aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDouglas Gregor <dgregor@apple.com>2010-02-15 22:01:00 +0000
committerDouglas Gregor <dgregor@apple.com>2010-02-15 22:01:00 +0000
commit73dc30b71e218ba2b776b10d07dc2aff09cb2c47 (patch)
tree99011f1c2fbaa0a9d519ca3343001b198d812e77
parent25760611365be23556b32332f8a66ae21ea93ecf (diff)
Reimplement the structural-equality checks used to determine whether
two types in different AST contexts are equivalent. Rather than transforming the type from one context into the other context, we perform a deep structural comparison of the types. This change addresses a serious problem with recursive data types like struct ListNode { int value; struct ListNode *Next; } xList; git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@96278 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--include/clang/AST/ASTImporter.h3
-rw-r--r--include/clang/AST/Type.h15
-rw-r--r--lib/AST/ASTImporter.cpp1146
-rw-r--r--test/ASTMerge/Inputs/struct1.c10
-rw-r--r--test/ASTMerge/Inputs/struct2.c6
-rw-r--r--test/ASTMerge/struct.c7
6 files changed, 910 insertions, 277 deletions
diff --git a/include/clang/AST/ASTImporter.h b/include/clang/AST/ASTImporter.h
index f2df1677fb..9da9ea9c11 100644
--- a/include/clang/AST/ASTImporter.h
+++ b/include/clang/AST/ASTImporter.h
@@ -193,6 +193,9 @@ namespace clang {
/// \brief Retrieve the file manager that AST nodes are being imported from.
FileManager &getFromFileManager() const { return FromFileManager; }
+ /// \brief Retrieve the diagnostic formatter.
+ Diagnostic &getDiags() const { return Diags; }
+
/// \brief Report a diagnostic in the "to" context.
DiagnosticBuilder ToDiag(SourceLocation Loc, unsigned DiagID);
diff --git a/include/clang/AST/Type.h b/include/clang/AST/Type.h
index 182ece96d7..2fe041f5e7 100644
--- a/include/clang/AST/Type.h
+++ b/include/clang/AST/Type.h
@@ -1193,7 +1193,8 @@ protected:
}
public:
bool isSpelledAsLValue() const { return SpelledAsLValue; }
-
+ bool isInnerRef() const { return InnerRef; }
+
QualType getPointeeTypeAsWritten() const { return PointeeType; }
QualType getPointeeType() const {
// FIXME: this might strip inner qualifiers; okay?
@@ -2582,6 +2583,12 @@ public:
/// interface type, or 0 if there are none.
unsigned getNumProtocols() const { return NumProtocols; }
+ /// \brief Retrieve the Ith protocol.
+ ObjCProtocolDecl *getProtocol(unsigned I) const {
+ assert(I < getNumProtocols() && "Out-of-range protocol access");
+ return qual_begin()[I];
+ }
+
/// qual_iterator and friends: this provides access to the (potentially empty)
/// list of protocols qualifying this interface.
typedef ObjCProtocolDecl* const * qual_iterator;
@@ -2683,6 +2690,12 @@ public:
/// interface type, or 0 if there are none.
unsigned getNumProtocols() const { return NumProtocols; }
+ /// \brief Retrieve the Ith protocol.
+ ObjCProtocolDecl *getProtocol(unsigned I) const {
+ assert(I < getNumProtocols() && "Out-of-range protocol access");
+ return qual_begin()[I];
+ }
+
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
diff --git a/lib/AST/ASTImporter.cpp b/lib/AST/ASTImporter.cpp
index 0d0a76e562..5e4d39f8f9 100644
--- a/lib/AST/ASTImporter.cpp
+++ b/lib/AST/ASTImporter.cpp
@@ -24,6 +24,7 @@
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/Support/MemoryBuffer.h"
+#include <deque>
using namespace clang;
@@ -85,7 +86,7 @@ namespace {
DeclarationName &Name, SourceLocation &Loc,
QualType &T);
bool IsStructuralMatch(RecordDecl *FromRecord, RecordDecl *ToRecord);
- bool IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToEnum);
+ bool IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToRecord);
Decl *VisitDecl(Decl *D);
Decl *VisitTypedefDecl(TypedefDecl *D);
Decl *VisitEnumDecl(EnumDecl *D);
@@ -107,6 +108,839 @@ namespace {
}
//----------------------------------------------------------------------------
+// Structural Equivalence
+//----------------------------------------------------------------------------
+
+namespace {
+ struct StructuralEquivalenceContext {
+ /// \brief AST contexts for which we are checking structural equivalence.
