aboutsummaryrefslogtreecommitdiff
path: root/laser-tag software/radio.c
blob: 4ee90ff42cb58ba729dba5618d94262707840d67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#include "radio.h"
#include "fsl_gpio_driver.h"
#include "fsl_spi_master_driver.h"
#include "RFM69registers.h"

static const gpio_output_pin_user_config_t pinReset = {
    .pinName = GPIO_MAKE_PIN(GPIOC_IDX, 8),
    .config.outputLogic = 1,
};

static const gpio_input_pin_user_config_t pinDIO0 = {
    .pinName = GPIO_MAKE_PIN(GPIOC_IDX, 9),
};

static const gpio_output_pin_user_config_t pinDIO2 = {
    .pinName = GPIO_MAKE_PIN(GPIOC_IDX, 10),
    .config.outputLogic = 0,
};

static const spi_master_user_config_t spiConfig = {
    .bitsPerSec = 2000000, /* 2 MHz, max is 10 MHz */
    .polarity = kSpiClockPolarity_ActiveHigh,
    .phase = kSpiClockPhase_FirstEdge,
    .direction = kSpiMsbFirst,
    .bitCount = kSpi16BitMode,
};

static const struct {
    uint8_t reg;
    uint8_t val;
} config[] = {
    { REG_OPMODE, RF_OPMODE_SEQUENCER_ON
                | RF_OPMODE_LISTEN_OFF
                | RF_OPMODE_STANDBY },
    { REG_DATAMODUL, RF_DATAMODUL_DATAMODE_PACKET
                   | RF_DATAMODUL_MODULATIONTYPE_FSK
                   | RF_DATAMODUL_MODULATIONSHAPING_00 }, // no shaping
    { REG_BITRATEMSB, RF_BITRATEMSB_55555 }, // 55,555 bps
    { REG_BITRATELSB, RF_BITRATELSB_55555 },
    { REG_FDEVMSB, RF_FDEVMSB_50000 }, // default: 5KHz,
    { REG_FDEVLSB, RF_FDEVLSB_50000 }, // (FDEV + BitRate / 2 <= 500KHz)
    { REG_FRFMSB, RF_FRFMSB_915 },
    { REG_FRFMID, RF_FRFMID_915 },
    { REG_FRFLSB, RF_FRFLSB_915 },
    // looks like PA1 and PA2 are not implemented on RFM69W,
    // hence the max output power is 13dBm
    // +17dBm and +20dBm are possible on RFM69HW
    // +13dBm formula: Pout = -18 + OutputPower (with PA0 or PA1**)
    // +17dBm formula: Pout = -14 + OutputPower (with PA1 and PA2)**
    // +20dBm formula: Pout = -11 + OutputPower (with PA1 and PA2)** and high
    // power PA settings (section 3.3.7 in datasheet)
    { REG_PALEVEL, RF_PALEVEL_PA0_OFF
                 | RF_PALEVEL_PA1_ON
                 | RF_PALEVEL_PA2_ON
                 | RF_PALEVEL_OUTPUTPOWER_11111 },
    { REG_TESTPA1, 0x5D },
    { REG_TESTPA2, 0x7C },
    { REG_OCP, RF_OCP_OFF }, // over current protection
    // RXBW defaults are RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_24 | RF_RXBW_EXP_5
    // (RxBw: 10.4KHz)
    //for BR-19200: RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_24 | RF_RXBW_EXP_3
    // (BitRate < 2 * RxBw)
    { REG_RXBW, RF_RXBW_DCCFREQ_010
              | RF_RXBW_MANT_16
              | RF_RXBW_EXP_2 },
    // DIO0 is the only IRQ we're using
    { REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_01 },
    // DIO5 ClkOut disable for power saving
    { REG_DIOMAPPING2, RF_DIOMAPPING2_CLKOUT_OFF },
    // writing to this bit ensures that the FIFO & status flags are reset
    { REG_IRQFLAGS2, RF_IRQFLAGS2_FIFOOVERRUN },
    // must be set to dBm = (-Sensitivity / 2), default is 0xE4 = 228 so -114dBm
    { REG_RSSITHRESH, 220 },
    // default 3 preamble bytes 0xAAAAAA
    //{ REG_PREAMBLELSB, RF_PREAMBLESIZE_LSB_VALUE }
    { REG_SYNCCONFIG, RF_SYNC_ON
                    | RF_SYNC_FIFOFILL_AUTO
                    | RF_SYNC_SIZE_2
                    | RF_SYNC_TOL_0 },
    // attempt to make this compatible with sync1 byte of RFM12B lib
    { REG_SYNCVALUE1, 0x2D },
    { REG_SYNCVALUE2, 0x01 }, // NETWORK ID (1 = users, 2 = uber)
    { REG_PACKETCONFIG1, RF_PACKET1_FORMAT_VARIABLE
                       | RF_PACKET1_DCFREE_OFF
                       | RF_PACKET1_CRC_ON
                       | RF_PACKET1_CRCAUTOCLEAR_ON
                       | RF_PACKET1_ADRSFILTERING_OFF },
    // in variable length mode: the max frame size, not used in TX
    { REG_PAYLOADLENGTH, 66 },
    // turned off because we're not using address filtering
    //{ REG_NODEADRS, nodeID },
    { REG_FIFOTHRESH, RF_FIFOTHRESH_TXSTART_FIFONOTEMPTY
                    | RF_FIFOTHRESH_VALUE }, // TX on FIFO not empty
    // RXRESTARTDELAY must match transmitter PA ramp-down time
    // (bitrate dependent)
    //for BR-19200: RF_PACKET2_RXRESTARTDELAY_NONE | RF_PACKET2_AUTORXRESTART_ON
    //| RF_PACKET2_AES_OFF
    { REG_PACKETCONFIG2, RF_PACKET2_RXRESTARTDELAY_2BITS
                       | RF_PACKET2_AUTORXRESTART_ON
                       | RF_PACKET2_AES_OFF },
    // run DAGC continuously in RX mode for Fading Margin Improvement,
    // recommended default for AfcLowBetaOn=0
    { REG_TESTDAGC, RF_DAGC_IMPROVED_LOWBETA0 },
};

