;; Monads in Clojure ;; by Konrad Hinsen ;; last updated February 15, 2009 ;; Copyright (c) Konrad Hinsen, 2009. All rights reserved. The use ;; and distribution terms for this software are covered by the Eclipse ;; Public License 1.0 (http://opensource.org/licenses/eclipse-1.0.php) ;; which can be found in the file epl-v10.html at the root of this ;; distribution. By using this software in any fashion, you are ;; agreeing to be bound by the terms of this license. You must not ;; remove this notice, or any other, from this software. (ns clojure.contrib.monads (:require [clojure.contrib.accumulators])) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Defining monads ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defmacro monad "Define a monad by defining the monad operations. The definitions are written like bindings to the monad operations m-bind and m-result (required) and m-zero and m-plus (optional)." [operations] `(let [~'m-bind ::undefined ~'m-result ::undefined ~'m-zero ::undefined ~'m-plus ::undefined ~@operations] {:m-result ~'m-result :m-bind ~'m-bind :m-zero ~'m-zero :m-plus ~'m-plus})) (defmacro defmonad "Define a named monad by defining the monad operations. The definitions are written like bindings to the monad operations m-bind and m-result (required) and m-zero and m-plus (optional)." ([name doc-string operations] (let [doc-name (with-meta name {:doc doc-string})] `(defmonad ~doc-name ~operations))) ([name operations] `(def ~name (monad ~operations)))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Using monads ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defn- add-monad-step "Add a monad comprehension step before the already transformed monad comprehension expression mexpr." [mexpr step] (let [[bform expr] step] (if (identical? bform :when) (list 'm-bind `(if ~expr (~'m-result ::any) ~'m-zero) (list 'fn ['_] mexpr)) (list 'm-bind expr (list 'fn [bform] mexpr))))) (defn- monad-expr "Transforms a monad comprehension, consisting of a list of steps and an expression defining the final value, into an expression chaining together the steps using :bind and returning the final value using :result. The steps are given as a vector of binding-variable/monadic-expression pairs." [steps expr] (when (odd? (count steps)) (throw (Exception. "Odd number of elements in monad comprehension steps"))) (let [rsteps (reverse (partition 2 steps)) [lr ls] (first rsteps)] (if (= lr expr) ; Optimization: if the result expression is equal to the result ; of the last computation step, we can eliminate an m-bind to ; m-result. (reduce add-monad-step ls (rest rsteps)) ; The general case. (reduce add-monad-step (list 'm-result expr) rsteps)))) (defmacro with-monad "Evaluates an expression after replacing the keywords defining the monad operations by the functions associated with these keywords in the monad definition given by name." [name & exprs] `(let [~'m-bind (:m-bind ~name) ~'m-result (:m-result ~name) ~'m-zero (:m-zero ~name) ~'m-plus (:m-plus ~name)] (do ~@exprs))) (defmacro domonad "Monad comprehension. Takes the name of a monad, a vector of steps given as binding-form/monadic-expression pairs, and a result value specified by expr. The monadic-expression terms can use the binding variables of the previous steps. If the monad contains a definition of :zero, the step list can also contain conditions of the form [:when p], where the predicate p can contain the binding variables from all previous steps." ([steps expr] (monad-expr steps expr)) ([name steps expr] (let [mexpr (monad-expr steps expr)] `(with-monad ~name ~mexpr)))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Defining functions used with monads ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defmacro defmonadfn "Like defn, but for functions that use monad operations and are used inside a with-monad block." ([name doc-string args expr] (let [doc-name (with-meta name {:doc doc-string})] `(defmonadfn ~doc-name ~args ~expr))) ([name args expr] (let [fn-name (symbol (format "m+%s+m" (str name)))] `(do (def ~fn-name nil) (defmacro ~name ~args (list (quote ~fn-name) '~'m-bind '~'m-result '~'m-zero '~'m-plus ~@args)) (defn ~fn-name [~'m-bind ~'m-result ~'m-zero ~'m-plus ~@args] ~expr))))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Commonly used monad functions ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defmacro m-lift "Converts a function f of n arguments into a function of n monadic arguments returning a monadic value." [n f] (let [expr (take n (repeatedly #(gensym "x_"))) vars (vec (take n (repeatedly #(gensym "mv_")))) steps (vec (interleave expr vars))] (list `fn vars (monad-expr steps (cons f expr))))) (defmonadfn m-join "Converts a monadic value containing a monadic value into a 'simple' monadic value." [m] (m-bind m identity)) (defmonadfn m-fmap "Bind the monadic value m to the function returning (f x) for argument x" [f m] (m-bind m (fn [x] (m-result (f x))))) (defmonadfn m-seq "'Executes' the monadic values in ms and returns a sequence of the basic values contained in them." [ms] (reduce (fn [q p] (m-bind p (fn [x] (m-bind q (fn [y] (m-result (cons x y)))) ))) (m-result '()) (reverse ms))) (defmonadfn m-map "'Executes' the sequence of monadic values resulting from mapping f onto the values xs. f must return a monadic value." [f xs] (m-seq (map f xs))) (defmonadfn m-chain "Chains