+ ASTContext &C1, &C2;
+
+ /// \brief Diagnostic object used to emit diagnostics.
+ Diagnostic &Diags;
+
+ /// \brief The set of "tentative" equivalences between two canonical
+ /// declarations, mapping from a declaration in the first context to the
+ /// declaration in the second context that we believe to be equivalent.
+ llvm::DenseMap<Decl *, Decl *> TentativeEquivalences;
+
+ /// \brief Queue of declarations in the first context whose equivalence
+ /// with a declaration in the second context still needs to be verified.
+ std::deque<Decl *> DeclsToCheck;
+
+ /// \brief Whether we're being strict about the spelling of types when
+ /// unifying two types.
+ bool StrictTypeSpelling;
+
+ StructuralEquivalenceContext(ASTContext &C1, ASTContext &C2,
+ Diagnostic &Diags,
+ bool StrictTypeSpelling = false)
+ : C1(C1), C2(C2), Diags(Diags), StrictTypeSpelling(StrictTypeSpelling) { }
+
+ /// \brief Determine whether the two declarations are structurally
+ /// equivalent.
+ bool IsStructurallyEquivalent(Decl *D1, Decl *D2);
+
+ /// \brief Determine whether the two types are structurally equivalent.
+ bool IsStructurallyEquivalent(QualType T1, QualType T2);
+
+ private:
+ /// \brief Finish checking all of the structural equivalences.
+ ///
+ /// \returns true if an error occurred, false otherwise.
+ bool Finish();
+
+ public:
+ DiagnosticBuilder Diag1(SourceLocation Loc, unsigned DiagID) {
+ return Diags.Report(FullSourceLoc(Loc, C1.getSourceManager()), DiagID);
+ }
+
+ DiagnosticBuilder Diag2(SourceLocation Loc, unsigned DiagID) {
+ return Diags.Report(FullSourceLoc(Loc, C2.getSourceManager()), DiagID);
+ }
+ };
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ QualType T1, QualType T2);
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ Decl *D1, Decl *D2);
+
+/// \brief Determine if two APInts have the same value, after zero-extending
+/// one of them (if needed!) to ensure that the bit-widths match.
+static bool IsSameValue(const llvm::APInt &I1, const llvm::APInt &I2) {
+ if (I1.getBitWidth() == I2.getBitWidth())
+ return I1 == I2;
+
+ if (I1.getBitWidth() > I2.getBitWidth())
+ return I1 == llvm::APInt(I2).zext(I1.getBitWidth());
+
+ return llvm::APInt(I1).zext(I2.getBitWidth()) == I2;
+}
+
+/// \brief Determine if two APSInts have the same value, zero- or sign-extending
+/// as needed.
+static bool IsSameValue(const llvm::APSInt &I1, const llvm::APSInt &I2) {
+ if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned())
+ return I1 == I2;
+
+ // Check for a bit-width mismatch.
+ if (I1.getBitWidth() > I2.getBitWidth())
+ return IsSameValue(I1, llvm::APSInt(I2).extend(I1.getBitWidth()));
+ else if (I2.getBitWidth() > I1.getBitWidth())
+ return IsSameValue(llvm::APSInt(I1).extend(I2.getBitWidth()), I2);
+
+ // We have a signedness mismatch. Turn the signed value into an unsigned
+ // value.
+ if (I1.isSigned()) {
+ if (I1.isNegative())
+ return false;
+
+ return llvm::APSInt(I1, true) == I2;
+ }
+
+ if (I2.isNegative())
+ return false;
+
+ return I1 == llvm::APSInt(I2, true);
+}
+
+/// \brief Determine structural equivalence of two expressions.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ Expr *E1, Expr *E2) {
+ if (!E1 || !E2)
+ return E1 == E2;
+
+ // FIXME: Actually perform a structural comparison!
+ return true;
+}
+
+/// \brief Determine whether two identifiers are equivalent.
+static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
+ const IdentifierInfo *Name2) {
+ if (!Name1 || !Name2)
+ return Name1 == Name2;
+
+ return Name1->getName() == Name2->getName();
+}
+
+/// \brief Determine whether two nested-name-specifiers are equivalent.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ NestedNameSpecifier *NNS1,
+ NestedNameSpecifier *NNS2) {
+ // FIXME: Implement!
