aboutsummaryrefslogtreecommitdiff
path: root/modules/complex-numbers
diff options
context:
space:
mode:
Diffstat (limited to 'modules/complex-numbers')
-rw-r--r--modules/complex-numbers/pom.xml26
-rw-r--r--modules/complex-numbers/src/main/clojure/clojure/contrib/complex_numbers.clj293
2 files changed, 319 insertions, 0 deletions
diff --git a/modules/complex-numbers/pom.xml b/modules/complex-numbers/pom.xml
new file mode 100644
index 00000000..7e213208
--- /dev/null
+++ b/modules/complex-numbers/pom.xml
@@ -0,0 +1,26 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<project xmlns="http://maven.apache.org/POM/4.0.0"
+ xmlns:xsi="http//www.w3.org/2001/XMLSchema-instance"
+ xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
+ http://maven.apache.org/maven-v4_0_0.xsd">
+ <modelVersion>4.0.0</modelVersion>
+ <parent>
+ <groupId>org.clojure.contrib</groupId>
+ <artifactId>parent</artifactId>
+ <version>1.3.0-SNAPSHOT</version>
+ <relativePath>../parent</relativePath>
+ </parent>
+ <artifactId>complex-numbers</artifactId>
+ <dependencies>
+ <dependency>
+ <groupId>org.clojure.contrib</groupId>
+ <artifactId>generic</artifactId>
+ <version>1.3.0-SNAPSHOT</version>
+ </dependency>
+ <dependency>
+ <groupId>org.clojure.contrib</groupId>
+ <artifactId>types</artifactId>
+ <version>1.3.0-SNAPSHOT</version>
+ </dependency>
+ </dependencies>
+</project> \ No newline at end of file
diff --git a/modules/complex-numbers/src/main/clojure/clojure/contrib/complex_numbers.clj b/modules/complex-numbers/src/main/clojure/clojure/contrib/complex_numbers.clj
new file mode 100644
index 00000000..cf9aafd9
--- /dev/null
+++ b/modules/complex-numbers/src/main/clojure/clojure/contrib/complex_numbers.clj
@@ -0,0 +1,293 @@
+;; Complex numbers
+
+;; by Konrad Hinsen
+;; last updated May 4, 2009
+
+;; Copyright (c) Konrad Hinsen, 2009. All rights reserved. The use
+;; and distribution terms for this software are covered by the Eclipse
+;; Public License 1.0 (http://opensource.org/licenses/eclipse-1.0.php)
+;; which can be found in the file epl-v10.html at the root of this
+;; distribution. By using this software in any fashion, you are
+;; agreeing to be bound by the terms of this license. You must not
+;; remove this notice, or any other, from this software.
+
+(ns
+ ^{:author "Konrad Hinsen"
+ :doc "Complex numbers
+ NOTE: This library is in evolution. Most math functions are
+ not implemented yet."}
+ clojure.contrib.complex-numbers
+ (:refer-clojure :exclude (deftype))
+ (:use [clojure.contrib.types :only (deftype)]
+ [clojure.contrib.generic :only (root-type)])
+ (:require [clojure.contrib.generic.arithmetic :as ga]
+ [clojure.contrib.generic.comparison :as gc]
+ [clojure.contrib.generic.math-functions :as gm]))
+
+;
+; Complex numbers are represented as struct maps. The real and imaginary
+; parts can be of any type for which arithmetic and maths functions
+; are defined.
+;
+(defstruct complex-struct :real :imag)
+
+;
+; The general complex number type
+;
+(deftype ::complex complex
+ (fn [real imag] (struct complex-struct real imag))
+ (fn [c] (vals c)))
+
+(derive ::complex root-type)
+
+;
+; A specialized subtype for pure imaginary numbers. Introducing this type
+; reduces the number of operations by eliminating additions with and
+; multiplications by zero.
