aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/TargetABIInfo.cpp
diff options
context:
space:
mode:
authorAnton Korobeynikov <asl@math.spbu.ru>2010-01-10 12:57:30 +0000
committerAnton Korobeynikov <asl@math.spbu.ru>2010-01-10 12:57:30 +0000
commit82bac50fc0ab125ff5b4308ee91a731e3761eb63 (patch)
tree4d5f50cb185a298c40d6ced0f5e3b6d7b43d09ec /lib/CodeGen/TargetABIInfo.cpp
parentdbdaf83779e2ea1330686c5210b340c35d306bba (diff)
Rename file to generalization in next commits
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@93117 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/TargetABIInfo.cpp')
-rw-r--r--lib/CodeGen/TargetABIInfo.cpp1821
1 files changed, 0 insertions, 1821 deletions
diff --git a/lib/CodeGen/TargetABIInfo.cpp b/lib/CodeGen/TargetABIInfo.cpp
deleted file mode 100644
index 863a297cc6..0000000000
--- a/lib/CodeGen/TargetABIInfo.cpp
+++ /dev/null
@@ -1,1821 +0,0 @@
-//===---- TargetABIInfo.cpp - Encapsulate target ABI details ----*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// These classes wrap the information about a call or function
-// definition used to handle ABI compliancy.
-//
-//===----------------------------------------------------------------------===//
-
-#include "ABIInfo.h"
-#include "CodeGenFunction.h"
-#include "clang/AST/RecordLayout.h"
-#include "llvm/Type.h"
-#include "llvm/ADT/Triple.h"
-#include "llvm/Support/raw_ostream.h"
-using namespace clang;
-using namespace CodeGen;
-
-ABIInfo::~ABIInfo() {}
-
-void ABIArgInfo::dump() const {
- llvm::raw_ostream &OS = llvm::errs();
- OS << "(ABIArgInfo Kind=";
- switch (TheKind) {
- case Direct:
- OS << "Direct";
- break;
- case Extend:
- OS << "Extend";
- break;
- case Ignore:
- OS << "Ignore";
- break;
- case Coerce:
- OS << "Coerce Type=";
- getCoerceToType()->print(OS);
- break;
- case Indirect:
- OS << "Indirect Align=" << getIndirectAlign();
- break;
- case Expand:
- OS << "Expand";
- break;
- }
- OS << ")\n";
-}
-
-static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
-
-/// isEmptyField - Return true iff a the field is "empty", that is it
-/// is an unnamed bit-field or an (array of) empty record(s).
-static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
- bool AllowArrays) {
- if (FD->isUnnamedBitfield())
- return true;
-
- QualType FT = FD->getType();
-
- // Constant arrays of empty records count as empty, strip them off.
- if (AllowArrays)
- while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
- FT = AT->getElementType();
-
- return isEmptyRecord(Context, FT, AllowArrays);
-}
-
-/// isEmptyRecord - Return true iff a structure contains only empty
-/// fields. Note that a structure with a flexible array member is not
-/// considered empty.
-static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
- const RecordType *RT = T->getAs<RecordType>();
- if (!RT)
- return 0;
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return false;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i)
- if (!isEmptyField(Context, *i, AllowArrays))
- return false;
- return true;
-}
-
-/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
-/// a non-trivial destructor or a non-trivial copy constructor.
-static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
- const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
- if (!RD)
- return false;
-
- return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
-}
-
-/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
-/// a record type with either a non-trivial destructor or a non-trivial copy
-/// constructor.
-static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
- const RecordType *RT = T->getAs<RecordType>();
- if (!RT)
- return false;
-
- return hasNonTrivialDestructorOrCopyConstructor(RT);
-}
-
-/// isSingleElementStruct - Determine if a structure is a "single
-/// element struct", i.e. it has exactly one non-empty field or
-/// exactly one field which is itself a single element
-/// struct. Structures with flexible array members are never
-/// considered single element structs.