together monadic computation steps that are each functions of one parameter. Each step is called with the result of the previous step as its argument. (m-chain (step1 step2)) is equivalent to (fn [x] (domonad [r1 (step1 x) r2 (step2 r1)] r2))." [steps] (reduce (fn m-chain-link [chain-expr step] (fn [v] (m-bind (chain-expr v) step))) m-result steps)) (defmacro m-when "If test if logical true, return monadic value m-expr, else return (m-result nil)." [test m-expr] `(if ~test ~m-expr (~'m-result nil))) (defmacro m-when-not "If test if logical false, return monadic value m-expr, else return (m-result nil)." [test m-expr] `(if ~test (~'m-result nil) ~m-expr)) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Commonly used monads ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Identity monad (defmonad id "Monad describing plain computations. This monad does in fact nothing at all. It is useful for testing, for combination with monad transformers, and for code that is parameterized with a monad." [m-result identity m-bind (fn m-result-id [mv f] (f mv)) ]) ; Maybe monad (defmonad maybe "Monad describing computations with possible failures. Failure is represented by nil, any other value is considered valid. As soon as a step returns nil, the whole computation will yield nil as well." [m-zero nil m-result (fn m-result-maybe [v] v) m-bind (fn m-bind-maybe [mv f] (if (nil? mv) nil (f mv))) m-plus (fn m-plus-maybe [& mvs] (first (drop-while nil? mvs))) ]) ; Sequence monad (called "list monad" in Haskell) (defmonad sequence "Monad describing multi-valued computations, i.e. computations that can yield multiple values. Any object implementing the seq protocol can be used as a monadic value." [m-result (fn m-result-sequence [v] (list v)) m-bind (fn m-bind-sequence [mv f] (apply concat (map f mv))) m-zero (list) m-plus (fn m-plus-sequence [& mvs] (apply concat mvs)) ]) ; State monad (defmonad state "Monad describing stateful computations. The monadic values have the structure (fn [old-state] (list result new-state))." [m-result (fn m-result-state [v] (fn [s] (list v s))) m-bind (fn m-bind-state [mv f] (fn [s] (let [[v ss] (mv s)] ((f v) ss)))) ]) (defn update-state [f] (fn [s] (list s (f s)))) (defn set-state [s] (update-state (fn [_] s))) (defn fetch-state [] (update-state identity)) ; Writer monad (defn writer "Monad describing computations that accumulate data on the side, e.g. for logging. The monadic values have the structure [value log]. Any of the accumulators from clojure.contrib.accumulators can be used for storing the log data. Its empty value is passed as a parameter." [empty-accumulator] (monad [m-result (fn m-result-writer [v] [v empty-accumulator]) m-bind (fn m-bind-writer [mv f] (let [[v1 a1] mv [v2 a2] (f v1)] [v2 (clojure.contrib.accumulators/combine a1 a2)])) ])) (defmonadfn write [v] (let [[_ a] (m-result nil)] [nil (clojure.contrib.accumulators/add a v)])) (defn listen [mv] (let [[v a] mv] [[v a] a])) (defn censor [f mv] (let [[v a] mv] [v (f a)])) ; Continuation monad (defmonad cont "Monad describing computations in continuation-passing style. The monadic values are functions that are called with a single argument representing the continuation of the computation, to which they pass their result." [m-result (fn m-result-cont [v] (fn [c] (c v))) m-bind (fn m-bind-cont [mv f] (fn [c] (mv (fn [v] ((f v) c))))) ]) (defn run-cont "Execute the computation c in the cont monad and return its result." [c] (c identity)) (defn call-cc "A computation in the cont monad that calls function f with a single argument representing the current continuation. The function f should return a continuation (which becomes the return value of call-cc), or call the passed-in current continuation to terminate." [f] (fn [c] (let [cc (fn cc [a] (fn [_] (c a))) rc (f cc)] (rc c)))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Monad transformers ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defn maybe-t "Monad transformer that transforms a monad m into a monad in which the base values can be invalid (represented by nothing, which defaults to nil). The third argument chooses if m-zero and m-plus are inherited from the base monad (use :m-plus-from-base) or adopt maybe-like behaviour (use :m-plus-from-maybe)." ([m] (maybe-t m nil :m-plus-from-base)) ([m nothing which-m-plus] (let [combined-m-zero (cond (identical? which-m-plus :m-plus-from-base) (with-monad m m-zero) (identical? which-m-plus :m-plus-from-maybe) (with-monad m (m-result nothing)) :else ::undefined) combined-m-plus (cond (identical? which-m-plus :m-plus-from-base) (with-monad m m-plus) (identical? which-m-plus :m-plus-from-maybe) (with-monad m (fn [& mvs] (m-result (loop [mv (first mvs)] (if (nil? mv) nothing (let [v (m-bind mv identity)] (if (identical? v nothing) (recur (rest mvs)) v))))))) :else ::undefined)] (monad [m-result (with-monad m m-result) m-bind (with-monad m (fn m-bind-maybe-t [mv f] (m-bind mv (fn [x] (if (identical? x nothing) (m-result nothing) (f x)))))) m-zero combined-m-zero m-plus combined-m-plus ])))) (defn sequence-t "Monad transformer that transforms a monad m into a monad in which the base values are sequences." [m] (monad [m-result (with-monad m (fn m-result-sequence-t [v] (m-result (list v)))) m-bind (with-monad m (fn m-bind-sequence-t [mv f] (m-bind mv (fn [xs] (apply concat (map f xs)))))) ]))