+ return true;
+}
+
+/// \brief Determine whether two template arguments are equivalent.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const TemplateArgument &Arg1,
+ const TemplateArgument &Arg2) {
+ // FIXME: Implement!
+ return true;
+}
+
+/// \brief Determine structural equivalence for the common part of array
+/// types.
+static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const ArrayType *Array1,
+ const ArrayType *Array2) {
+ if (!IsStructurallyEquivalent(Context,
+ Array1->getElementType(),
+ Array2->getElementType()))
+ return false;
+ if (Array1->getSizeModifier() != Array2->getSizeModifier())
+ return false;
+ if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers())
+ return false;
+
+ return true;
+}
+
+/// \brief Determine structural equivalence of two types.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ QualType T1, QualType T2) {
+ if (T1.isNull() || T2.isNull())
+ return T1.isNull() && T2.isNull();
+
+ if (!Context.StrictTypeSpelling) {
+ // We aren't being strict about token-to-token equivalence of types,
+ // so map down to the canonical type.
+ T1 = Context.C1.getCanonicalType(T1);
+ T2 = Context.C2.getCanonicalType(T2);
+ }
+
+ if (T1.getQualifiers() != T2.getQualifiers())
+ return false;
+
+ if (T1->getTypeClass() != T2->getTypeClass())
+ return false;
+
+ switch (T1->getTypeClass()) {
+ case Type::Builtin:
+ // FIXME: Deal with Char_S/Char_U.
+ if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind())
+ return false;
+ break;
+
+ case Type::Complex:
+ if (!IsStructurallyEquivalent(Context,
+ cast<ComplexType>(T1)->getElementType(),
+ cast<ComplexType>(T2)->getElementType()))
+ return false;
+ break;
+
+ case Type::Pointer:
+ if (!IsStructurallyEquivalent(Context,
+ cast<PointerType>(T1)->getPointeeType(),
+ cast<PointerType>(T2)->getPointeeType()))
+ return false;
+ break;
+
+ case Type::BlockPointer:
+ if (!IsStructurallyEquivalent(Context,
+ cast<BlockPointerType>(T1)->getPointeeType(),
+ cast<BlockPointerType>(T2)->getPointeeType()))
+ return false;
+ break;
+
+ case Type::LValueReference:
+ case Type::RValueReference: {
+ const ReferenceType *Ref1 = cast<ReferenceType>(T1);
+ const ReferenceType *Ref2 = cast<ReferenceType>(T2);
+ if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue())
+ return false;
+ if (Ref1->isInnerRef() != Ref2->isInnerRef())
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Ref1->getPointeeTypeAsWritten(),
+ Ref2->getPointeeTypeAsWritten()))
+ return false;
+ break;
+ }
+
+ case Type::MemberPointer: {
+ const MemberPointerType *MemPtr1 = cast<MemberPointerType>(T1);
+ const MemberPointerType *MemPtr2 = cast<MemberPointerType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ MemPtr1->getPointeeType(),
+ MemPtr2->getPointeeType()))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ QualType(MemPtr1->getClass(), 0),
+ QualType(MemPtr2->getClass(), 0)))
+ return false;
+ break;
+ }
+
+ case Type::ConstantArray: {
+ const ConstantArrayType *Array1 = cast<ConstantArrayType>(T1);
+ const ConstantArrayType *Array2 = cast<ConstantArrayType>(T2);
+ if (!IsSameValue(Array1->getSize(), Array2->getSize()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+ break;
+ }
+
+ case Type::IncompleteArray:
+ if (!IsArrayStructurallyEquivalent(Context,
+ cast<ArrayType>(T1),
+ cast<ArrayType>(T2)))
+ return false;
+ break;
+
+ case Type::VariableArray: {
+ const VariableArrayType *Array1 = cast<VariableArrayType>(T1);
+ const VariableArrayType *Array2 = cast<VariableArrayType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Array1->getSizeExpr(), Array2->getSizeExpr()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+
+ break;
+ }
+
+ case Type::DependentSizedArray: {
+ const DependentSizedArrayType *Array1 = cast<DependentSizedArrayType>(T1);
+ const DependentSizedArrayType *Array2 = cast<DependentSizedArrayType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Array1->getSizeExpr(), Array2->getSizeExpr()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+
+ break;
+ }
+
+ case Type::DependentSizedExtVector: {
+ const DependentSizedExtVectorType *Vec1