-///
-/// \return The field declaration for the single non-empty field, if
-/// it exists.
-static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
- const RecordType *RT = T->getAsStructureType();
- if (!RT)
- return 0;
-
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return 0;
-
- const Type *Found = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- const FieldDecl *FD = *i;
- QualType FT = FD->getType();
-
- // Ignore empty fields.
- if (isEmptyField(Context, FD, true))
- continue;
-
- // If we already found an element then this isn't a single-element
- // struct.
- if (Found)
- return 0;
-
- // Treat single element arrays as the element.
- while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
- if (AT->getSize().getZExtValue() != 1)
- break;
- FT = AT->getElementType();
- }
-
- if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
- Found = FT.getTypePtr();
- } else {
- Found = isSingleElementStruct(FT, Context);
- if (!Found)
- return 0;
- }
- }
-
- return Found;
-}
-
-static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
- if (!Ty->getAs<BuiltinType>() && !Ty->isAnyPointerType() &&
- !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
- !Ty->isBlockPointerType())
- return false;
-
- uint64_t Size = Context.getTypeSize(Ty);
- return Size == 32 || Size == 64;
-}
-
-/// canExpandIndirectArgument - Test whether an argument type which is to be
-/// passed indirectly (on the stack) would have the equivalent layout if it was
-/// expanded into separate arguments. If so, we prefer to do the latter to avoid
-/// inhibiting optimizations.
-///
-// FIXME: This predicate is missing many cases, currently it just follows
-// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
-// should probably make this smarter, or better yet make the LLVM backend
-// capable of handling it.
-static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
- // We can only expand structure types.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (!RT)
- return false;
-
- // We can only expand (C) structures.
- //
- // FIXME: This needs to be generalized to handle classes as well.
- const RecordDecl *RD = RT->getDecl();
- if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
- return false;
-
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- const FieldDecl *FD = *i;
-
- if (!is32Or64BitBasicType(FD->getType(), Context))
- return false;
-
- // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
- // how to expand them yet, and the predicate for telling if a bitfield still
- // counts as "basic" is more complicated than what we were doing previously.
- if (FD->isBitField())
- return false;
- }
-
- return true;
-}
-
-static bool typeContainsSSEVector(const RecordDecl *RD, ASTContext &Context) {
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- const FieldDecl *FD = *i;
-
- if (FD->getType()->isVectorType() &&
- Context.getTypeSize(FD->getType()) >= 128)
- return true;
-
- if (const RecordType* RT = FD->getType()->getAs<RecordType>())
- if (typeContainsSSEVector(RT->getDecl(), Context))
- return true;
- }
-
- return false;
-}
-
-namespace {
-/// DefaultABIInfo - The default implementation for ABI specific
-/// details. This implementation provides information which results in
-/// self-consistent and sensible LLVM IR generation, but does not
-/// conform to any particular ABI.
-class DefaultABIInfo : public ABIInfo {
- ABIArgInfo classifyReturnType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- ABIArgInfo classifyArgumentType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
- VMContext);
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it)
- it->info = classifyArgumentType(it->type, Context, VMContext);
- }
-
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
-};
-
-/// X86_32ABIInfo - The X86-32 ABI information.
-class X86_32ABIInfo : public ABIInfo {
- ASTContext &Context;
- bool IsDarwinVectorABI;
- bool IsSmallStructInRegABI;
-
- static bool isRegisterSize(unsigned Size) {
- return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
- }
-
- static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
-
- static unsigned getIndirectArgumentAlignment(QualType Ty,
- ASTContext &Context);
-
-public:
- ABIArgInfo classifyReturnType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- ABIArgInfo classifyArgumentType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
- VMContext);
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it)
- it->info = classifyArgumentType(it->type, Context, VMContext);
- }
-
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
-
- X86_32ABIInfo(ASTContext &Context, bool d, bool p)
- : ABIInfo(), Context(Context), IsDarwinVectorABI(d),
- IsSmallStructInRegABI(p) {}
-};
-}
-
-
-/// shouldReturnTypeInRegister - Determine if the given type should be
-/// passed in a register (for the Darwin ABI).
-bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
- ASTContext &Context) {
- uint64_t Size = Context.getTypeSize(Ty);
-
- // Type must be register sized.
- if (!isRegisterSize(Size))
- return false;
-
- if (Ty->isVectorType()) {
- // 64- and 128- bit vectors inside structures are not returned in
- // registers.
- if (Size == 64 || Size == 128)
- return false;
-
- return true;
- }
-
- // If this is a builtin, pointer, enum, or complex type, it is ok.
- if (Ty->getAs<BuiltinType>() || Ty->isAnyPointerType() ||
- Ty->isAnyComplexType() || Ty->isEnumeralType() ||
- Ty->isBlockPointerType())
- return true;
-
- // Arrays are treated like records.
- if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
- return shouldReturnTypeInRegister(AT->getElementType(), Context);
-
- // Otherwise, it must be a record type.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (!RT) return false;
-
- // Structure types are passed in register if all fields would be
- // passed in a register.
- for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
- e = RT->getDecl()->field_end(); i != e; ++i) {
- const FieldDecl *FD = *i;
-
- // Empty fields are ignored.
- if (isEmptyField(Context, FD, true))
- continue;
-
- // Check fields recursively.
- if (!shouldReturnTypeInRegister(FD->getType(), Context))
- return false;
- }
-
- return true;
-}
-
-ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- if (RetTy->isVoidType()) {
- return ABIArgInfo::getIgnore();
- } else if (const VectorType *VT = RetTy->getAs<VectorType>()) {
- // On Darwin, some vectors are returned in registers.
- if (IsDarwinVectorABI) {
- uint64_t Size = Context.getTypeSize(RetTy);
-
- // 128-bit vectors are a special case; they are returned in
- // registers and we need to make sure to pick a type the LLVM
- // backend will like.
- if (Size == 128)
- return ABIArgInfo::getCoerce(llvm::VectorType::get(
- llvm::Type::getInt64Ty(VMContext), 2));
-
- // Always return in register if it fits in a general purpose
- // register, or if it is 64 bits and has a single element.
- if ((Size == 8 || Size == 16 || Size == 32) ||
- (Size == 64 && VT->getNumElements() == 1))
- return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
-
- return ABIArgInfo::getIndirect(0);
- }
-
- return ABIArgInfo::getDirect();
- } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
- if (const RecordType *RT = RetTy->getAsStructureType()) {
- // Structures with either a non-trivial destructor or a non-trivial
- // copy constructor are always indirect.
- if (hasNonTrivialDestructorOrCopyConstructor(RT))
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
-
- // Structures with flexible arrays are always indirect.
- if (RT->getDecl()->hasFlexibleArrayMember())
- return ABIArgInfo::getIndirect(0);
- }
-
- // If specified, structs and unions are always indirect.
- if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
- return ABIArgInfo::getIndirect(0);
-
- // Classify "single element" structs as their element type.
- if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
- if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
- if (BT->isIntegerType()) {
- // We need to use the size of the structure, padding
- // bit-fields can adjust that to be larger than the single
- // element type.
- uint64_t Size = Context.getTypeSize(RetTy);
- return ABIArgInfo::getCoerce(
- llvm::IntegerType::get(VMContext, (unsigned) Size));
- } else if (BT->getKind() == BuiltinType::Float) {
- assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
- "Unexpect single element structure size!");
- return ABIArgInfo::getCoerce(llvm::Type::getFloatTy(VMContext));
- } else if (BT->getKind() == BuiltinType::Double) {
- assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
- "Unexpect single element structure size!");
- return ABIArgInfo::getCoerce(llvm::Type::getDoubleTy(VMContext));
- }
- } else if (SeltTy->isPointerType()) {
- // FIXME: It would be really nice if this could come out as the proper
- // pointer type.
