegerKind: {
diff --git a/lib/StaticAnalyzer/Core/SimpleConstraintManager.cpp b/lib/StaticAnalyzer/Core/SimpleConstraintManager.cpp
index 8b7c2c1398..6fa7bb1ec5 100644
--- a/lib/StaticAnalyzer/Core/SimpleConstraintManager.cpp
+++ b/lib/StaticAnalyzer/Core/SimpleConstraintManager.cpp
@@ -23,11 +23,9 @@ namespace ento {
SimpleConstraintManager::~SimpleConstraintManager() {}
bool SimpleConstraintManager::canReasonAbout(SVal X) const {
- if (nonloc::SymExprVal *SymVal = dyn_cast<nonloc::SymExprVal>(&X)) {
- const SymExpr *SE = SymVal->getSymbolicExpression();
-
- if (isa<SymbolData>(SE))
- return true;
+ nonloc::SymbolVal *SymVal = dyn_cast<nonloc::SymbolVal>(&X);
+ if (SymVal && SymVal->isExpression()) {
+ const SymExpr *SE = SymVal->getSymbol();
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
switch (SIE->getOpcode()) {
@@ -170,34 +168,33 @@ const ProgramState *SimpleConstraintManager::assumeAux(const ProgramState *state
case nonloc::SymbolValKind: {
nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
SymbolRef sym = SV.getSymbol();
- return assumeAuxForSymbol(state, sym, Assumption);
- }
-
- case nonloc::SymExprValKind: {
- nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond);
-
- SymbolRef sym = V.getSymbolicExpression();
assert(sym);
- // We can only simplify expressions whose RHS is an integer.
- const SymIntExpr *SE = dyn_cast<SymIntExpr>(sym);
- if (!SE)
+ // Handle SymbolData.
+ if (!SV.isExpression()) {
return assumeAuxForSymbol(state, sym, Assumption);
- BinaryOperator::Opcode op = SE->getOpcode();
- // Implicitly compare non-comparison expressions to 0.
- if (!BinaryOperator::isComparisonOp(op)) {
- QualType T = SymMgr.getType(SE);
- const llvm::APSInt &zero = BasicVals.getValue(0, T);
- op = (Assumption ? BO_NE : BO_EQ);
- return assumeSymRel(state, SE, op, zero);
- }
+ // Handle symbolic expression.
+ } else {
+ // We can only simplify expressions whose RHS is an integer.
+ const SymIntExpr *SE = dyn_cast<SymIntExpr>(sym);
+ if (!SE)
+ return assumeAuxForSymbol(state, sym, Assumption);
+
+ BinaryOperator::Opcode op = SE->getOpcode();
+ // Implicitly compare non-comparison expressions to 0.
+ if (!BinaryOperator::isComparisonOp(op)) {
+ QualType T = SymMgr.getType(SE);
+ const llvm::APSInt &zero = BasicVals.getValue(0, T);
+ op = (Assumption ? BO_NE : BO_EQ);
+ return assumeSymRel(state, SE, op, zero);
+ }
+ // From here on out, op is the real comparison we'll be testing.
+ if (!Assumption)
+ op = NegateComparison(op);
- // From here on out, op is the real comparison we'll be testing.
- if (!Assumption)
- op = NegateComparison(op);
-
- return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
+ return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
+ }
}
case nonloc::ConcreteIntKind: {
diff --git a/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp b/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp
index 2e6f33353e..495f6f20b6 100644
--- a/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp
+++ b/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp
@@ -259,15 +259,11 @@ SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
// Idempotent ops (like a*1) can still change the type of an expression.
// Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
// dirty work.
- if (isIdempotent) {
- if (isa<SymbolData>(LHS))
+ if (isIdempotent)
return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
- else
- return evalCastFromNonLoc(nonloc::SymExprVal(LHS), resultTy);
- }
// If we reach this point, the expression cannot be simplified.
- // Make a SymExprVal for the entire thing.
+ // Make a SymbolVal for the entire expression.
return makeNonLoc(LHS, op, RHS, resultTy);
}
@@ -326,90 +322,6 @@ SVal SimpleSValBuilder::evalBinOpNN(const ProgramState *state,
}
}
}
- case nonloc::SymExprValKind: {
- nonloc::SymExprVal *selhs = cast<nonloc::SymExprVal>(&lhs);
-
- // Only handle LHS of the form "$sym op constant", at least for now.
- const SymIntExpr *symIntExpr =
- dyn_cast<SymIntExpr>(selhs->getSymbolicExpression());
-
- if (!symIntExpr)
- return generateUnknownVal(state, op, lhs, rhs, resultTy);
-
- // Is this a logical not? (!x is represented as x == 0.)
- if (op == BO_EQ && rhs.isZeroConstant()) {
- // We know how to negate certain expressions. Simplify them here.
-
- BinaryOperator::Opcode opc = symIntExpr->getOpcode();
- switch (opc) {
- default:
- // We don't know how to negate this operation.
- // Just handle it as if it were a normal comparison to 0.