+ = cast<DependentSizedExtVectorType>(T1);
+ const DependentSizedExtVectorType *Vec2
+ = cast<DependentSizedExtVectorType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Vec1->getSizeExpr(), Vec2->getSizeExpr()))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Vec1->getElementType(),
+ Vec2->getElementType()))
+ return false;
+ break;
+ }
+
+ case Type::Vector:
+ case Type::ExtVector: {
+ const VectorType *Vec1 = cast<VectorType>(T1);
+ const VectorType *Vec2 = cast<VectorType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Vec1->getElementType(),
+ Vec2->getElementType()))
+ return false;
+ if (Vec1->getNumElements() != Vec2->getNumElements())
+ return false;
+ if (Vec1->isAltiVec() != Vec2->isAltiVec())
+ return false;
+ if (Vec1->isPixel() != Vec2->isPixel())
+ return false;
+ }
+
+ case Type::FunctionProto: {
+ const FunctionProtoType *Proto1 = cast<FunctionProtoType>(T1);
+ const FunctionProtoType *Proto2 = cast<FunctionProtoType>(T2);
+ if (Proto1->getNumArgs() != Proto2->getNumArgs())
+ return false;
+ for (unsigned I = 0, N = Proto1->getNumArgs(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Proto1->getArgType(I),
+ Proto2->getArgType(I)))
+ return false;
+ }
+ if (Proto1->isVariadic() != Proto2->isVariadic())
+ return false;
+ if (Proto1->hasExceptionSpec() != Proto2->hasExceptionSpec())
+ return false;
+ if (Proto1->hasAnyExceptionSpec() != Proto2->hasAnyExceptionSpec())
+ return false;
+ if (Proto1->getNumExceptions() != Proto2->getNumExceptions())
+ return false;
+ for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Proto1->getExceptionType(I),
+ Proto2->getExceptionType(I)))
+ return false;
+ }
+ if (Proto1->getTypeQuals() != Proto2->getTypeQuals())
+ return false;
+
+ // Fall through to check the bits common with FunctionNoProtoType.
+ }
+
+ case Type::FunctionNoProto: {
+ const FunctionType *Function1 = cast<FunctionType>(T1);
+ const FunctionType *Function2 = cast<FunctionType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Function1->getResultType(),
+ Function2->getResultType()))
+ return false;
+ if (Function1->getNoReturnAttr() != Function2->getNoReturnAttr())
+ return false;
+ if (Function1->getCallConv() != Function2->getCallConv())
+ return false;
+ break;
+ }
+
+ case Type::UnresolvedUsing:
+ if (!IsStructurallyEquivalent(Context,
+ cast<UnresolvedUsingType>(T1)->getDecl(),
+ cast<UnresolvedUsingType>(T2)->getDecl()))
+ return false;
+
+ break;
+
+ case Type::Typedef:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TypedefType>(T1)->getDecl(),
+ cast<TypedefType>(T2)->getDecl()))
+ return false;
+ break;
+
+ case Type::TypeOfExpr:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TypeOfExprType>(T1)->getUnderlyingExpr(),
+ cast<TypeOfExprType>(T2)->getUnderlyingExpr()))
+ return false;
+ break;
+
+ case Type::TypeOf:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TypeOfType>(T1)->getUnderlyingType(),
+ cast<TypeOfType>(T2)->getUnderlyingType()))
+ return false;
+ break;
+
+ case Type::Decltype:
+ if (!IsStructurallyEquivalent(Context,
+ cast<DecltypeType>(T1)->getUnderlyingExpr(),
+ cast<DecltypeType>(T2)->getUnderlyingExpr()))
+ return false;
+ break;
+
+ case Type::Record:
+ case Type::Enum:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TagType>(T1)->getDecl(),
+ cast<TagType>(T2)->getDecl()))
+ return false;
+ break;
+
+ case Type::Elaborated: {
+ const ElaboratedType *Elab1 = cast<ElaboratedType>(T1);
+ const ElaboratedType *Elab2 = cast<ElaboratedType>(T2);
+ if (Elab1->getTagKind() != Elab2->getTagKind())
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Elab1->getUnderlyingType(),
+ Elab2->getUnderlyingType()))
+ return false;
+ break;
+ }
+
+ case Type::TemplateTypeParm: {
+ const TemplateTypeParmType *Parm1 = cast<TemplateTypeParmType>(T1);
+ const TemplateTypeParmType *Parm2 = cast<TemplateTypeParmType>(T2);
+ if (Parm1->getDepth() != Parm2->getDepth())
+ return false;
+ if (Parm1->getIndex() != Parm2->getIndex())
+ return false;
+ if (Parm1->isParameterPack() != Parm2->isParameterPack())
+ return false;
+
+ // Names of template type parameters are never significant.