- const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext);
- return ABIArgInfo::getCoerce(PtrTy);
- } else if (SeltTy->isVectorType()) {
- // 64- and 128-bit vectors are never returned in a
- // register when inside a structure.
- uint64_t Size = Context.getTypeSize(RetTy);
- if (Size == 64 || Size == 128)
- return ABIArgInfo::getIndirect(0);
-
- return classifyReturnType(QualType(SeltTy, 0), Context, VMContext);
- }
- }
-
- // Small structures which are register sized are generally returned
- // in a register.
- if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
- uint64_t Size = Context.getTypeSize(RetTy);
- return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
- }
-
- return ABIArgInfo::getIndirect(0);
- } else {
- return (RetTy->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
-}
-
-unsigned X86_32ABIInfo::getIndirectArgumentAlignment(QualType Ty,
- ASTContext &Context) {
- unsigned Align = Context.getTypeAlign(Ty);
- if (Align < 128) return 0;
- if (const RecordType* RT = Ty->getAs<RecordType>())
- if (typeContainsSSEVector(RT->getDecl(), Context))
- return 16;
- return 0;
-}
-
-ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- // FIXME: Set alignment on indirect arguments.
- if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
- // Structures with flexible arrays are always indirect.
- if (const RecordType *RT = Ty->getAsStructureType())
- if (RT->getDecl()->hasFlexibleArrayMember())
- return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty,
- Context));
-
- // Ignore empty structs.
- if (Ty->isStructureType() && Context.getTypeSize(Ty) == 0)
- return ABIArgInfo::getIgnore();
-
- // Expand small (<= 128-bit) record types when we know that the stack layout
- // of those arguments will match the struct. This is important because the
- // LLVM backend isn't smart enough to remove byval, which inhibits many
- // optimizations.
- if (Context.getTypeSize(Ty) <= 4*32 &&
- canExpandIndirectArgument(Ty, Context))
- return ABIArgInfo::getExpand();
-
- return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty, Context));
- } else {
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
-}
-
-llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
- const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
-
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
- "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- llvm::Type *PTy =
- llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
-
- uint64_t Offset =
- llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
- llvm::Value *NextAddr =
- Builder.CreateGEP(Addr, llvm::ConstantInt::get(
- llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
- "ap.next");
- Builder.CreateStore(NextAddr, VAListAddrAsBPP);
-
- return AddrTyped;
-}
-
-namespace {
-/// X86_64ABIInfo - The X86_64 ABI information.
-class X86_64ABIInfo : public ABIInfo {
- enum Class {
- Integer = 0,
- SSE,
- SSEUp,
- X87,
- X87Up,
- ComplexX87,
- NoClass,
- Memory
- };
-
- /// merge - Implement the X86_64 ABI merging algorithm.
- ///
- /// Merge an accumulating classification \arg Accum with a field
- /// classification \arg Field.
- ///
- /// \param Accum - The accumulating classification. This should
- /// always be either NoClass or the result of a previous merge
- /// call. In addition, this should never be Memory (the caller
- /// should just return Memory for the aggregate).
- Class merge(Class Accum, Class Field) const;
-
- /// classify - Determine the x86_64 register classes in which the
- /// given type T should be passed.
- ///
- /// \param Lo - The classification for the parts of the type
- /// residing in the low word of the containing object.
- ///
- /// \param Hi - The classification for the parts of the type
- /// residing in the high word of the containing object.
- ///
- /// \param OffsetBase - The bit offset of this type in the
- /// containing object. Some parameters are classified different
- /// depending on whether they straddle an eightbyte boundary.
- ///
- /// If a word is unused its result will be NoClass; if a type should
- /// be passed in Memory then at least the classification of \arg Lo
- /// will be Memory.
- ///
- /// The \arg Lo class will be NoClass iff the argument is ignored.
- ///
- /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
- /// also be ComplexX87.
