1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
|
#include "cpuminer-config.h"
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "miner.h"
typedef uint32_t word32;
static word32 rotrFixed(word32 word, unsigned int shift)
{
return (word >> shift) | (word << (32 - shift));
}
#define blk0(i) (W[i] = data[i])
static const word32 SHA256_K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
#define blk2(i) (W[i&15]+=s1(W[(i-2)&15])+W[(i-7)&15]+s0(W[(i-15)&15]))
#define Ch(x,y,z) (z^(x&(y^z)))
#define Maj(x,y,z) (y^((x^y)&(y^z)))
#define a(i) T[(0-i)&7]
#define b(i) T[(1-i)&7]
#define c(i) T[(2-i)&7]
#define d(i) T[(3-i)&7]
#define e(i) T[(4-i)&7]
#define f(i) T[(5-i)&7]
#define g(i) T[(6-i)&7]
#define h(i) T[(7-i)&7]
#define R(i) h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA256_K[i+j]+(j?blk2(i):blk0(i));\
d(i)+=h(i);h(i)+=S0(a(i))+Maj(a(i),b(i),c(i))
// for SHA256
#define S0(x) (rotrFixed(x,2)^rotrFixed(x,13)^rotrFixed(x,22))
#define S1(x) (rotrFixed(x,6)^rotrFixed(x,11)^rotrFixed(x,25))
#define s0(x) (rotrFixed(x,7)^rotrFixed(x,18)^(x>>3))
#define s1(x) (rotrFixed(x,17)^rotrFixed(x,19)^(x>>10))
static void SHA256_Transform(word32 *state, const word32 *data)
{
word32 W[16] = { };
word32 T[8];
unsigned int j;
/* Copy context->state[] to working vars */
memcpy(T, state, sizeof(T));
/* 64 operations, partially loop unrolled */
for (j=0; j<64; j+=16)
{
R( 0); R( 1); R( 2); R( 3);
R( 4); R( 5); R( 6); R( 7);
R( 8); R( 9); R(10); R(11);
R(12); R(13); R(14); R(15);
}
/* Add the working vars back into context.state[] */
state[0] += a(0);
state[1] += b(0);
state[2] += c(0);
state[3] += d(0);
state[4] += e(0);
state[5] += f(0);
state[6] += g(0);
state[7] += h(0);
}
static void runhash(void *state, const void *input, const void *init)
{
memcpy(state, init, 32);
SHA256_Transform(state, input);
}
/* suspiciously similar to ScanHash* from bitcoin */
bool scanhash_cryptopp(int thr_id, const unsigned char *midstate,
unsigned char *data,
unsigned char *hash1, unsigned char *hash,
const unsigned char *target,
uint32_t max_nonce, unsigned long *hashes_done)
{
uint32_t *hash32 = (uint32_t *) hash;
uint32_t *nonce = (uint32_t *)(data + 12);
uint32_t n = 0;
unsigned long stat_ctr = 0;
work_restart[thr_id].restart = 0;
while (1) {
n++;
*nonce = n;
runhash(hash1, data, midstate);
runhash(hash, hash1, sha256_init_state);
stat_ctr++;
if (unlikely((hash32[7] == 0) && fulltest(hash, target))) {
*hashes_done = stat_ctr;
return true;
