blob: 48f34bcf26847c066264a8f4b8784d3317481d3a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
;; Complex numbers
;; by Konrad Hinsen
;; last updated May 4, 2009
;; Copyright (c) Konrad Hinsen, 2009. All rights reserved. The use
;; and distribution terms for this software are covered by the Eclipse
;; Public License 1.0 (http://opensource.org/licenses/eclipse-1.0.php)
;; which can be found in the file epl-v10.html at the root of this
;; distribution. By using this software in any fashion, you are
;; agreeing to be bound by the terms of this license. You must not
;; remove this notice, or any other, from this software.
(ns
#^{:author "Konrad Hinsen"
:doc "Complex numbers
NOTE: This library is in evolution. Most math functions are
not implemented yet."}
clojure.contrib.complex-numbers
(:use [clojure.contrib.types :only (deftype)]
[clojure.contrib.generic :only (root-type)])
(:require [clojure.contrib.generic.arithmetic :as ga]
[clojure.contrib.generic.comparison :as gc]
[clojure.contrib.generic.math-functions :as gm]))
;
; Complex numbers are represented as struct maps. The real and imaginary
; parts can be of any type for which arithmetic and maths functions
; are defined.
;
(defstruct complex-struct :real :imag)
;
; The general complex number type
;
(deftype ::complex complex
(fn [real imag] (struct complex-struct real imag))
(fn [c] (vals c)))
(derive ::complex root-type)
;
; A specialized subtype for pure imaginary numbers. Introducing this type
; reduces the number of operations by eliminating additions with and
; multiplications by zero.
;
(deftype ::pure-imaginary imaginary
(fn [imag] (struct complex-struct 0 imag))
(fn [c] (list (:imag c))))
(derive ::pure-imaginary ::complex)
;
; Extraction of real and imaginary parts
;
(def real (accessor complex-struct :real))
(def imag (accessor complex-struct :imag))
;
; Equality and zero test
;
(defmethod gc/zero? ::complex
[x]
(let [[rx ix] (vals x)]
(and (zero? rx) (zero? ix))))
(defmethod gc/= [::complex ::complex]
[x y]
(let [[rx ix] (vals x)
[ry iy] (vals y)]
(and (gc/= rx ry) (gc/= ix iy))))
(defmethod gc/= [::pure-imaginary ::pure-imaginary]
[x y]
(gc/= (imag x) (imag y)))
(defmethod gc/= [::complex ::pure-imaginary]
[x y]
(let [[rx ix] (vals x)]
(and (gc/zero? rx) (gc/= ix (imag y)))))
(defmethod gc/= [::pure-imaginary ::complex]
[x y]
(let [[ry iy] (vals y)]
(and (gc/zero? ry) (gc/= (imag x) iy))))
(defmethod gc/= [::complex root-type]
[x y]
(let [[rx ix] (vals x)]
(and (gc/zero? ix) (gc/= rx y))))
(defmethod gc/= [root-type ::complex]
[x y]
(let [[ry iy] (vals y)]
(and (gc/zero? iy) (gc/= x ry))))
(defmethod gc/= [::pure-imaginary root-type]
[x y]
(and (gc/zero? (imag x)) (gc/zero? y)))
(defmethod gc/= [root-type ::pure-imaginary]
[x y]
(and (gc/zero? x) (gc/zero? (imag y))))
;
; Addition
;
(defmethod ga/+ [::complex ::complex]
[x y]
(let [[rx ix] (vals x)
[ry iy] (vals y)]
(complex (ga/+ rx ry) (ga/+ ix iy))))
(defmethod ga/+ [::pure-imaginary ::pure-imaginary]
[x y]
(imaginary (ga/+ (imag x) (imag y))))
(defmethod ga/+ [::complex ::pure-imaginary]
[x y]
(let [[rx ix] (vals x)]
(complex rx (ga/+ ix (imag y)))))
(defmethod ga/+ [::pure-imaginary ::complex]
[x y]
(let [[ry iy] (vals y)]
(complex ry (ga/+ (imag x) iy))))
(defmethod ga/+ [::complex root-type]
[x y]
(let [[rx ix] (vals x)]
(complex (ga/+ rx y) ix)))
(defmethod ga/+ [root-type ::complex]
[x y]
(let [[ry iy] (vals y)]
(complex (ga/+ x ry) iy)))
(defmethod ga/+ [::pure-imaginary root-type]
[x y]
(complex y (imag x)))
(defmethod ga/+ [root-type ::pure-imaginary]
[x y]
(complex x (imag y)))
;
; Negation
;
(defmethod ga/- ::complex
[x]
(let [[rx ix] (vals x)]
(complex (ga/- rx) (ga/- ix))))
(defmethod ga/- ::pure-imaginary
[x]
(imaginary (ga/- (imag x))))
;
; Subtraction is automatically supplied by ga/-, optimized implementations
; can be added later...