- void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
- Class &Lo, Class &Hi) const;
-
- /// getCoerceResult - Given a source type \arg Ty and an LLVM type
- /// to coerce to, chose the best way to pass Ty in the same place
- /// that \arg CoerceTo would be passed, but while keeping the
- /// emitted code as simple as possible.
- ///
- /// FIXME: Note, this should be cleaned up to just take an enumeration of all
- /// the ways we might want to pass things, instead of constructing an LLVM
- /// type. This makes this code more explicit, and it makes it clearer that we
- /// are also doing this for correctness in the case of passing scalar types.
- ABIArgInfo getCoerceResult(QualType Ty,
- const llvm::Type *CoerceTo,
- ASTContext &Context) const;
-
- /// getIndirectResult - Give a source type \arg Ty, return a suitable result
- /// such that the argument will be passed in memory.
- ABIArgInfo getIndirectResult(QualType Ty,
- ASTContext &Context) const;
-
- ABIArgInfo classifyReturnType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- ABIArgInfo classifyArgumentType(QualType Ty,
- ASTContext &Context,
- llvm::LLVMContext &VMContext,
- unsigned &neededInt,
- unsigned &neededSSE) const;
-
-public:
- virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
-};
-}
-
-X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
- Class Field) const {
- // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
- // classified recursively so that always two fields are
- // considered. The resulting class is calculated according to
- // the classes of the fields in the eightbyte:
- //
- // (a) If both classes are equal, this is the resulting class.
- //
- // (b) If one of the classes is NO_CLASS, the resulting class is
- // the other class.
- //
- // (c) If one of the classes is MEMORY, the result is the MEMORY
- // class.
- //
- // (d) If one of the classes is INTEGER, the result is the
- // INTEGER.
- //
- // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
- // MEMORY is used as class.
- //
- // (f) Otherwise class SSE is used.
-
- // Accum should never be memory (we should have returned) or
- // ComplexX87 (because this cannot be passed in a structure).
- assert((Accum != Memory && Accum != ComplexX87) &&
- "Invalid accumulated classification during merge.");
- if (Accum == Field || Field == NoClass)
- return Accum;
- else if (Field == Memory)
- return Memory;
- else if (Accum == NoClass)
- return Field;
- else if (Accum == Integer || Field == Integer)
- return Integer;
- else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
- Accum == X87 || Accum == X87Up)
- return Memory;
- else
- return SSE;
-}
-
-void X86_64ABIInfo::classify(QualType Ty,
- ASTContext &Context,
- uint64_t OffsetBase,
- Class &Lo, Class &Hi) const {
- // FIXME: This code can be simplified by introducing a simple value class for
- // Class pairs with appropriate constructor methods for the various
- // situations.
-
- // FIXME: Some of the split computations are wrong; unaligned vectors
- // shouldn't be passed in registers for example, so there is no chance they
- // can straddle an eightbyte. Verify & simplify.
-
- Lo = Hi = NoClass;
-
- Class &Current = OffsetBase < 64 ? Lo : Hi;
- Current = Memory;
-
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
- BuiltinType::Kind k = BT->getKind();
-
- if (k == BuiltinType::Void) {
- Current = NoClass;
- } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
- Lo = Integer;
- Hi = Integer;
- } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
- Current = Integer;
- } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
- Current = SSE;
- } else if (k == BuiltinType::LongDouble) {
- Lo = X87;
- Hi = X87Up;
- }
- // FIXME: _Decimal32 and _Decimal64 are SSE.
- // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
- } else if (const EnumType *ET = Ty->getAs<EnumType>()) {
- // Classify the underlying integer type.
- classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
- } else if (Ty->hasPointerRepresentation()) {
- Current = Integer;
- } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
- uint64_t Size = Context.getTypeSize(VT);
- if (Size == 32) {
- // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
- // float> as integer.
- Current = Integer;
-
- // If this type crosses an eightbyte boundary, it should be
- // split.