}
if ((n >= max_nonce) || work_restart[thr_id].restart) {
*hashes_done = stat_ctr;
return false;
}
}
}
#if defined(WANT_CRYPTOPP_ASM32)
#define CRYPTOPP_FASTCALL
#define CRYPTOPP_BOOL_X86 1
#define CRYPTOPP_BOOL_X64 0
#define CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE 0
#ifdef CRYPTOPP_GENERATE_X64_MASM
#define AS1(x) x*newline*
#define AS2(x, y) x, y*newline*
#define AS3(x, y, z) x, y, z*newline*
#define ASS(x, y, a, b, c, d) x, y, a*64+b*16+c*4+d*newline*
#define ASL(x) label##x:*newline*
#define ASJ(x, y, z) x label##y*newline*
#define ASC(x, y) x label##y*newline*
#define AS_HEX(y) 0##y##h
#elif defined(_MSC_VER) || defined(__BORLANDC__)
#define CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY
#define AS1(x) __asm {x}
#define AS2(x, y) __asm {x, y}
#define AS3(x, y, z) __asm {x, y, z}
#define ASS(x, y, a, b, c, d) __asm {x, y, (a)*64+(b)*16+(c)*4+(d)}
#define ASL(x) __asm {label##x:}
#define ASJ(x, y, z) __asm {x label##y}
#define ASC(x, y) __asm {x label##y}
#define CRYPTOPP_NAKED __declspec(naked)
#define AS_HEX(y) 0x##y
#else
#define CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
// define these in two steps to allow arguments to be expanded
#define GNU_AS1(x) #x ";"
#define GNU_AS2(x, y) #x ", " #y ";"
#define GNU_AS3(x, y, z) #x ", " #y ", " #z ";"
#define GNU_ASL(x) "\n" #x ":"
#define GNU_ASJ(x, y, z) #x " " #y #z ";"
#define AS1(x) GNU_AS1(x)
#define AS2(x, y) GNU_AS2(x, y)
#define AS3(x, y, z) GNU_AS3(x, y, z)
#define ASS(x, y, a, b, c, d) #x ", " #y ", " #a "*64+" #b "*16+" #c "*4+" #d ";"
#define ASL(x) GNU_ASL(x)
#define ASJ(x, y, z) GNU_ASJ(x, y, z)
#define ASC(x, y) #x " " #y ";"
#define CRYPTOPP_NAKED
#define AS_HEX(y) 0x##y
#endif
#define IF0(y)
#define IF1(y) y
#ifdef CRYPTOPP_GENERATE_X64_MASM
#define ASM_MOD(x, y) ((x) MOD (y))
#define XMMWORD_PTR XMMWORD PTR
#else
// GNU assembler doesn't seem to have mod operator
#define ASM_MOD(x, y) ((x)-((x)/(y))*(y))
// GAS 2.15 doesn't support XMMWORD PTR. it seems necessary only for MASM
#define XMMWORD_PTR
#endif
#if CRYPTOPP_BOOL_X86
#define AS_REG_1 ecx
#define AS_REG_2 edx
#define AS_REG_3 esi
#define AS_REG_4 edi
#define AS_REG_5 eax
#define AS_REG_6 ebx
#define AS_REG_7 ebp
#define AS_REG_1d ecx
#define AS_REG_2d edx
#define AS_REG_3d esi
#define AS_REG_4d edi
#define AS_REG_5d eax
#define AS_REG_6d ebx
#define AS_REG_7d ebp
#define WORD_SZ 4
#define WORD_REG(x) e##x
#define WORD_PTR DWORD PTR
#define AS_PUSH_IF86(x) AS1(push e##x)
