diff options
author | Art Forz <artforz@localhost> | 2011-10-06 03:34:47 +0200 |
---|---|---|
committer | Art Forz <artforz@localhost> | 2011-10-06 03:34:47 +0200 |
commit | a8a1f3f8d4f1d3d891c049cd3d3b88e6960d9ca6 (patch) | |
tree | 153dfb1b4da09b807f61d5abe82473200d332090 | |
parent | 383482e0a6dc7548298757e32cb78d94e06dc20d (diff) |
Mangle scrypt some more
3.62kH/s/core on a 3.6GHz PhenomII compiled with gcc 4.6.1 and CFLAGS="-march=amdfam10 -O3"
-rw-r--r-- | scrypt.c | 451 |
1 files changed, 154 insertions, 297 deletions
@@ -34,63 +34,24 @@ #include <stdint.h> #include <string.h> - -static inline uint32_t -be32dec(const void *pp) -{ - const uint8_t *p = (uint8_t const *)pp; - - return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) + - ((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24)); -} - -static inline void -be32enc(void *pp, uint32_t x) -{ - uint8_t * p = (uint8_t *)pp; - - p[3] = x & 0xff; - p[2] = (x >> 8) & 0xff; - p[1] = (x >> 16) & 0xff; - p[0] = (x >> 24) & 0xff; -} - +#define byteswap(x) ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu)) typedef struct SHA256Context { uint32_t state[8]; - uint32_t count[2]; - unsigned char buf[64]; + uint32_t buf[16]; } SHA256_CTX; -typedef struct HMAC_SHA256Context { - SHA256_CTX ictx; - SHA256_CTX octx; -} HMAC_SHA256_CTX; - /* * Encode a length len/4 vector of (uint32_t) into a length len vector of * (unsigned char) in big-endian form. Assumes len is a multiple of 4. */ static inline void -be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len) -{ - size_t i; - - for (i = 0; i < len / 4; i++) - be32enc(dst + i * 4, src[i]); -} - -/* - * Decode a big-endian length len vector of (unsigned char) into a length - * len/4 vector of (uint32_t). Assumes len is a multiple of 4. - */ -static inline void -be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len) +be32enc_vect(uint32_t *dst, const uint32_t *src, uint32_t len) { - size_t i; + uint32_t i; - for (i = 0; i < len / 4; i++) - dst[i] = be32dec(src + i * 4); + for (i = 0; i < len; i++) + dst[i] = byteswap(src[i]); } /* Elementary functions used by SHA256 */ @@ -123,7 +84,7 @@ be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len) * the 512-bit input block to produce a new state. */ static void -SHA256_Transform(uint32_t * state, const unsigned char block[64]) +SHA256_Transform(uint32_t * state, const uint32_t block[16], int swap) { uint32_t W[64]; uint32_t S[8]; @@ -131,9 +92,15 @@ SHA256_Transform(uint32_t * state, const unsigned char block[64]) int i; /* 1. Prepare message schedule W. */ - be32dec_vect(W, block, 64); - for (i = 16; i < 64; i++) + if(swap) + for (i = 0; i < 16; i++) + W[i] = byteswap(block[i]); + else + memcpy(W, block, 64); + for (i = 16; i < 64; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; + W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; + } /* 2. Initialize working variables. */ memcpy(S, state, 32); @@ -209,111 +176,22 @@ SHA256_Transform(uint32_t * state, const unsigned char block[64]) state[i] += S[i]; } -static unsigned