;
;
; Multiplication
;
(defmethod ga/* [::complex ::complex]
[x y]
(let [[rx ix] (vals x)
[ry iy] (vals y)]
(complex (ga/- (ga/* rx ry) (ga/* ix iy))
(ga/+ (ga/* rx iy) (ga/* ix ry)))))
(defmethod ga/* [::pure-imaginary ::pure-imaginary]
[x y]
(ga/- (ga/* (imag x) (imag y))))
(defmethod ga/* [::complex ::pure-imaginary]
[x y]
(let [[rx ix] (vals x)
iy (imag y)]
(complex (ga/- (ga/* ix iy))
(ga/* rx iy))))
(defmethod ga/* [::pure-imaginary ::complex]
[x y]
(let [ix (imag x)
[ry iy] (vals y)]
(complex (ga/- (ga/* ix iy))
(ga/* ix ry))))
(defmethod ga/* [::complex root-type]
[x y]
(let [[rx ix] (vals x)]
(complex (ga/* rx y) (ga/* ix y))))
(defmethod ga/* [root-type ::complex]
[x y]
(let [[ry iy] (vals y)]
(complex (ga/* x ry) (ga/* x iy))))
(defmethod ga/* [::pure-imaginary root-type]
[x y]
(imaginary (ga/* (imag x) y)))
(defmethod ga/* [root-type ::pure-imaginary]
[x y]
(imaginary (ga/* x (imag y))))
;
; Inversion
;
(ga/defmethod* ga / ::complex
[x]
(let [[rx ix] (vals x)
den ((ga/qsym ga /) (ga/+ (ga/* rx rx) (ga/* ix ix)))]
(complex (ga/* rx den) (ga/- (ga/* ix den)))))
(ga/defmethod* ga / ::pure-imaginary
[x]
(imaginary (ga/- ((ga/qsym ga /) (imag x)))))
;
; Division is automatically supplied by ga//, optimized implementations
; can be added later...
;
;
; Conjugation
;
(defmethod gm/conjugate ::complex
[x]
(let [[r i] (vals x)]
(complex r (ga/- i))))
(defmethod gm/conjugate ::pure-imaginary
[x]
(imaginary (ga/- (imag x))))
;
; Absolute value
;
(defmethod gm/abs ::complex
[x]
(let [[r i] (vals x)]
(gm/sqrt (ga/+ (ga/* r r) (ga/* i i)))))
(defmethod gm/abs ::pure-imaginary
[x]
(gm/abs (imag x)))
;
; Square root
;
(let [one-half (/ 1 2)
one-eighth (/ 1 8)]
(defmethod gm/sqrt ::complex
[x]
(let [[r i] (vals x)]
(if (and (gc/zero? r) (gc/zero? i))
0
(let [; The basic formula would say
; abs (gm/sqrt (ga/+ (ga/* r r) (ga/* i i)))
; p (gm/sqrt (ga/* one-half (ga/+ abs r)))
; but the slightly more complicated one below
; avoids overflow for large r or i.
ar (gm/abs r)
ai (gm/abs i)
r8 (ga/* one-eighth ar)
i8 (ga/* one-eighth ai)
abs (gm/sqrt (ga/+ (ga/* r8 r8) (ga/* i8 i8)))
p (ga/* 2 (gm/sqrt (ga/+ abs r8)))
q ((ga/qsym ga /) ai (ga/* 2 p))
s (gm/sgn i)]
(if (gc/< r 0)
(complex q (ga/* s p))
(complex p (ga/* s q))))))))
;
; Exponential function
;
(defmethod gm/exp ::complex
[x]
(let [[r i] (vals x)
exp-r (gm/exp r)
cos-i (gm/cos i)
sin-i (gm/sin i)]
(complex (ga/* exp-r cos-i) (ga/* exp-r sin-i))))
(defmethod gm/exp ::pure-imaginary
[x]
(let [i (imag x)]
(complex (gm/cos i) (gm/sin i))))
|