- break;
- case BO_LAnd:
- case BO_LOr:
- llvm_unreachable("Logical operators handled by branching logic.");
- case BO_Assign:
- case BO_MulAssign:
- case BO_DivAssign:
- case BO_RemAssign:
- case BO_AddAssign:
- case BO_SubAssign:
- case BO_ShlAssign:
- case BO_ShrAssign:
- case BO_AndAssign:
- case BO_XorAssign:
- case BO_OrAssign:
- case BO_Comma:
- llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
- case BO_PtrMemD:
- case BO_PtrMemI:
- llvm_unreachable("Pointer arithmetic not handled here.");
- case BO_LT:
- case BO_GT:
- case BO_LE:
- case BO_GE:
- case BO_EQ:
- case BO_NE:
- // Negate the comparison and make a value.
- opc = NegateComparison(opc);
- assert(symIntExpr->getType(Context) == resultTy);
- return makeNonLoc(symIntExpr->getLHS(), opc,
- symIntExpr->getRHS(), resultTy);
- }
- }
-
- // For now, only handle expressions whose RHS is a constant.
- const nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs);
- if (!rhsInt)
- return generateUnknownVal(state, op, lhs, rhs, resultTy);
-
- // If both the LHS and the current expression are additive,
- // fold their constants.
- if (BinaryOperator::isAdditiveOp(op)) {
- BinaryOperator::Opcode lop = symIntExpr->getOpcode();
- if (BinaryOperator::isAdditiveOp(lop)) {
- // resultTy may not be the best type to convert to, but it's
- // probably the best choice in expressions with mixed type
- // (such as x+1U+2LL). The rules for implicit conversions should
- // choose a reasonable type to preserve the expression, and will
- // at least match how the value is going to be used.
- const llvm::APSInt &first =
- BasicVals.Convert(resultTy, symIntExpr->getRHS());
- const llvm::APSInt &second =
- BasicVals.Convert(resultTy, rhsInt->getValue());
- const llvm::APSInt *newRHS;
- if (lop == op)
- newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
- else
- newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
- return MakeSymIntVal(symIntExpr->getLHS(), lop, *newRHS, resultTy);
- }
- }
-
- // Otherwise, make a SymExprVal out of the expression.
- return MakeSymIntVal(symIntExpr, op, rhsInt->getValue(), resultTy);
- }
case nonloc::ConcreteIntKind: {
const nonloc::ConcreteInt& lhsInt = cast<nonloc::ConcreteInt>(lhs);
@@ -475,62 +387,151 @@ SVal SimpleSValBuilder::evalBinOpNN(const ProgramState *state,
}
}
case nonloc::SymbolValKind: {
- nonloc::SymbolVal *slhs = cast<nonloc::SymbolVal>(&lhs);
- SymbolRef Sym = slhs->getSymbol();
- QualType lhsType = Sym->getType(Context);
-
- // The conversion type is usually the result type, but not in the case
- // of relational expressions.
- QualType conversionType = resultTy;
- if (BinaryOperator::isRelationalOp(op))
- conversionType = lhsType;
-
- // Does the symbol simplify to a constant? If so, "fold" the constant
- // by setting 'lhs' to a ConcreteInt and try again.
- if (lhsType->isIntegerType())
- if (const llvm::APSInt *Constant = state->getSymVal(Sym)) {
- // The symbol evaluates to a constant. If necessary, promote the
- // folded constant (LHS) to the result type.
- const llvm::APSInt &lhs_I = BasicVals.Convert(conversionType,
- *Constant);
- lhs = nonloc::ConcreteInt(lhs_I);
-
- // Also promote the RHS (if necessary).
-
- // For shifts, it is not necessary to promote the RHS.
- if (BinaryOperator::isShiftOp(op))
- continue;
-
- // Other operators: do an implicit conversion. This shouldn't be
- // necessary once we support truncation/extension of symbolic values.
- if (nonloc::ConcreteInt *rhs_I = dyn_cast<nonloc::ConcreteInt>(&rhs)){
- rhs = nonloc::ConcreteInt(BasicVals.Convert(conversionType,
- rhs_I->getValue()));
+ nonloc::SymbolVal *selhs = cast<nonloc::SymbolVal>(&lhs);
+
+ // LHS is a symbolic expression.
+ if (selhs->isExpression()) {
+
+ // Only handle LHS of the form "$sym op constant", at least for now.
+ const SymIntExpr *symIntExpr =
+ dyn_cast<SymIntExpr>(selhs->getSymbol());
+
+ if (!symIntExpr)
+ return generateUnknownVal(state, op, lhs, rhs, resultTy);
+
+ // Is this a logical not? (!x is represented as x == 0.)
+ if (op == BO_EQ && rhs.isZeroConstant()) {
+ // We know how to negate certain expressions. Simplify them here.
+
+ BinaryOperator::Opcode opc = symIntExpr->getOpcode();
+ switch (opc) {
+ default:
+ // We don't know how to negate this operation.
+ // Just handle it as if it were a normal comparison to 0.