- uint64_t EB_Real = (OffsetBase) / 64;
- uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
- if (EB_Real != EB_Imag)
- Hi = Lo;
- } else if (Size == 64) {
- // gcc passes <1 x double> in memory. :(
- if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
- return;
-
- // gcc passes <1 x long long> as INTEGER.
- if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
- Current = Integer;
- else
- Current = SSE;
-
- // If this type crosses an eightbyte boundary, it should be
- // split.
- if (OffsetBase && OffsetBase != 64)
- Hi = Lo;
- } else if (Size == 128) {
- Lo = SSE;
- Hi = SSEUp;
- }
- } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
- QualType ET = Context.getCanonicalType(CT->getElementType());
-
- uint64_t Size = Context.getTypeSize(Ty);
- if (ET->isIntegralType()) {
- if (Size <= 64)
- Current = Integer;
- else if (Size <= 128)
- Lo = Hi = Integer;
- } else if (ET == Context.FloatTy)
- Current = SSE;
- else if (ET == Context.DoubleTy)
- Lo = Hi = SSE;
- else if (ET == Context.LongDoubleTy)
- Current = ComplexX87;
-
- // If this complex type crosses an eightbyte boundary then it
- // should be split.
- uint64_t EB_Real = (OffsetBase) / 64;
- uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
- if (Hi == NoClass && EB_Real != EB_Imag)
- Hi = Lo;
- } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
- // Arrays are treated like structures.
-
- uint64_t Size = Context.getTypeSize(Ty);
-
- // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
- // than two eightbytes, ..., it has class MEMORY.
- if (Size > 128)
- return;
-
- // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
- // fields, it has class MEMORY.
- //
- // Only need to check alignment of array base.
- if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
- return;
-
- // Otherwise implement simplified merge. We could be smarter about
- // this, but it isn't worth it and would be harder to verify.
- Current = NoClass;
- uint64_t EltSize = Context.getTypeSize(AT->getElementType());
- uint64_t ArraySize = AT->getSize().getZExtValue();
- for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
- Class FieldLo, FieldHi;
- classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
- Lo = merge(Lo, FieldLo);
- Hi = merge(Hi, FieldHi);
- if (Lo == Memory || Hi == Memory)
- break;
- }
-
- // Do post merger cleanup (see below). Only case we worry about is Memory.
- if (Hi == Memory)
- Lo = Memory;
- assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
- } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
- uint64_t Size = Context.getTypeSize(Ty);
-
- // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
- // than two eightbytes, ..., it has class MEMORY.
- if (Size > 128)
- return;
-
- // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
- // copy constructor or a non-trivial destructor, it is passed by invisible
- // reference.
- if (hasNonTrivialDestructorOrCopyConstructor(RT))
- return;
-
- const RecordDecl *RD = RT->getDecl();
-
- // Assume variable sized types are passed in memory.
- if (RD->hasFlexibleArrayMember())
- return;
-
- const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
-
- // Reset Lo class, this will be recomputed.
- Current = NoClass;
-
- // If this is a C++ record, classify the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
- e = CXXRD->bases_end(); i != e; ++i) {
- assert(!i->isVirtual() && !i->getType()->isDependentType() &&
- "Unexpected base class!");
- const CXXRecordDecl *Base =
- cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
-
- // Classify this field.
- //
- // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
- // single eightbyte, each is classified separately. Each eightbyte gets
- // initialized to class NO_CLASS.
- Class FieldLo, FieldHi;
- uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base);
- classify(i->getType(), Context, Offset, FieldLo, FieldHi);
- Lo = merge(Lo, FieldLo);
- Hi = merge(Hi, FieldHi);
- if (Lo == Memory || Hi == Memory)
- break;
- }
-
- // If this record has no fields but isn't empty, classify as INTEGER.
- if (RD->field_empty() && Size)
- Current = Integer;
- }
-
- // Classify the fields one at a time, merging the results.