char PAD[64] = { - 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -}; - -/* SHA-256 initialization. Begins a SHA-256 operation. */ static inline void -SHA256_Init(SHA256_CTX * ctx) +SHA256_InitState(uint32_t * state) { - - /* Zero bits processed so far */ - ctx->count[0] = ctx->count[1] = 0; - /* Magic initialization constants */ - ctx->state[0] = 0x6A09E667; - ctx->state[1] = 0xBB67AE85; - ctx->state[2] = 0x3C6EF372; - ctx->state[3] = 0xA54FF53A; - ctx->state[4] = 0x510E527F; - ctx->state[5] = 0x9B05688C; - ctx->state[6] = 0x1F83D9AB; - ctx->state[7] = 0x5BE0CD19; + state[0] = 0x6A09E667; + state[1] = 0xBB67AE85; + state[2] = 0x3C6EF372; + state[3] = 0xA54FF53A; + state[4] = 0x510E527F; + state[5] = 0x9B05688C; + state[6] = 0x1F83D9AB; + state[7] = 0x5BE0CD19; } -/* Add bytes into the hash */ -static inline void -SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len) -{ - uint32_t bitlen[2]; - uint32_t r; - const unsigned char *src = in; - - /* Number of bytes left in the buffer from previous updates */ - r = (ctx->count[1] >> 3) & 0x3f; - - /* Convert the length into a number of bits */ - bitlen[1] = ((uint32_t)len) << 3; - bitlen[0] = (uint32_t)(len >> 29); - - /* Update number of bits */ - if ((ctx->count[1] += bitlen[1]) < bitlen[1]) - ctx->count[0]++; - ctx->count[0] += bitlen[0]; - - /* Handle the case where we don't need to perform any transforms */ - if (len < 64 - r) { - memcpy(&ctx->buf[r], src, len); - return; - } - - /* Finish the current block */ - memcpy(&ctx->buf[r], src, 64 - r); - SHA256_Transform(ctx->state, ctx->buf); - src += 64 - r; - len -= 64 - r; - - /* Perform complete blocks */ - while (len >= 64) { - SHA256_Transform(ctx->state, src); - src += 64; - len -= 64; - } - - /* Copy left over data into buffer */ - memcpy(ctx->buf, src, len); -} - -/* Add padding and terminating bit-count. */ -static inline void -SHA256_Pad(SHA256_CTX * ctx) -{ - unsigned char len[8]; - uint32_t r, plen; - - /* - * Convert length to a vector of bytes -- we do this now rather - * than later because the length will change after we pad. - */ - be32enc_vect(len, ctx->count, 8); - - /* Add 1--64 bytes so that the resulting length is 56 mod 64 */ - r = (ctx->count[1] >> 3) & 0x3f; - plen = (r < 56) ? (56 - r) : (120 - r); - SHA256_Update(ctx, PAD, (size_t)plen); - - /* Add the terminating bit-count */ - SHA256_Update(ctx, len, 8); -} - -/* - * SHA-256 finalization. Pads the input data, exports the hash value, - * and clears the context state. - */ -static inline void -SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx) -{ - - /* Add padding */ - SHA256_Pad(ctx); - - /* Write the hash */ - be32enc_vect(digest, ctx->state, 32); -} +static const uint32_t passwdpad[12] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80020000}; +static const uint32_t outerpad[8] = {0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300}; /** * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): @@ -321,149 +199,132 @@ SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx) * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1). */ static inline void -PBKDF2_SHA256_80_128(const uint8_t * passwd, uint8_t * buf) +PBKDF2_SHA256_80_128(const uint32_t * passwd, uint32_t * buf) { - HMAC_SHA256_CTX PShctx, hctx; - size_t i; - uint8_t ivec[4]; - unsigned char ihash[32]; - - /* Compute HMAC state after processing P and S. */ - unsigned char pad[64]; - unsigned char khash[32]; + SHA256_CTX PShictx, PShoctx; + uint32_t tstate[8]; + uint32_t ihash[8]; + uint32_t i; + uint32_t pad[16]; + + static const uint32_t innerpad[11] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xa0040000}; /* If Klen > 64, the key is really SHA256(K). */ - SHA256_Init(&PShctx.ictx); - SHA256_Update(&PShctx.ictx, passwd, 80); - SHA256_Final(khash, &PShctx.ictx); - - SHA256_Init(&PShctx.ictx); - memset(pad, 0x36, 64); - for (i = 0; i < 32; i++) - pad[i] ^= khash[i]; - SHA256_Update(&PShctx.ictx, pad, 64); - - SHA256_Init(&PShctx.octx); - memset(pad, 0x5c, 64); - for (i = 0; i < 32; i++) - pad[i] ^= khash[i]; - SHA256_Update(&PShctx.octx, pad, 64); - - SHA256_Update(&PShctx.ictx, passwd, 80); + SHA256_InitState(tstate); + SHA256_Transform(tstate, passwd, 1); + memcpy(pad, passwd+16, 16); + memcpy(pad+4, passwdpad, 48); + SHA256_Transform(tstate, pad, 1); + memcpy(ihash, tstate, 32); + + SHA256_InitState(PShictx.state); + for (i = 0; i < 8; i++) + pad[i] = ihash[i] ^ 0x36363636; + for (; i < 16; i++) + pad[i] = 0x36363636; + SHA256_Transform(PShictx.state, pad, 0); + SHA256_Transform(PShictx.state, passwd, 1); + be32enc_vect(PShictx.buf, passwd+16, 4); + be32enc_vect(PShictx.buf+5, innerpad, 11); + + SHA256_InitState(PShoctx.state); + for (i = 0; i < 8; i++) + pad[i] = ihash[i] ^ 0x5c5c5c5c; + for (; i < 16; i++) + pad[i] = 0x5c5c5c5c; + SHA256_Transform(PShoctx.state, pad, 0); + memcpy(PShoctx.buf+8, outerpad, 32); /* Iterate through the blocks. */ - for (i = 0; i * 32 < 128; i++) { - /* Generate INT(i + 1). */ - be32enc(ivec, (uint32_t)(i + 1)); - - /* Compute U_1 = PRF(P, S || INT(i)). */ - memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX)); - SHA256_Update(&hctx.ictx, ivec, 4); - - SHA256_Final(ihash, &hctx.ictx); - /* Feed the inner hash to the outer SHA256 operation. */ - SHA256_Update(&hctx.octx, ihash, 32); - /* Finish the outer SHA256 operation. */ - SHA256_Final(&buf[i*32], &hctx.octx); + for (i = 0; i < 4; i++) { + uint32_t istate[8]; + uint32_t ostate[8]; + + memcpy(istate, PShictx.state, 32); + PShictx.buf[4] = i + 1; + SHA256_Transform(istate, PShictx.buf, 0); + memcpy(PShoctx.buf, istate, 32); + + memcpy(ostate, PShoctx.state, 32); + SHA256_Transform(ostate, PShoctx.buf, 0); + be32enc_vect(buf+i*8, ostate, 8); } } -static inline void -PBKDF2_SHA256_80_128_32(const uint8_t * passwd, const uint8_t * salt, uint8_t * buf) +static inline uint32_t +PBKDF2_SHA256_80_128_32(const uint32_t * passwd, const uint32_t * salt) { - HMAC_SHA256_CTX PShctx; - size_t i; - uint8_t ivec[4]; - unsigned char ihash[32]; + uint32_t tstate[8]; + uint32_t ostate[8]; + uint32_t ihash[8]; + uint32_t i; /* Compute HMAC state