+ break;
+ }
+
+ case Type::SubstTemplateTypeParm: {
+ const SubstTemplateTypeParmType *Subst1
+ = cast<SubstTemplateTypeParmType>(T1);
+ const SubstTemplateTypeParmType *Subst2
+ = cast<SubstTemplateTypeParmType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ QualType(Subst1->getReplacedParameter(), 0),
+ QualType(Subst2->getReplacedParameter(), 0)))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Subst1->getReplacementType(),
+ Subst2->getReplacementType()))
+ return false;
+ break;
+ }
+
+ case Type::TemplateSpecialization: {
+ const TemplateSpecializationType *Spec1
+ = cast<TemplateSpecializationType>(T1);
+ const TemplateSpecializationType *Spec2
+ = cast<TemplateSpecializationType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Spec1->getTemplateName(),
+ Spec2->getTemplateName()))
+ return false;
+ if (Spec1->getNumArgs() != Spec2->getNumArgs())
+ return false;
+ for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Spec1->getArg(I), Spec2->getArg(I)))
+ return false;
+ }
+ break;
+ }
+
+ case Type::QualifiedName: {
+ const QualifiedNameType *Qual1 = cast<QualifiedNameType>(T1);
+ const QualifiedNameType *Qual2 = cast<QualifiedNameType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Qual1->getQualifier(),
+ Qual2->getQualifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Qual1->getNamedType(),
+ Qual2->getNamedType()))
+ return false;
+ break;
+ }
+
+ case Type::Typename: {
+ const TypenameType *Typename1 = cast<TypenameType>(T1);
+ const TypenameType *Typename2 = cast<TypenameType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Typename1->getQualifier(),
+ Typename2->getQualifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Typename1->getIdentifier(),
+ Typename2->getIdentifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ QualType(Typename1->getTemplateId(), 0),
+ QualType(Typename2->getTemplateId(), 0)))
+ return false;
+
+ break;
+ }
+
+ case Type::ObjCInterface: {
+ const ObjCInterfaceType *Iface1 = cast<ObjCInterfaceType>(T1);
+ const ObjCInterfaceType *Iface2 = cast<ObjCInterfaceType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Iface1->getDecl(), Iface2->getDecl()))
+ return false;
+ if (Iface1->getNumProtocols() != Iface2->getNumProtocols())
+ return false;
+ for (unsigned I = 0, N = Iface1->getNumProtocols(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Iface1->getProtocol(I),
+ Iface2->getProtocol(I)))
+ return false;
+ }
+ break;
+ }
+
+ case Type::ObjCObjectPointer: {
+ const ObjCObjectPointerType *Ptr1 = cast<ObjCObjectPointerType>(T1);
+ const ObjCObjectPointerType *Ptr2 = cast<ObjCObjectPointerType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Ptr1->getPointeeType(),
+ Ptr2->getPointeeType()))
+ return false;
+ if (Ptr1->getNumProtocols() != Ptr2->getNumProtocols())
+ return false;
+ for (unsigned I = 0, N = Ptr1->getNumProtocols(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Ptr1->getProtocol(I),
+ Ptr2->getProtocol(I)))
+ return false;
+ }
+ break;
+ }
+
+ } // end switch
+
+ return true;
+}
+
+/// \brief Determine structural equivalence of two records.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ RecordDecl *D1, RecordDecl *D2) {
+ if (D1->isUnion() != D2->isUnion()) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here)
+ << D1->getDeclName() << (unsigned)D1->getTagKind();
+ return false;
+ }
+
+ if (CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(D1)) {
+ if (CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(D2)) {
+ if (D1CXX->getNumBases() != D2CXX->getNumBases()) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases)
+ << D2CXX->getNumBases();
+ Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases)
+ << D1CXX->getNumBases();
+ return false;
+ }
+
+ // Check the base classes.