- unsigned idx = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i, ++idx) {
- uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
- bool BitField = i->isBitField();
-
- // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
- // fields, it has class MEMORY.
- //
- // Note, skip this test for bit-fields, see below.
- if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
- Lo = Memory;
- return;
- }
-
- // Classify this field.
- //
- // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
- // exceeds a single eightbyte, each is classified
- // separately. Each eightbyte gets initialized to class
- // NO_CLASS.
- Class FieldLo, FieldHi;
-
- // Bit-fields require special handling, they do not force the
- // structure to be passed in memory even if unaligned, and
- // therefore they can straddle an eightbyte.
- if (BitField) {
- // Ignore padding bit-fields.
- if (i->isUnnamedBitfield())
- continue;
-
- uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
- uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
-
- uint64_t EB_Lo = Offset / 64;
- uint64_t EB_Hi = (Offset + Size - 1) / 64;
- FieldLo = FieldHi = NoClass;
- if (EB_Lo) {
- assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
- FieldLo = NoClass;
- FieldHi = Integer;
- } else {
- FieldLo = Integer;
- FieldHi = EB_Hi ? Integer : NoClass;
- }
- } else
- classify(i->getType(), Context, Offset, FieldLo, FieldHi);
- Lo = merge(Lo, FieldLo);
- Hi = merge(Hi, FieldHi);
- if (Lo == Memory || Hi == Memory)
- break;
- }
-
- // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
- //
- // (a) If one of the classes is MEMORY, the whole argument is
- // passed in memory.
- //
- // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
-
- // The first of these conditions is guaranteed by how we implement
- // the merge (just bail).
- //
- // The second condition occurs in the case of unions; for example
- // union { _Complex double; unsigned; }.
- if (Hi == Memory)
- Lo = Memory;
- if (Hi == SSEUp && Lo != SSE)
- Hi = SSE;
- }
-}
-
-ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
- const llvm::Type *CoerceTo,
- ASTContext &Context) const {
- if (CoerceTo == llvm::Type::getInt64Ty(CoerceTo->getContext())) {
- // Integer and pointer types will end up in a general purpose
- // register.
- if (Ty->isIntegralType() || Ty->hasPointerRepresentation())
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- } else if (CoerceTo == llvm::Type::getDoubleTy(CoerceTo->getContext())) {
- // FIXME: It would probably be better to make CGFunctionInfo only map using
- // canonical types than to canonize here.
- QualType CTy = Context.getCanonicalType(Ty);
-
- // Float and double end up in a single SSE reg.
- if (CTy == Context.FloatTy || CTy == Context.DoubleTy)
- return ABIArgInfo::getDirect();
-
- }
-
- return ABIArgInfo::getCoerce(CoerceTo);
-}
-
-ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
- ASTContext &Context) const {
- // If this is a scalar LLVM value then assume LLVM will pass it in the right
- // place naturally.
- if (!CodeGenFunction::hasAggregateLLVMType(Ty))
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
-
- bool ByVal = !isRecordWithNonTrivialDestructorOrCopyConstructor(Ty);
-
- // FIXME: Set alignment correctly.
- return ABIArgInfo::getIndirect(0, ByVal);
-}
-
-ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
- // classification algorithm.
- X86_64ABIInfo::Class Lo, Hi;
- classify(RetTy, Context, 0, Lo, Hi);
-
- // Check some invariants.
- assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
- assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
- assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
-
- const llvm::Type *ResType = 0;
- switch (Lo) {
- case NoClass:
- return ABIArgInfo::getIgnore();
-
- case SSEUp:
- case X87Up:
- assert(0 && "Invalid classification for lo word.");
-
- // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
- // hidden argument.
- case Memory:
- return getIndirectResult(RetTy, Context);
-
- // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
- // available register of the sequence %rax, %rdx is used.
- case Integer:
- ResType = llvm::Type::getInt64Ty(VMContext); break;