static spi_master_state_t spiState;

static spi_status_t SPI_Transfer(const uint8_t *tx, uint8_t *rx, size_t count)
{
    spi_status_t rc;

    rc = SPI_DRV_MasterTransfer(0, NULL, tx, rx, count);
    if (rc != kStatus_SPI_Success) {
        return rc;
    }
    int i, timeout = (count + 127) / 128 + 1;
    for (i = 0; i < timeout; ++i) {
        rc = SPI_DRV_MasterGetTransferStatus(0, NULL);
        if (rc == kStatus_SPI_Success) {
            return rc;
        }
    }
    return rc;
}

static uint8_t read_reg(uint8_t reg)
{
	uint8_t tx[2] = { 0, reg & 0x7f };
	uint8_t rx[2] = { 0, 0 };

    SPI_Transfer(tx, rx, 2);
	return rx[0];
}

static void write_reg(uint8_t reg, uint8_t val)
{
	uint8_t tx[2] = { val, reg | 0x80 };

    SPI_Transfer(tx, NULL, 2);
}

static void delay(uint32_t ms)
{
    for (; ms > 0; --ms) {
        /* XXX This is really stupid */
        volatile int i;
        for (i = 0; i < 306; ++i);
    }
}

int radio_init()
{
    PORT_HAL_SetMuxMode(g_portBase[GPIOC_IDX], 4, kPortMuxAlt2);
    PORT_HAL_SetMuxMode(g_portBase[GPIOC_IDX], 5, kPortMuxAlt2);
    PORT_HAL_SetMuxMode(g_portBase[GPIOC_IDX], 6, kPortMuxAlt2);
    PORT_HAL_SetMuxMode(g_portBase[GPIOC_IDX], 7, kPortMuxAlt2);
    PORT_HAL_SetMuxMode(g_portBase[GPIOC_IDX], 8, kPortMuxAsGpio);
    //PORT_HAL_SetMuxMode(g_portBase[GPIOC_IDX], 10, kPortMuxAsGpio);
    GPIO_DRV_OutputPinInit(&pinReset);
    //GPIO_DRV_OutputPinInit(&pinDIO2);
    delay(1);
    GPIO_DRV_WritePinOutput(pinReset.pinName, 0);
    delay(5);

    /* Configure DMA channel */
    SPI_DRV_MasterInit(0, &spiState);
    uint32_t calculatedBaudRate;
    SPI_DRV_MasterConfigureBus(0, &spiConfig, &calculatedBaudRate);

    /* Use REG_SYNCVALUE1 to test that the radio is there */
	write_reg(REG_SYNCVALUE1, 0x55);
	uint32_t reg = read_reg(REG_SYNCVALUE1);
	if (reg != 0x55) {
		return -1;
	}

    /* Setup a bunch of config registers */
    uint32_t i;
    for (i = 0; i < sizeof config / sizeof *config; ++i) {
        write_reg(config[i].reg, config[i].val);
    }
	return 0;
}

void set_mode(uint8_t mode)
{
    uint8_t reg = read_reg(REG_OPMODE);

    write_reg(REG_OPMODE, (reg & 0xE3) | mode);
}

void radio_test(void)
{
    //write_reg(REG_DATAMODUL, RF_DATAMODUL_DATAMODE_CONTINUOUSNOBSYNC);
    set_mode(RF_OPMODE_TRANSMITTER);
    /*
    bool a = false;
    while (true) {
        GPIO_DRV_WritePinOutput(pinDIO2.pinName, a);
        a = !a;
        delay(100);
    }*/
}

/* vim: set expandtab ts=4 sw=4: */