#define AS_POP_IF86(x) AS1(pop e##x)
#define AS_JCXZ jecxz
#elif CRYPTOPP_BOOL_X64
#ifdef CRYPTOPP_GENERATE_X64_MASM
#define AS_REG_1 rcx
#define AS_REG_2 rdx
#define AS_REG_3 r8
#define AS_REG_4 r9
#define AS_REG_5 rax
#define AS_REG_6 r10
#define AS_REG_7 r11
#define AS_REG_1d ecx
#define AS_REG_2d edx
#define AS_REG_3d r8d
#define AS_REG_4d r9d
#define AS_REG_5d eax
#define AS_REG_6d r10d
#define AS_REG_7d r11d
#else
#define AS_REG_1 rdi
#define AS_REG_2 rsi
#define AS_REG_3 rdx
#define AS_REG_4 rcx
#define AS_REG_5 r8
#define AS_REG_6 r9
#define AS_REG_7 r10
#define AS_REG_1d edi
#define AS_REG_2d esi
#define AS_REG_3d edx
#define AS_REG_4d ecx
#define AS_REG_5d r8d
#define AS_REG_6d r9d
#define AS_REG_7d r10d
#endif
#define WORD_SZ 8
#define WORD_REG(x) r##x
#define WORD_PTR QWORD PTR
#define AS_PUSH_IF86(x)
#define AS_POP_IF86(x)
#define AS_JCXZ jrcxz
#endif
static void CRYPTOPP_FASTCALL X86_SHA256_HashBlocks(word32 *state, const word32 *data, size_t len
#if defined(_MSC_VER) && (_MSC_VER == 1200)
, ... // VC60 workaround: prevent VC 6 from inlining this function
#endif
)
{
#if defined(_MSC_VER) && (_MSC_VER == 1200)
AS2(mov ecx, [state])
AS2(mov edx, [data])
#endif
#define LOCALS_SIZE 8*4 + 16*4 + 4*WORD_SZ
#define H(i) [BASE+ASM_MOD(1024+7-(i),8)*4]
#define G(i) H(i+1)
#define F(i) H(i+2)
#define E(i) H(i+3)
#define D(i) H(i+4)
#define C(i) H(i+5)
#define B(i) H(i+6)
#define A(i) H(i+7)
#define Wt(i) BASE+8*4+ASM_MOD(1024+15-(i),16)*4
#define Wt_2(i) Wt((i)-2)
#define Wt_15(i) Wt((i)-15)
#define Wt_7(i) Wt((i)-7)
#define K_END [BASE+8*4+16*4+0*WORD_SZ]
#define STATE_SAVE [BASE+8*4+16*4+1*WORD_SZ]
#define DATA_SAVE [BASE+8*4+16*4+2*WORD_SZ]
#define DATA_END [BASE+8*4+16*4+3*WORD_SZ]
#define Kt(i) WORD_REG(si)+(i)*4
#if CRYPTOPP_BOOL_X86
#define BASE esp+4
#elif defined(__GNUC__)
#define BASE r8
#else
#define BASE rsp
#endif
#define RA0(i, edx, edi) \
AS2( add edx, [Kt(i)] )\
AS2( add edx, [Wt(i)] )\
AS2( add edx, H(i) )\
#define RA1(i, edx, edi)
#define RB0(i, edx, edi)
#define RB1(i, edx, edi) \
AS2( mov AS_REG_7d, [Wt_2(i)] )\
AS2( mov edi, [Wt_15(i)])\
AS2( mov ebx, AS_REG_7d )\
AS2( shr AS_REG_7d, 10 )\
AS2( ror ebx, 17 )\
AS2( xor AS_REG_7d, ebx )\
AS2( ror ebx, 2 )\
AS2( xor ebx, AS_REG_7d )/* s1(W_t-2) */\
AS2( add ebx, [Wt_7(i)])\
AS2( mov AS_REG_7d, edi )\
AS2( shr AS_REG_7d, 3 )\
AS2( ror edi, 7 )\
AS2( add ebx, [Wt(i)])/* s1(W_t-2) + W_t-7 + W_t-16 */\
AS2( xor AS_REG_7d, edi )\