+ for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(),
+ BaseEnd1 = D1CXX->bases_end(),
+ Base2 = D2CXX->bases_begin();
+ Base1 != BaseEnd1;
+ ++Base1, ++Base2) {
+ if (!IsStructurallyEquivalent(Context,
+ Base1->getType(), Base2->getType())) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(Base2->getSourceRange().getBegin(), diag::note_odr_base)
+ << Base2->getType()
+ << Base2->getSourceRange();
+ Context.Diag1(Base1->getSourceRange().getBegin(), diag::note_odr_base)
+ << Base1->getType()
+ << Base1->getSourceRange();
+ return false;
+ }
+
+ // Check virtual vs. non-virtual inheritance mismatch.
+ if (Base1->isVirtual() != Base2->isVirtual()) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(Base2->getSourceRange().getBegin(),
+ diag::note_odr_virtual_base)
+ << Base2->isVirtual() << Base2->getSourceRange();
+ Context.Diag1(Base1->getSourceRange().getBegin(), diag::note_odr_base)
+ << Base1->isVirtual()
+ << Base1->getSourceRange();
+ return false;
+ }
+ }
+ } else if (D1CXX->getNumBases() > 0) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ const CXXBaseSpecifier *Base1 = D1CXX->bases_begin();
+ Context.Diag1(Base1->getSourceRange().getBegin(), diag::note_odr_base)
+ << Base1->getType()
+ << Base1->getSourceRange();
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_base);
+ return false;
+ }
+ }
+
+ // Check the fields for consistency.
+ CXXRecordDecl::field_iterator Field2 = D2->field_begin(),
+ Field2End = D2->field_end();
+ for (CXXRecordDecl::field_iterator Field1 = D1->field_begin(),
+ Field1End = D1->field_end();
+ Field1 != Field1End;
+ ++Field1, ++Field2) {
+ if (Field2 == Field2End) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag1(Field1->getLocation(), diag::note_odr_field)
+ << Field1->getDeclName() << Field1->getType();
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_field);
+ return false;
+ }
+
+ if (!IsStructurallyEquivalent(Context,
+ Field1->getType(), Field2->getType())) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_field)
+ << Field2->getDeclName() << Field2->getType();
+ Context.Diag1(Field1->getLocation(), diag::note_odr_field)
+ << Field1->getDeclName() << Field1->getType();
+ return false;
+ }
+
+ if (Field1->isBitField() != Field2->isBitField()) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ if (Field1->isBitField()) {
+ llvm::APSInt Bits;
+ Field1->getBitWidth()->isIntegerConstantExpr(Bits, Context.C1);
+ Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
+ << Field1->getDeclName() << Field1->getType()
+ << Bits.toString(10, false);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_not_bit_field)
+ << Field2->getDeclName();
+ } else {
+ llvm::APSInt Bits;
+ Field2->getBitWidth()->isIntegerConstantExpr(Bits, Context.C2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
+ << Field2->getDeclName() << Field2->getType()
+ << Bits.toString(10, false);
+ Context.Diag1(Field1->getLocation(),
+ diag::note_odr_not_bit_field)
+ << Field1->getDeclName();
+ }
+ return false;
+ }
+
+ if (Field1->isBitField()) {
+ // Make sure that the bit-fields are the same length.
+ llvm::APSInt Bits1, Bits2;
+ if (!Field1->getBitWidth()->isIntegerConstantExpr(Bits1, Context.C1))
+ return false;
+ if (!Field2->getBitWidth()->isIntegerConstantExpr(Bits2, Context.C2))
+ return false;
+
+ if (!IsSameValue(Bits1, Bits2)) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
+ << Field2->getDeclName() << Field2->getType()
+ << Bits2.toString(10, false);
+ Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
+ << Field1->getDeclName() << Field1->getType()
+ << Bits1.toString(10, false);
+ return false;
+ }
+ }
+ }
+
+ if (Field2 != Field2End) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_field)
+ << Field2->getDeclName() << Field2->getType();
+ Context.Diag1(D1->getLocation(), diag::note_odr_missing_field);
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Determine structural equivalence of two enums.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ EnumDecl *D1, EnumDecl *D2) {
+ EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(),
+ EC2End = D2->enumerator_end();
+ for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(),
+ EC1End = D1->enumerator_end();
+ EC1 != EC1End; ++EC1, ++EC2) {
+ if (EC2 == EC2End) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
+ << EC1->getDeclName()
+ << EC1->getInitVal().toString(10);
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator);
+ return false;
+ }
+
+ llvm::APSInt Val1 = EC1->getInitVal();
+ llvm::APSInt Val2 = EC2->getInitVal();
+ if (!IsSameValue(Val1, Val2) ||
+ !IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
+ << EC2->getDeclName()
+ << EC2->getInitVal().toString(10);
+ Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
+ << EC1->getDeclName()
+ << EC1->getInitVal().toString(10);
+ return false;
+ }
+ }
+
+ if (EC2 != EC2End) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
+ << EC2->getDeclName()
+ << EC2->getInitVal().toString(10);
+ Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator);
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Determine structural equivalence of two declarations.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ Decl *D1, Decl *D2) {
+ // FIXME: Check for known structural equivalences via a callback of some sort.