+;
+(deftype ::pure-imaginary imaginary
+ (fn [imag] (struct complex-struct 0 imag))
+ (fn [c] (list (:imag c))))
+
+(derive ::pure-imaginary ::complex)
+
+;
+; Extraction of real and imaginary parts
+;
+(def real (accessor complex-struct :real))
+(def imag (accessor complex-struct :imag))
+
+;
+; Equality and zero test
+;
+(defmethod gc/zero? ::complex
+ [x]
+ (let [[rx ix] (vals x)]
+ (and (zero? rx) (zero? ix))))
+
+(defmethod gc/= [::complex ::complex]
+ [x y]
+ (let [[rx ix] (vals x)
+ [ry iy] (vals y)]
+ (and (gc/= rx ry) (gc/= ix iy))))
+
+(defmethod gc/= [::pure-imaginary ::pure-imaginary]
+ [x y]
+ (gc/= (imag x) (imag y)))
+
+(defmethod gc/= [::complex ::pure-imaginary]
+ [x y]
+ (let [[rx ix] (vals x)]
+ (and (gc/zero? rx) (gc/= ix (imag y)))))
+
+(defmethod gc/= [::pure-imaginary ::complex]
+ [x y]
+ (let [[ry iy] (vals y)]
+ (and (gc/zero? ry) (gc/= (imag x) iy))))
+
+(defmethod gc/= [::complex root-type]
+ [x y]
+ (let [[rx ix] (vals x)]
+ (and (gc/zero? ix) (gc/= rx y))))
+
+(defmethod gc/= [root-type ::complex]
+ [x y]
+ (let [[ry iy] (vals y)]
+ (and (gc/zero? iy) (gc/= x ry))))
+
+(defmethod gc/= [::pure-imaginary root-type]
+ [x y]
+ (and (gc/zero? (imag x)) (gc/zero? y)))
+
+(defmethod gc/= [root-type ::pure-imaginary]
+ [x y]
+ (and (gc/zero? x) (gc/zero? (imag y))))
+
+;
+; Addition
+;
+(defmethod ga/+ [::complex ::complex]
+ [x y]
+ (let [[rx ix] (vals x)
+ [ry iy] (vals y)]
+ (complex (ga/+ rx ry) (ga/+ ix iy))))
+
+(defmethod ga/+ [::pure-imaginary ::pure-imaginary]
+ [x y]
+ (imaginary (ga/+ (imag x) (imag y))))
+
+(defmethod ga/+ [::complex ::pure-imaginary]
+ [x y]
+ (let [[rx ix] (vals x)]
+ (complex rx (ga/+ ix (imag y)))))
+
+(defmethod ga/+ [::pure-imaginary ::complex]
+ [x y]
+ (let [[ry iy] (vals y)]
+ (complex ry (ga/+ (imag x) iy))))
+
+(defmethod ga/+ [::complex root-type]
+ [x y]
+ (let [[rx ix] (vals x)]
+ (complex (ga/+ rx y) ix)))
+
+(defmethod ga/+ [root-type ::complex]
+ [x y]
+ (let [[ry iy] (vals y)]
+ (complex (ga/+ x ry) iy)))
+
+(defmethod ga/+ [::pure-imaginary root-type]
+ [x y]
+ (complex y (imag x)))
+
+(defmethod ga/+ [root-type ::pure-imaginary]
+ [x y]
+ (complex x (imag y)))
+
+;
+; Negation
+;
+(defmethod ga/- ::complex
+ [x]
+ (let [[rx ix] (vals x)]
+ (complex (ga/- rx) (ga/- ix))))
+
+(defmethod ga/- ::pure-imaginary
+ [x]
+ (imaginary (ga/- (imag x))))
+
+;
+; Subtraction is automatically supplied by ga/-, optimized implementations
+; can be added later...