AS2( add edx, [Kt(i)])\
AS2( ror edi, 11 )\
AS2( add edx, H(i) )\
AS2( xor AS_REG_7d, edi )/* s0(W_t-15) */\
AS2( add AS_REG_7d, ebx )/* W_t = s1(W_t-2) + W_t-7 + s0(W_t-15) W_t-16*/\
AS2( mov [Wt(i)], AS_REG_7d)\
AS2( add edx, AS_REG_7d )\
#define ROUND(i, r, eax, ecx, edi, edx)\
/* in: edi = E */\
/* unused: eax, ecx, temp: ebx, AS_REG_7d, out: edx = T1 */\
AS2( mov edx, F(i) )\
AS2( xor edx, G(i) )\
AS2( and edx, edi )\
AS2( xor edx, G(i) )/* Ch(E,F,G) = (G^(E&(F^G))) */\
AS2( mov AS_REG_7d, edi )\
AS2( ror edi, 6 )\
AS2( ror AS_REG_7d, 25 )\
RA##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\
AS2( xor AS_REG_7d, edi )\
AS2( ror edi, 5 )\
AS2( xor AS_REG_7d, edi )/* S1(E) */\
AS2( add edx, AS_REG_7d )/* T1 = S1(E) + Ch(E,F,G) + H + Wt + Kt */\
RB##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\
/* in: ecx = A, eax = B^C, edx = T1 */\
/* unused: edx, temp: ebx, AS_REG_7d, out: eax = A, ecx = B^C, edx = E */\
AS2( mov ebx, ecx )\
AS2( xor ecx, B(i) )/* A^B */\
AS2( and eax, ecx )\
AS2( xor eax, B(i) )/* Maj(A,B,C) = B^((A^B)&(B^C) */\
AS2( mov AS_REG_7d, ebx )\
AS2( ror ebx, 2 )\
AS2( add eax, edx )/* T1 + Maj(A,B,C) */\
AS2( add edx, D(i) )\
AS2( mov D(i), edx )\
AS2( ror AS_REG_7d, 22 )\
AS2( xor AS_REG_7d, ebx )\
AS2( ror ebx, 11 )\
AS2( xor AS_REG_7d, ebx )\
AS2( add eax, AS_REG_7d )/* T1 + S0(A) + Maj(A,B,C) */\
AS2( mov H(i), eax )\
#define SWAP_COPY(i) \
AS2( mov WORD_REG(bx), [WORD_REG(dx)+i*WORD_SZ])\
AS1( bswap WORD_REG(bx))\
AS2( mov [Wt(i*(1+CRYPTOPP_BOOL_X64)+CRYPTOPP_BOOL_X64)], WORD_REG(bx))
#if defined(__GNUC__)
#if CRYPTOPP_BOOL_X64
FixedSizeAlignedSecBlock<byte, LOCALS_SIZE> workspace;
#endif
__asm__ __volatile__
(
#if CRYPTOPP_BOOL_X64
"lea %4, %%r8;"
#endif
".intel_syntax noprefix;"
#elif defined(CRYPTOPP_GENERATE_X64_MASM)
ALIGN 8
X86_SHA256_HashBlocks PROC FRAME
rex_push_reg rsi
push_reg rdi
push_reg rbx
push_reg rbp
alloc_stack(LOCALS_SIZE+8)
.endprolog
mov rdi, r8
lea rsi, [?SHA256_K@CryptoPP@@3QBIB + 48*4]
#endif
#if CRYPTOPP_BOOL_X86
#ifndef __GNUC__
AS2( mov edi, [len])
AS2( lea WORD_REG(si), [SHA256_K+48*4])
#endif
#if !defined(_MSC_VER) || (_MSC_VER < 1400)
AS_PUSH_IF86(bx)
#endif
AS_PUSH_IF86(bp)
AS2( mov ebx, esp)
AS2( and esp, -16)
AS2( sub WORD_REG(sp), LOCALS_SIZE)
AS_PUSH_IF86(bx)
#endif
AS2( mov STATE_SAVE, WORD_REG(cx))
AS2( mov DATA_SAVE, WORD_REG(dx))
AS2( lea WORD_REG(ax), [WORD_REG(di) + WORD_REG(dx)])
AS2( mov DATA_END, WORD_REG(ax))
AS2( mov K_END, WORD_REG(si))