after processing P and S. */ - unsigned char pad[64]; - unsigned char khash[32]; + uint32_t pad[16]; + + static const uint32_t ihash_finalblk[16] = {0x00000001,0x80000000,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x00000620}; /* If Klen > 64, the key is really SHA256(K). */ - SHA256_Init(&PShctx.ictx); - SHA256_Update(&PShctx.ictx, passwd, 80); - SHA256_Final(khash, &PShctx.ictx); - - SHA256_Init(&PShctx.ictx); - memset(pad, 0x36, 64); - for (i = 0; i < 32; i++) - pad[i] ^= khash[i]; - SHA256_Update(&PShctx.ictx, pad, 64); - - SHA256_Init(&PShctx.octx); - memset(pad, 0x5c, 64); - for (i = 0; i < 32; i++) - pad[i] ^= khash[i]; - SHA256_Update(&PShctx.octx, pad, 64); - - SHA256_Update(&PShctx.ictx, salt, 128); - - /* Generate INT(i + 1). */ - be32enc(ivec, (uint32_t)(1)); + SHA256_InitState(tstate); + SHA256_Transform(tstate, passwd, 1); + memcpy(pad, passwd+16, 16); + memcpy(pad+4, passwdpad, 48); + SHA256_Transform(tstate, pad, 1); + memcpy(ihash, tstate, 32); + + SHA256_InitState(ostate); + for (i = 0; i < 8; i++) + pad[i] = ihash[i] ^ 0x5c5c5c5c; + for (; i < 16; i++) + pad[i] = 0x5c5c5c5c; + SHA256_Transform(ostate, pad, 0); - /* Compute U_1 = PRF(P, S || INT(i)). */ - SHA256_Update(&PShctx.ictx, ivec, 4); + SHA256_InitState(tstate); + for (i = 0; i < 8; i++) + pad[i] = ihash[i] ^ 0x36363636; + for (; i < 16; i++) + pad[i] = 0x36363636; + SHA256_Transform(tstate, pad, 0); + SHA256_Transform(tstate, salt, 1); + SHA256_Transform(tstate, salt+16, 1); + SHA256_Transform(tstate, ihash_finalblk, 0); + memcpy(pad, tstate, 32); + memcpy(pad+8, outerpad, 32); - SHA256_Final(ihash, &PShctx.ictx); /* Feed the inner hash to the outer SHA256 operation. */ - SHA256_Update(&PShctx.octx, ihash, 32); + SHA256_Transform(ostate, pad, 0); /* Finish the outer SHA256 operation. */ - SHA256_Final(&buf[0], &PShctx.octx); + return byteswap(ostate[7]); } -static inline void -blkcpy(void * dest, void * src, size_t len) -{ - size_t * D = dest; - size_t * S = src; - size_t L = len / sizeof(size_t); - size_t i; - - for (i = 0; i < L; i++) - D[i] = S[i]; -} - -static inline void -blkxor(void * dest, void * src, size_t len) -{ - size_t * D = dest; - size_t * S = src; - size_t L = len / sizeof(size_t); - size_t i; - - for (i = 0; i < L; i++) - D[i] ^= S[i]; -} - /** * salsa20_8(B): * Apply the salsa20/8 core to the provided block. */ static inline void -salsa20_8(uint32_t B[16]) +salsa20_8(uint32_t B[16], const uint32_t Bx[16]) { uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15; size_t i; - x00 = B[ 0]; - x01 = B[ 1]; - x02 = B[ 2]; - x03 = B[ 3]; - x04 = B[ 4]; - x05 = B[ 5]; - x06 = B[ 6]; - x07 = B[ 7]; - x08 = B[ 8]; - x09 = B[ 9]; - x10 = B[10]; - x11 = B[11]; - x12 = B[12]; - x13 = B[13]; - x14 = B[14]; - x15 = B[15]; + x00 = (B[ 0] ^= Bx[ 0]); + x01 = (B[ 1] ^= Bx[ 1]); + x02 = (B[ 2] ^= Bx[ 2]); + x03 = (B[ 3] ^= Bx[ 3]); + x04 = (B[ 4] ^= Bx[ 4]); + x05 = (B[ 5] ^= Bx[ 5]); + x06 = (B[ 6] ^= Bx[ 6]); + x07 = (B[ 7] ^= Bx[ 7]); + x08 = (B[ 8] ^= Bx[ 8]); + x09 = (B[ 9] ^= Bx[ 9]); + x10 = (B[10] ^= Bx[10]); + x11 = (B[11] ^= Bx[11]); + x12 = (B[12] ^= Bx[12]); + x13 = (B[13] ^= Bx[13]); + x14 = (B[14] ^= Bx[14]); + x15 = (B[15] ^= Bx[15]); for (i = 0; i < 8; i += 2) { #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) /* Operate on columns. */ @@ -500,77 +361,73 @@ salsa20_8(uint32_t B[16]) /* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes */ -static void scrypt_1024_1_1_256_sp(const char* input, char* output, char* scratchpad) +static uint32_t scrypt_1024_1_1_256_sp(const uint32_t* input, char* scratchpad) { uint32_t * V; - uint32_t * X; + uint32_t X[32]; uint32_t i; uint32_t j; + uint32_t k; + uint64_t *p1, *p2; - X = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); - V = &X[32]; + p1 = (uint64_t *)X; + V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); - PBKDF2_SHA256_80_128((const uint8_t*)input, (uint8_t *)X); + PBKDF2_SHA256_80_128(input, X); for (i = 0; i < 1024; i += 2) { - blkcpy(&V[i * 32], X, 128); + memcpy(&V[i * 32], X, 128); - blkxor(&X[0], &X[16], 64); - salsa20_8(&X[0]); - blkxor(&X[16], &X[0], 64); - salsa20_8(&X[16]); + salsa20_8(&X[0], &X[16]); + salsa20_8(&X[16], &X[0]); - blkcpy(&V[(i + 1) * 32], X, 128); + memcpy(&V[(i + 1) * 32], X, 128); - blkxor(&X[0], &X[16], 64); - salsa20_8(&X[0]); - blkxor(&X[16], &X[0], 64); - salsa20_8(&X[16]); + salsa20_8(&X[0], &X[16]); + salsa20_8(&X[16], &X[0]); } for (i = 0; i < 1024; i += 2) { j = X[16] & 1023; - blkxor(X, &V[j * 32], 128); + p2 = (uint64_t *)(&V[j * 32]); + for(k = 0; k < 16; k++) + p1[k] ^= p2[k]; - blkxor(&X[0], &X[16], 64); - salsa20_8(&X[0]); - blkxor(&X[16], &X[0], 64); - salsa20_8(&X[16]); + salsa20_8(&X[0], &X[16]); + salsa20_8(&X[16], &X[0]); j = X[16] & 1023; - blkxor(X, &V[j * 32], 128); + p2 = (uint64_t *)(&V[j * 32]); + for(k = 0; k < 16; k++) + p1[k] ^= p2[k]; - blkxor(&X[0], &X[16], 64); - salsa20_8(&X[0]); - blkxor(&X[16], &X[0], 64); - salsa20_8(&X[16]); + salsa20_8(&X[0], &X[16]); + salsa20_8(&X[16], &X[0]); } - PBKDF2_SHA256_80_128_32((const uint8_t*)input, (const uint8_t *)X, (uint8_t*)output); + return PBKDF2_SHA256_80_128_32(input, X); } int scanhash_scrypt(int thr_id, unsigned char *pdata, unsigned char *scratchbuf, const unsigned char *ptarget, uint32_t max_nonce, unsigned long *hashes_done) { - unsigned char data[80]; - unsigned char tmp_hash[32]; - uint32_t *nonce = (uint32_t *)(data + 64 + 12); + uint32_t data[20]; + uint32_t tmp_hash7; uint32_t n = 0; - uint32_t Htarg = *(uint32_t *)(ptarget + 28); + uint32_t Htarg = ((const uint32_t *)ptarget)[7]; int i; work_restart[thr_id].restart = 0; - for (i = 0; i < 80/4; i++) - ((uint32_t *)data)[i] = swab32(((uint32_t *)pdata)[i]); + be32enc_vect(data, (const uint32_t *)pdata, 19); while(1) { n++; - *nonce = n; - scrypt_1024_1_1_256_sp(data, tmp_hash, scratchbuf); + data[19] = n; + tmp_hash7 = scrypt_1024_1_1_256_sp(data, scratchbuf); - if (*(uint32_t *)(tmp_hash+28) <= Htarg) { - *(uint32_t *)(pdata + 64 + 12) = swab32(n); + if (tmp_hash7 <= Htarg) { + ((uint32_t *)pdata)[19] = byteswap(n); *hashes_done = n; return true; } |