+;
+
+;
+; Multiplication
+;
+(defmethod ga/* [::complex ::complex]
+ [x y]
+ (let [[rx ix] (vals x)
+ [ry iy] (vals y)]
+ (complex (ga/- (ga/* rx ry) (ga/* ix iy))
+ (ga/+ (ga/* rx iy) (ga/* ix ry)))))
+
+(defmethod ga/* [::pure-imaginary ::pure-imaginary]
+ [x y]
+ (ga/- (ga/* (imag x) (imag y))))
+
+(defmethod ga/* [::complex ::pure-imaginary]
+ [x y]
+ (let [[rx ix] (vals x)
+ iy (imag y)]
+ (complex (ga/- (ga/* ix iy))
+ (ga/* rx iy))))
+
+(defmethod ga/* [::pure-imaginary ::complex]
+ [x y]
+ (let [ix (imag x)
+ [ry iy] (vals y)]
+ (complex (ga/- (ga/* ix iy))
+ (ga/* ix ry))))
+
+(defmethod ga/* [::complex root-type]
+ [x y]
+ (let [[rx ix] (vals x)]
+ (complex (ga/* rx y) (ga/* ix y))))
+
+(defmethod ga/* [root-type ::complex]
+ [x y]
+ (let [[ry iy] (vals y)]
+ (complex (ga/* x ry) (ga/* x iy))))
+
+(defmethod ga/* [::pure-imaginary root-type]
+ [x y]
+ (imaginary (ga/* (imag x) y)))
+
+(defmethod ga/* [root-type ::pure-imaginary]
+ [x y]
+ (imaginary (ga/* x (imag y))))
+
+;
+; Inversion
+;
+(ga/defmethod* ga / ::complex
+ [x]
+ (let [[rx ix] (vals x)
+ den ((ga/qsym ga /) (ga/+ (ga/* rx rx) (ga/* ix ix)))]
+ (complex (ga/* rx den) (ga/- (ga/* ix den)))))
+
+(ga/defmethod* ga / ::pure-imaginary
+ [x]
+ (imaginary (ga/- ((ga/qsym ga /) (imag x)))))
+
+;
+; Division is automatically supplied by ga//, optimized implementations
+; can be added later...
+;
+
+;
+; Conjugation
+;
+(defmethod gm/conjugate ::complex
+ [x]
+ (let [[r i] (vals x)]
+ (complex r (ga/- i))))
+
+(defmethod gm/conjugate ::pure-imaginary
+ [x]
+ (imaginary (ga/- (imag x))))
+
+;
+; Absolute value
+;
+(defmethod gm/abs ::complex
+ [x]
+ (let [[r i] (vals x)]
+ (gm/sqrt (ga/+ (ga/* r r) (ga/* i i)))))
+
+(defmethod gm/abs ::pure-imaginary
+ [x]
+ (gm/abs (imag x)))
+
+;
+; Square root
+;
+(let [one-half (/ 1 2)
+ one-eighth (/ 1 8)]
+ (defmethod gm/sqrt ::complex
+ [x]
+ (let [[r i] (vals x)]
+ (if (and (gc/zero? r) (gc/zero? i))
+ 0
+ (let [; The basic formula would say
+ ; abs (gm/sqrt (ga/+ (ga/* r r) (ga/* i i)))
+ ; p (gm/sqrt (ga/* one-half (ga/+ abs r)))
+ ; but the slightly more complicated one below
+ ; avoids overflow for large r or i.
+ ar (gm/abs r)
+ ai (gm/abs i)
+ r8 (ga/* one-eighth ar)
+ i8 (ga/* one-eighth ai)
+ abs (gm/sqrt (ga/+ (ga/* r8 r8) (ga/* i8 i8)))
+ p (ga/* 2 (gm/sqrt (ga/+ abs r8)))
+ q ((ga/qsym ga /) ai (ga/* 2 p))
+ s (gm/sgn i)]
+ (if (gc/< r 0)
+ (complex q (ga/* s p))
+ (complex p (ga/* s q))))))))
+
+;
+; Exponential function
+;
+(defmethod gm/exp ::complex
+ [x]
+ (let [[r i] (vals x)
+ exp-r (gm/exp r)
+ cos-i (gm/cos i)
+ sin-i (gm/sin i)]
+ (complex (ga/* exp-r cos-i) (ga/* exp-r sin-i))))
+
+(defmethod gm/exp ::pure-imaginary
+ [x]
+ (let [i (imag x)]
+ (complex (gm/cos i) (gm/sin i))))