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
#if CRYPTOPP_BOOL_X86
AS2( test edi, 1)
ASJ( jnz, 2, f)
AS1( dec DWORD PTR K_END)
#endif
AS2( movdqa xmm0, XMMWORD_PTR [WORD_REG(cx)+0*16])
AS2( movdqa xmm1, XMMWORD_PTR [WORD_REG(cx)+1*16])
#endif
#if CRYPTOPP_BOOL_X86
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
ASJ( jmp, 0, f)
#endif
ASL(2) // non-SSE2
AS2( mov esi, ecx)
AS2( lea edi, A(0))
AS2( mov ecx, 8)
AS1( rep movsd)
AS2( mov esi, K_END)
ASJ( jmp, 3, f)
#endif
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
ASL(0)
AS2( movdqa E(0), xmm1)
AS2( movdqa A(0), xmm0)
#endif
#if CRYPTOPP_BOOL_X86
ASL(3)
#endif
AS2( sub WORD_REG(si), 48*4)
SWAP_COPY(0) SWAP_COPY(1) SWAP_COPY(2) SWAP_COPY(3)
SWAP_COPY(4) SWAP_COPY(5) SWAP_COPY(6) SWAP_COPY(7)
#if CRYPTOPP_BOOL_X86
SWAP_COPY(8) SWAP_COPY(9) SWAP_COPY(10) SWAP_COPY(11)
SWAP_COPY(12) SWAP_COPY(13) SWAP_COPY(14) SWAP_COPY(15)
#endif
AS2( mov edi, E(0)) // E
AS2( mov eax, B(0)) // B
AS2( xor eax, C(0)) // B^C
AS2( mov ecx, A(0)) // A
ROUND(0, 0, eax, ecx, edi, edx)
ROUND(1, 0, ecx, eax, edx, edi)
ROUND(2, 0, eax, ecx, edi, edx)
ROUND(3, 0, ecx, eax, edx, edi)
ROUND(4, 0, eax, ecx, edi, edx)
ROUND(5, 0, ecx, eax, edx, edi)
ROUND(6, 0, eax, ecx, edi, edx)
ROUND(7, 0, ecx, eax, edx, edi)
ROUND(8, 0, eax, ecx, edi, edx)
ROUND(9, 0, ecx, eax, edx, edi)
ROUND(10, 0, eax, ecx, edi, edx)
ROUND(11, 0, ecx, eax, edx, edi)
ROUND(12, 0, eax, ecx, edi, edx)
ROUND(13, 0, ecx, eax, edx, edi)
ROUND(14, 0, eax, ecx, edi, edx)
ROUND(15, 0, ecx, eax, edx, edi)
ASL(1)
AS2(add WORD_REG(si), 4*16)
ROUND(0, 1, eax, ecx, edi, edx)
ROUND(1, 1, ecx, eax, edx, edi)
ROUND(2, 1, eax, ecx, edi, edx)
ROUND(3, 1, ecx, eax, edx, edi)
ROUND(4, 1, eax, ecx, edi, edx)
ROUND(5, 1, ecx, eax, edx, edi)
ROUND(6, 1, eax, ecx, edi, edx)
ROUND(7, 1, ecx, eax, edx, edi)
ROUND(8, 1, eax, ecx, edi, edx)
ROUND(9, 1, ecx, eax, edx, edi)
ROUND(10, 1, eax, ecx, edi, edx)
ROUND(11, 1, ecx, eax, edx, edi)
ROUND(12, 1, eax, ecx, edi, edx)
ROUND(13, 1, ecx, eax, edx, edi)
ROUND(14, 1, eax, ecx, edi, edx)
ROUND(15, 1, ecx, eax, edx, edi)
AS2( cmp WORD_REG(si), K_END)
ASJ( jb, 1, b)
AS2( mov WORD_REG(dx), DATA_SAVE)
AS2( add WORD_REG(dx), 64)
AS2( mov AS_REG_7, STATE_SAVE)
AS2( mov DATA_SAVE, WORD_REG(dx))
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
#if CRYPTOPP_BOOL_X86
AS2( test DWORD PTR K_END, 1)
ASJ( jz, 4, f)
#endif
AS2( movdqa xmm1, XMMWORD_PTR [AS_REG_7+1*16])
AS2( movdqa xmm0, XMMWORD_PTR [AS_REG_7+0*16])