+ break;
+ case BO_LAnd:
+ case BO_LOr:
+ llvm_unreachable("Logical operators handled by branching logic.");
+ case BO_Assign:
+ case BO_MulAssign:
+ case BO_DivAssign:
+ case BO_RemAssign:
+ case BO_AddAssign:
+ case BO_SubAssign:
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ case BO_AndAssign:
+ case BO_XorAssign:
+ case BO_OrAssign:
+ case BO_Comma:
+ llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ llvm_unreachable("Pointer arithmetic not handled here.");
+ case BO_LT:
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ:
+ case BO_NE:
+ // Negate the comparison and make a value.
+ opc = NegateComparison(opc);
+ assert(symIntExpr->getType(Context) == resultTy);
+ return makeNonLoc(symIntExpr->getLHS(), opc,
+ symIntExpr->getRHS(), resultTy);
}
-
- continue;
}
- // Is the RHS a symbol we can simplify?
- if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
- SymbolRef RSym = srhs->getSymbol();
- if (RSym->getType(Context)->isIntegerType()) {
- if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
- // The symbol evaluates to a constant.
- const llvm::APSInt &rhs_I = BasicVals.Convert(conversionType,
- *Constant);
- rhs = nonloc::ConcreteInt(rhs_I);
+ // For now, only handle expressions whose RHS is a constant.
+ const nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs);
+ if (!rhsInt)
+ return generateUnknownVal(state, op, lhs, rhs, resultTy);
+
+ // If both the LHS and the current expression are additive,
+ // fold their constants.
+ if (BinaryOperator::isAdditiveOp(op)) {
+ BinaryOperator::Opcode lop = symIntExpr->getOpcode();
+ if (BinaryOperator::isAdditiveOp(lop)) {
+ // resultTy may not be the best type to convert to, but it's
+ // probably the best choice in expressions with mixed type
+ // (such as x+1U+2LL). The rules for implicit conversions should
+ // choose a reasonable type to preserve the expression, and will
+ // at least match how the value is going to be used.
+ const llvm::APSInt &first =
+ BasicVals.Convert(resultTy, symIntExpr->getRHS());
+ const llvm::APSInt &second =
+ BasicVals.Convert(resultTy, rhsInt->getValue());
+ const llvm::APSInt *newRHS;
+ if (lop == op)
+ newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
+ else
+ newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
+ return MakeSymIntVal(symIntExpr->getLHS(), lop, *newRHS, resultTy);
}
}
- }
- if (isa<nonloc::ConcreteInt>(rhs)) {
- return MakeSymIntVal(slhs->getSymbol(), op,
- cast<nonloc::ConcreteInt>(rhs).getValue(),
- resultTy);
- }
+ // Otherwise, make a SymbolVal out of the expression.
+ return MakeSymIntVal(symIntExpr, op, rhsInt->getValue(), resultTy);
- return generateUnknownVal(state, op, lhs, rhs, resultTy);
+ // LHS is a simple symbol.
+ } else {
+ nonloc::SymbolVal *slhs = cast<nonloc::SymbolVal>(&lhs);
+ SymbolRef Sym = slhs->getSymbol();
+ QualType lhsType = Sym->getType(Context);
+
+ // The conversion type is usually the result type, but not in the case
+ // of relational expressions.
+ QualType conversionType = resultTy;
+ if (BinaryOperator::isRelationalOp(op))
+ conversionType = lhsType;
+
+ // Does the symbol simplify to a constant? If so, "fold" the constant
+ // by setting 'lhs' to a ConcreteInt and try again.
+ if (lhsType->isIntegerType())
+ if (const llvm::APSInt *Constant = state->getSymVal(Sym)) {
+ // The symbol evaluates to a constant. If necessary, promote the
+ // folded constant (LHS) to the result type.
+ const llvm::APSInt &lhs_I = BasicVals.Convert(conversionType,
+ *Constant);
+ lhs = nonloc::ConcreteInt(lhs_I);
+
+ // Also promote the RHS (if necessary).
+
+ // For shifts, it is not necessary to promote the RHS.
+ if (BinaryOperator::isShiftOp(op))
+ continue;
+
+ // Other operators: do an implicit conversion. This shouldn't be
+ // necessary once we support truncation/extension of symbolic values.
+ if (nonloc::ConcreteInt *rhs_I = dyn_cast<nonloc::ConcreteInt>(&rhs)){
+ rhs = nonloc::ConcreteInt(BasicVals.Convert(conversionType,
+ rhs_I->getValue()));
+ }
+
+ continue;
+ }
+
+ // Is the RHS a symbol we can simplify?
+ if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
+ SymbolRef RSym = srhs->getSymbol();
+ if (RSym->getType(Context)->isIntegerType()) {
+ if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
+ // The symbol evaluates to a constant.
+ const llvm::APSInt &rhs_I = BasicVals.Convert(conversionType,
+ *Constant);
+ rhs = nonloc::ConcreteInt(rhs_I);
+ }
+ }
+ }
+
+ if (isa<nonloc::ConcreteInt>(rhs)) {
+ return MakeSymIntVal(slhs->getSymbol(), op,
+ cast<nonloc::ConcreteInt>(rhs).getValue(),
+ resultTy);
+ }
+
+ return generateUnknownVal(state, op, lhs, rhs, resultTy);
+ }
}
}
}