+
+ // Determine whether we've already produced a tentative equivalence for D1.
+ Decl *&EquivToD1 = Context.TentativeEquivalences[D1->getCanonicalDecl()];
+ if (EquivToD1)
+ return EquivToD1 == D2->getCanonicalDecl();
+
+ // Produce a tentative equivalence D1 <-> D2, which will be checked later.
+ EquivToD1 = D2->getCanonicalDecl();
+ Context.DeclsToCheck.push_back(D1->getCanonicalDecl());
+ return true;
+}
+
+bool StructuralEquivalenceContext::IsStructurallyEquivalent(Decl *D1,
+ Decl *D2) {
+ if (!::IsStructurallyEquivalent(*this, D1, D2))
+ return false;
+
+ return !Finish();
+}
+
+bool StructuralEquivalenceContext::IsStructurallyEquivalent(QualType T1,
+ QualType T2) {
+ if (!::IsStructurallyEquivalent(*this, T1, T2))
+ return false;
+
+ return !Finish();
+}
+
+bool StructuralEquivalenceContext::Finish() {
+ while (!DeclsToCheck.empty()) {
+ // Check the next declaration.
+ Decl *D1 = DeclsToCheck.front();
+ DeclsToCheck.pop_front();
+
+ Decl *D2 = TentativeEquivalences[D1];
+ assert(D2 && "Unrecorded tentative equivalence?");
+
+ // FIXME: Switch on all declaration kinds. For now, we're just going to
+ // check the obvious ones.
+ if (RecordDecl *Record1 = dyn_cast<RecordDecl>(D1)) {
+ if (RecordDecl *Record2 = dyn_cast<RecordDecl>(D2)) {
+ // Check for equivalent structure names.
+ IdentifierInfo *Name1 = Record1->getIdentifier();
+ if (!Name1 && Record1->getTypedefForAnonDecl())
+ Name1 = Record1->getTypedefForAnonDecl()->getIdentifier();
+ IdentifierInfo *Name2 = Record2->getIdentifier();
+ if (!Name2 && Record2->getTypedefForAnonDecl())
+ Name2 = Record2->getTypedefForAnonDecl()->getIdentifier();
+ if (!::IsStructurallyEquivalent(Name1, Name2))
+ return true;
+
+ if (!::IsStructurallyEquivalent(*this, Record1, Record2))
+ return true;
+ } else {
+ // Record/non-record mismatch.
+ return true;
+ }
+
+ continue;
+ }
+
+ if (EnumDecl *Enum1 = dyn_cast<EnumDecl>(D1)) {
+ if (EnumDecl *Enum2 = dyn_cast<EnumDecl>(D2)) {
+ // Check for equivalent enum names.
+ IdentifierInfo *Name1 = Enum1->getIdentifier();
+ if (!Name1 && Enum1->getTypedefForAnonDecl())
+ Name1 = Enum1->getTypedefForAnonDecl()->getIdentifier();
+ IdentifierInfo *Name2 = Enum2->getIdentifier();
+ if (!Name2 && Enum2->getTypedefForAnonDecl())
+ Name2 = Enum2->getTypedefForAnonDecl()->getIdentifier();
+ if (!::IsStructurallyEquivalent(Name1, Name2))
+ return true;
+
+ if (!::IsStructurallyEquivalent(*this, Enum1, Enum2))
+ return true;
+ } else {
+ // Enum/non-enum mismatch
+ return true;
+ }
+
+ continue;
+ }
+
+ if (TypedefDecl *Typedef1 = dyn_cast<TypedefDecl>(D1)) {
+ if (TypedefDecl *Typedef2 = dyn_cast<TypedefDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(Typedef1->getIdentifier(),
+