AS2( paddd xmm1, E(0))
AS2( paddd xmm0, A(0))
AS2( movdqa [AS_REG_7+1*16], xmm1)
AS2( movdqa [AS_REG_7+0*16], xmm0)
AS2( cmp WORD_REG(dx), DATA_END)
ASJ( jb, 0, b)
#endif
#if CRYPTOPP_BOOL_X86
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
ASJ( jmp, 5, f)
ASL(4) // non-SSE2
#endif
AS2( add [AS_REG_7+0*4], ecx) // A
AS2( add [AS_REG_7+4*4], edi) // E
AS2( mov eax, B(0))
AS2( mov ebx, C(0))
AS2( mov ecx, D(0))
AS2( add [AS_REG_7+1*4], eax)
AS2( add [AS_REG_7+2*4], ebx)
AS2( add [AS_REG_7+3*4], ecx)
AS2( mov eax, F(0))
AS2( mov ebx, G(0))
AS2( mov ecx, H(0))
AS2( add [AS_REG_7+5*4], eax)
AS2( add [AS_REG_7+6*4], ebx)
AS2( add [AS_REG_7+7*4], ecx)
AS2( mov ecx, AS_REG_7d)
AS2( cmp WORD_REG(dx), DATA_END)
ASJ( jb, 2, b)
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
ASL(5)
#endif
#endif
AS_POP_IF86(sp)
AS_POP_IF86(bp)
#if !defined(_MSC_VER) || (_MSC_VER < 1400)
AS_POP_IF86(bx)
#endif
#ifdef CRYPTOPP_GENERATE_X64_MASM
add rsp, LOCALS_SIZE+8
pop rbp
pop rbx
pop rdi
pop rsi
ret
X86_SHA256_HashBlocks ENDP
#endif
#ifdef __GNUC__
".att_syntax prefix;"
:
: "c" (state), "d" (data), "S" (SHA256_K+48), "D" (len)
#if CRYPTOPP_BOOL_X64
, "m" (workspace[0])
#endif
: "memory", "cc", "%eax"
#if CRYPTOPP_BOOL_X64
, "%rbx", "%r8", "%r10"
#endif
);
#endif
}
static inline bool HasSSE2(void) { return false; }
static void SHA256_Transform32(word32 *state, const word32 *data)
{
word32 W[16];
int i;
for (i = 0; i < 16; i++)
W[i] = swab32(((word32 *)(data))[i]);
X86_SHA256_HashBlocks(state, W, 16 * 4);
}
static void runhash32(void *state, const void *input, const void *init)
{
memcpy(state, init, 32);
SHA256_Transform32(state, input);
}
/* suspiciously similar to ScanHash* from bitcoin */
bool scanhash_asm32(int thr_id, const unsigned char *midstate,
unsigned char *data,
unsigned char *hash1, unsigned char *hash,
const unsigned char *target,
uint32_t max_nonce, unsigned long *hashes_done)
{
uint32_t *hash32 = (uint32_t *) hash;
uint32_t *nonce = (uint32_t *)(data + 12);
uint32_t n = 0;
unsigned long stat_ctr = 0;
work_restart[thr_id].restart = 0;
while (1) {
n++;
*nonce = n;
runhash32(hash1, data, midstate);
runhash32(hash, hash1, sha256_init_state);
stat_ctr++;
if (unlikely((hash32[7] == 0) && fulltest(hash, target))) {
fulltest(hash, target);
*hashes_done = stat_ctr;
return true;
}
if ((n >= max_nonce) || work_restart[thr_id].restart) {
*hashes_done = stat_ctr;
return false;
}
}
}
#endif // #if defined(WANT_CRYPTOPP_ASM32)
|