diff options
Diffstat (limited to 'scrypt.c')
-rw-r--r-- | scrypt.c | 438 |
1 files changed, 155 insertions, 283 deletions
@@ -55,26 +55,6 @@ be32enc(void *pp, uint32_t x) p[0] = (x >> 24) & 0xff; } -static inline uint32_t -le32dec(const void *pp) -{ - const uint8_t *p = (uint8_t const *)pp; - - return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) + - ((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24)); -} - -static inline void -le32enc(void *pp, uint32_t x) -{ - uint8_t * p = (uint8_t *)pp; - - p[0] = x & 0xff; - p[1] = (x >> 8) & 0xff; - p[2] = (x >> 16) & 0xff; - p[3] = (x >> 24) & 0xff; -} - typedef struct SHA256Context { uint32_t state[8]; @@ -91,7 +71,7 @@ typedef struct HMAC_SHA256Context { * Encode a length len/4 vector of (uint32_t) into a length len vector of * (unsigned char) in big-endian form. Assumes len is a multiple of 4. */ -static void +static inline void be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len) { size_t i; @@ -104,7 +84,7 @@ be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len) * Decode a big-endian length len vector of (unsigned char) into a length * len/4 vector of (uint32_t). Assumes len is a multiple of 4. */ -static void +static inline void be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len) { size_t i; @@ -227,11 +207,6 @@ SHA256_Transform(uint32_t * state, const unsigned char block[64]) /* 4. Mix local working variables into global state */ for (i = 0; i < 8; i++) state[i] += S[i]; - - /* Clean the stack. */ - memset(W, 0, 256); - memset(S, 0, 32); - t0 = t1 = 0; } static unsigned char PAD[64] = { @@ -242,7 +217,7 @@ static unsigned char PAD[64] = { }; /* SHA-256 initialization. Begins a SHA-256 operation. */ -static void +static inline void SHA256_Init(SHA256_CTX * ctx) { @@ -261,7 +236,7 @@ SHA256_Init(SHA256_CTX * ctx) } /* Add bytes into the hash */ -static void +static inline void SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len) { uint32_t bitlen[2]; @@ -304,7 +279,7 @@ SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len) } /* Add padding and terminating bit-count. */ -static void +static inline void SHA256_Pad(SHA256_CTX * ctx) { unsigned char len[8]; @@ -329,7 +304,7 @@ SHA256_Pad(SHA256_CTX * ctx) * SHA-256 finalization. Pads the input data, exports the hash value, * and clears the context state. */ -static void +static inline void SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx) { @@ -338,141 +313,108 @@ SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx) /* Write the hash */ be32enc_vect(digest, ctx->state, 32); - - /* Clear the context state */ - memset((void *)ctx, 0, sizeof(*ctx)); } -/* Initialize an HMAC-SHA256 operation with the given key. */ -static void -HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen) +/** + * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): + * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and + * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1). + */ +static inline void +PBKDF2_SHA256_80_128(const uint8_t * passwd, uint8_t * buf) { + HMAC_SHA256_CTX PShctx, hctx; + size_t i; + uint8_t ivec[4]; + unsigned char ihash[32]; + + /* Compute HMAC state after processing P and S. */ unsigned char pad[64]; unsigned char khash[32]; - const unsigned char * K = _K; - size_t i; /* If Klen > 64, the key is really SHA256(K). */ - if (Klen > 64) { - SHA256_Init(&ctx->ictx); - SHA256_Update(&ctx->ictx, K, Klen); - SHA256_Final(khash, &ctx->ictx); - K = khash; - Klen = 32; - } + SHA256_Init(&PShctx.ictx); + SHA256_Update(&PShctx.ictx, passwd, 80); + SHA256_Final(khash, &PShctx.ictx); - /* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */ - SHA256_Init(&ctx->ictx); + SHA256_Init(&PShctx.ictx); memset(pad, 0x36, 64); - for (i = 0; i < Klen; i++) - pad[i] ^= K[i]; - SHA256_Update(&ctx->ictx, pad, 64); + for (i = 0; i < 32; i++) + pad[i] ^= khash[i]; + SHA256_Update(&PShctx.ictx, pad, 64); - /* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */ - SHA256_Init(&ctx->octx); + SHA256_Init(&PShctx.octx); memset(pad, 0x5c, 64); - for (i = 0; i < Klen; i++) - pad[i] ^= K[i]; - SHA256_Update(&ctx->octx, pad, 64); + for (i = 0; i < 32; i++) + pad[i] ^= khash[i]; + SHA256_Update(&PShctx.octx, pad, 64); - /* Clean the stack. */ - memset(khash, 0, 32); -} + SHA256_Update(&PShctx.ictx, passwd, 80); -/* Add bytes to the HMAC-SHA256 operation. */ -static void -HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len) -{ - - /* Feed data to the inner SHA256 operation. */ - SHA256_Update(&ctx->ictx, in, len); -} - -/* Finish an HMAC-SHA256 operation. */ -static void -HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx) -{ - unsigned char ihash[32]; - - /* Finish the inner SHA256 operation. */ - SHA256_Final(ihash, &ctx->ictx); - - /* Feed the inner hash to the outer SHA256 operation. */ - SHA256_Update(&ctx->octx, ihash, 32); + /* Iterate through the blocks. */ + for (i = 0; i * 32 < 128; i++) { + /* Generate INT(i + 1). */ + be32enc(ivec, (uint32_t)(i + 1)); - /* Finish the outer SHA256 operation. */ - SHA256_Final(digest, &ctx->octx); + /* Compute U_1 = PRF(P, S || INT(i)). */ + memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX)); + SHA256_Update(&hctx.ictx, ivec, 4); - /* Clean the stack. */ - memset(ihash, 0, 32); + SHA256_Final(ihash, &hctx.ictx); + /* Feed the inner hash to the outer SHA256 operation. */ + SHA256_Update(&hctx.octx, ihash, 32); + /* Finish the outer SHA256 operation. */ + SHA256_Final(&buf[i*32], &hctx.octx); + } } -/** - * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): - * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and - * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1). - */ -static void -PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt, - size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen) + +static inline void +PBKDF2_SHA256_80_128_32(const uint8_t * passwd, const uint8_t * salt, uint8_t * buf) { - HMAC_SHA256_CTX PShctx, hctx; + HMAC_SHA256_CTX PShctx; size_t i; uint8_t ivec[4]; - uint8_t U[32]; - uint8_t T[32]; - uint64_t j; - int k; - size_t clen; + unsigned char ihash[32]; /* Compute HMAC state after processing P and S. */ - HMAC_SHA256_Init(&PShctx, passwd, passwdlen); - HMAC_SHA256_Update(&PShctx, salt, saltlen); + unsigned char pad[64]; + unsigned char khash[32]; - /* Iterate through the blocks. */ - for (i = 0; i * 32 < dkLen; i++) { - /* Generate INT(i + 1). */ - be32enc(ivec, (uint32_t)(i + 1)); + /* If Klen > 64, the key is really SHA256(K). */ + SHA256_Init(&PShctx.ictx); + SHA256_Update(&PShctx.ictx, passwd, 80); + SHA256_Final(khash, &PShctx.ictx); - /* Compute U_1 = PRF(P, S || INT(i)). */ - memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX)); - HMAC_SHA256_Update(&hctx, ivec, 4); - HMAC_SHA256_Final(U, &hctx); + SHA256_Init(&PShctx.ictx); + memset(pad, 0x36, 64); + for (i = 0; i < 32; i++) + pad[i] ^= khash[i]; + SHA256_Update(&PShctx.ictx, pad, 64); - /* T_i = U_1 ... */ - memcpy(T, U, 32); + SHA256_Init(&PShctx.octx); + memset(pad, 0x5c, 64); + for (i = 0; i < 32; i++) + pad[i] ^= khash[i]; + SHA256_Update(&PShctx.octx, pad, 64); - for (j = 2; j <= c; j++) { - /* Compute U_j. */ - HMAC_SHA256_Init(&hctx, passwd, passwdlen); - HMAC_SHA256_Update(&hctx, U, 32); - HMAC_SHA256_Final(U, &hctx); + SHA256_Update(&PShctx.ictx, salt, 128); - /* ... xor U_j ... */ - for (k = 0; k < 32; k++) - T[k] ^= U[k]; - } + /* Generate INT(i + 1). */ + be32enc(ivec, (uint32_t)(1)); - /* Copy as many bytes as necessary into buf. */ - clen = dkLen - i * 32; - if (clen > 32) - clen = 32; - memcpy(&buf[i * 32], T, clen); - } + /* Compute U_1 = PRF(P, S || INT(i)). */ + SHA256_Update(&PShctx.ictx, ivec, 4); - /* Clean PShctx, since we never called _Final on it. */ - memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX)); + SHA256_Final(ihash, &PShctx.ictx); + /* Feed the inner hash to the outer SHA256 operation. */ + SHA256_Update(&PShctx.octx, ihash, 32); + /* Finish the outer SHA256 operation. */ + SHA256_Final(&buf[0], &PShctx.octx); } -static void blkcpy(void *, void *, size_t); -static void blkxor(void *, void *, size_t); -static void salsa20_8(uint32_t[16]); -static void blockmix_salsa8(uint32_t *, uint32_t *, uint32_t *, size_t); -static uint64_t integerify(void *, size_t); -static void smix(uint8_t *, size_t, uint64_t, uint32_t *, uint32_t *); - -static void +static inline void blkcpy(void * dest, void * src, size_t len) { size_t * D = dest; @@ -484,7 +426,7 @@ blkcpy(void * dest, void * src, size_t len) D[i] = S[i]; } -static void +static inline void blkxor(void * dest, void * src, size_t len) { size_t * D = dest; @@ -500,149 +442,59 @@ blkxor(void * dest, void * src, size_t len) * salsa20_8(B): * Apply the salsa20/8 core to the provided block. */ -static void +static inline void salsa20_8(uint32_t B[16]) { - uint32_t x[16]; + uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15; size_t i; - blkcpy(x, B, 64); + x00 = B[ 0]; + x01 = B[ 1]; + x02 = B[ 2]; + x03 = B[ 3]; + x04 = B[ 4]; + x05 = B[ 5]; + x06 = B[ 6]; + x07 = B[ 7]; + x08 = B[ 8]; + x09 = B[ 9]; + x10 = B[10]; + x11 = B[11]; + x12 = B[12]; + x13 = B[13]; + x14 = B[14]; + x15 = B[15]; for (i = 0; i < 8; i += 2) { #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) /* Operate on columns. */ - x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9); - x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18); - - x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9); - x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18); - - x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9); - x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18); - - x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9); - x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18); + x04 ^= R(x00+x12, 7); x08 ^= R(x04+x00, 9); x12 ^= R(x08+x04,13); x00 ^= R(x12+x08,18); + x09 ^= R(x05+x01, 7); x13 ^= R(x09+x05, 9); x01 ^= R(x13+x09,13); x05 ^= R(x01+x13,18); + x14 ^= R(x10+x06, 7); x02 ^= R(x14+x10, 9); x06 ^= R(x02+x14,13); x10 ^= R(x06+x02,18); + x03 ^= R(x15+x11, 7); x07 ^= R(x03+x15, 9); x11 ^= R(x07+x03,13); x15 ^= R(x11+x07,18); /* Operate on rows. */ - x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9); - x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18); - - x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9); - x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18); - - x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9); - x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18); - - x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9); - x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18); + x01 ^= R(x00+x03, 7); x02 ^= R(x01+x00, 9); x03 ^= R(x02+x01,13); x00 ^= R(x03+x02,18); + x06 ^= R(x05+x04, 7); x07 ^= R(x06+x05, 9); x04 ^= R(x07+x06,13); x05 ^= R(x04+x07,18); + x11 ^= R(x10+x09, 7); x08 ^= R(x11+x10, 9); x09 ^= R(x08+x11,13); x10 ^= R(x09+x08,18); + x12 ^= R(x15+x14, 7); x13 ^= R(x12+x15, 9); x14 ^= R(x13+x12,13); x15 ^= R(x14+x13,18); #undef R } - for (i = 0; i < 16; i++) - B[i] += x[i]; -} - -/** - * blockmix_salsa8(Bin, Bout, X, r): - * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r - * bytes in length; the output Bout must also be the same size. The - * temporary space X must be 64 bytes. - */ -static void -blockmix_salsa8(uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r) -{ - size_t i; - - /* 1: X <-- B_{2r - 1} */ - blkcpy(X, &Bin[(2 * r - 1) * 16], 64); - - /* 2: for i = 0 to 2r - 1 do */ - for (i = 0; i < 2 * r; i += 2) { - /* 3: X <-- H(X \xor B_i) */ - blkxor(X, &Bin[i * 16], 64); - salsa20_8(X); - - /* 4: Y_i <-- X */ - /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ - blkcpy(&Bout[i * 8], X, 64); - - /* 3: X <-- H(X \xor B_i) */ - blkxor(X, &Bin[i * 16 + 16], 64); - salsa20_8(X); - - /* 4: Y_i <-- X */ - /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ - blkcpy(&Bout[i * 8 + r * 16], X, 64); - } -} - -/** - * integerify(B, r): - * Return the result of parsing B_{2r-1} as a little-endian integer. - */ -static uint64_t -integerify(void * B, size_t r) -{ - uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64); - - return (((uint64_t)(X[1]) << 32) + X[0]); -} - -/** - * smix(B, r, N, V, XY): - * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; - * the temporary storage V must be 128rN bytes in length; the temporary - * storage XY must be 256r + 64 bytes in length. The value N must be a - * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a - * multiple of 64 bytes. - */ -static void -smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY) -{ - uint32_t * X = XY; - uint32_t * Y = &XY[32 * r]; - uint32_t * Z = &XY[64 * r]; - uint64_t i; - uint64_t j; - size_t k; - - /* 1: X <-- B */ - for (k = 0; k < 32 * r; k++) - X[k] = le32dec(&B[4 * k]); - - /* 2: for i = 0 to N - 1 do */ - for (i = 0; i < N; i += 2) { - /* 3: V_i <-- X */ - blkcpy(&V[i * (32 * r)], X, 128 * r); - - /* 4: X <-- H(X) */ - blockmix_salsa8(X, Y, Z, r); - - /* 3: V_i <-- X */ - blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r); - - /* 4: X <-- H(X) */ - blockmix_salsa8(Y, X, Z, r); - } - - /* 6: for i = 0 to N - 1 do */ - for (i = 0; i < N; i += 2) { - /* 7: j <-- Integerify(X) mod N */ - j = integerify(X, r) & (N - 1); - - /* 8: X <-- H(X \xor V_j) */ - blkxor(X, &V[j * (32 * r)], 128 * r); - blockmix_salsa8(X, Y, Z, r); - - /* 7: j <-- Integerify(X) mod N */ - j = integerify(Y, r) & (N - 1); - - /* 8: X <-- H(X \xor V_j) */ - blkxor(Y, &V[j * (32 * r)], 128 * r); - blockmix_salsa8(Y, X, Z, r); - } - - /* 10: B' <-- X */ - for (k = 0; k < 32 * r; k++) - le32enc(&B[4 * k], X[k]); + B[ 0] += x00; + B[ 1] += x01; + B[ 2] += x02; + B[ 3] += x03; + B[ 4] += x04; + B[ 5] += x05; + B[ 6] += x06; + B[ 7] += x07; + B[ 8] += x08; + B[ 9] += x09; + B[10] += x10; + B[11] += x11; + B[12] += x12; + B[13] += x13; + B[14] += x14; + B[15] += x15; } /* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output @@ -650,30 +502,50 @@ smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY) */ static void scrypt_1024_1_1_256_sp(const char* input, char* output, char* scratchpad) { - uint8_t * B; uint32_t * V; - uint32_t * XY; + uint32_t * X; uint32_t i; + uint32_t j; + + X = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); + V = &X[32]; - const uint32_t N = 1024; - const uint32_t r = 1; - const uint32_t p = 1; + PBKDF2_SHA256_80_128((const uint8_t*)input, (uint8_t *)X); - B = (uint8_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); - XY = (uint32_t *)(B + (128 * r * p)); - V = (uint32_t *)(B + (128 * r * p) + (256 * r + 64)); + for (i = 0; i < 1024; i += 2) { + blkcpy(&V[i * 32], X, 128); - /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ - PBKDF2_SHA256((const uint8_t*)input, 80, (const uint8_t*)input, 80, 1, B, p * 128 * r); + blkxor(&X[0], &X[16], 64); + salsa20_8(&X[0]); + blkxor(&X[16], &X[0], 64); + salsa20_8(&X[16]); - /* 2: for i = 0 to p - 1 do */ - for (i = 0; i < p; i++) { - /* 3: B_i <-- MF(B_i, N) */ - smix(&B[i * 128 * r], r, N, V, XY); + blkcpy(&V[(i + 1) * 32], X, 128); + + blkxor(&X[0], &X[16], 64); + salsa20_8(&X[0]); + blkxor(&X[16], &X[0], 64); + salsa20_8(&X[16]); + } + for (i = 0; i < 1024; i += 2) { + j = X[16] & 1023; + blkxor(X, &V[j * 32], 128); + + blkxor(&X[0], &X[16], 64); + salsa20_8(&X[0]); + blkxor(&X[16], &X[0], 64); + salsa20_8(&X[16]); + + j = X[16] & 1023; + blkxor(X, &V[j * 32], 128); + + blkxor(&X[0], &X[16], 64); + salsa20_8(&X[0]); + blkxor(&X[16], &X[0], 64); + salsa20_8(&X[16]); } - /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ - PBKDF2_SHA256((const uint8_t*)input, 80, B, p * 128 * r, 1, (uint8_t*)output, 32); + PBKDF2_SHA256_80_128_32((const uint8_t*)input, (const uint8_t *)X, (uint8_t*)output); } int scanhash_scrypt(int thr_id, unsigned char *pdata, unsigned char *scratchbuf, |